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Abstract. Data assimilation algorithms are a crucial part of operational systems in

numerical weather prediction, hydrology and climate science, but are also important for

dynamical reconstruction in medical applications and quality control for manufactoring

processes. Usually, a variety of diverse measurement data are employed to determine

the state of the atmosphere or to a wider system including land and oceans. Modern

data assimilation systems use more and more remote sensing data, in particular

radiances measured by satellites, radar data and integrated water vapor measurements

via GPS/GNSS signals. The inversion of some of these measurements are ill-posed in

the classical sense, i.e. the inverse of the operator H which maps the state onto the

data is unbounded. In this case, the use of such data can lead to signi�cant instabilities

of data assimilation algorithms.

The goal of this work is to provide a rigorous mathematical analysis of the

instability of well-known data assimilation methods. Here, we will restrict our attention

to particular linear systems, in which the instability can be explicitly analyzed.

We investigate the three-dimensional variational assimilation and four-dimensional

variational assimilation. A theory for the instability is developed using the classical

theory of ill-posed problems in a Banach space framework. Further, we demonstrate

by numerical examples that instabilities can and will occur, including an example from

dynamic magnetic tomography.

1. Introduction

Data assimilation algorithms in combination with the reconstruction of quantities from

remote sensing data are important in many areas like numerical weather prediction

[War11], oceanic and hydrologic applications [PX09] as well as process tomography (for

example using magnetic tomography [KKP02], [HKP05], [HPWS05], [HP07], [HPW08],

[PW09], [Wan09]) and in cognitive neuroscience [PbG09].

Today, there is a variety of algorithms for data assimilation. There are classical

variational approaches (compare [LLD06], [LSK10]) known as three-dimensional

variational assimilation (3dVar) and four-dimensional variational assimilation (4dVar).

Many data assimilation schemes can be considered as special cases of statistical inversion

methods [Jaz70], [KS04], i.e. Bayesian estimation for the case of linear systems [RL00].
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In the case of Gaussian errors and Gaussian background distributions for linear systems

Bayes’ formula leads to the well known Kalman Filter [Kal60].

Here, we study data assimilation algorithms as iterative or cycled schemes. Our

viewpoint is driven by the �eld of inverse problems, which rather than focusing on

stochastical properties of the �elds under consideration, has placed strong emphasis on

the analysis of the ill-posedness of the reconstruction problem.

In fact, using remote sensing data we will �nd severe instabilities of these

algorithms. The origin of this instable behavior may either be due to the nonlinear

or chaotic systems dynamics as for examle presented in [CGTU08] or because of the

ill-posedness of the observation operator H. The second cause of instability is our key

concern in this work.

To provide a thorough analysis we investigate a dynamic (or cycled) Tikhonov

regularization scheme (compare also [Mar11]), which is a Tikhonov regularization with

a dynamic background which is updated by propagating the analysis of the previous

step to the next point in time where data are provided. We use the Hilbert spaces X; Y

and the discrete time-slices

t0 < t1 < t2 < ::: < tk < : : : (1.1)

where we consider the system states xk 2 X at time tk and the corresponding data

yk 2 Y . They are given via the measurement operator H : X ! Y by

yk = y
(true)
k + y(�) = Hx

(true)
k + y(�); k 2 N (1.2)

Let our measurement operator H be compact and linear and X be of in�nite dimension.

Then, H cannot have a bounded inverse H�1 (c.f. [Kre99
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analysis. These systems serve as key examples to prepare the investigation of more

complex nonlinear systems. In particular, we will study a constant system and spectrally
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b) Spectrally diagonal systems, i.e. systems for which the dynamics is given by

Mk+1jk = U�1DU (2.1)

with some orthonormal transformation U : X ! X and a diagonal mapping D.

We call a mapping diagonal in an in�nite dimensional space, when there is some

orthonormal system f’n : n 2 Ng such that

D’n = dn’n; n 2 N: (2.2)

c) Spectrally expanding systems. In the case where all dn satisfy

jdnj � q > 1; n 2 N; (2.3)

with some constant q we call the system expanding.

d) Spectrally collapsing systems. These are systems with a representation of type (2.1),

(2.2) for which

jdnj � q < 1; n 2 N (2.4)

with some constant q is satis�ed.

We will also be interested in systems for which the columns of U are the singular

vectors of the measurement operator H, i.e. H�H’n = �2
n’n for n 2 N. In this case, the

complete dynamics of the data assimilation system can be diagonalized by the singular

vectors of H.

2.2. Cycled Regularization

Tikhonov regularization is a well-known scheme to solve an ill-posed operator equation

of the type Hx = y by minimization of the cost functional

J(x) = jjHx� yjj2 + �jjxjj2: (2.5)

To solve such a data equation on successive points in time tk, we employ a modi�ed

regularization term using the b7s1 aN t



On Instabilities in Data Assimilation Algorithms 5

with

R� = (�I +H�H)�1H�: (2.9)

starting from some initial state x
(a)
0 . The parameter � > 0 is denoted as regularization

parameter (compare [CK97] Theorem 4.14). We call (2.8) together with (2.6) the cycled

Tikhonov regularization.

2.3. Three-dimensional Variational Assimilation (3dVar).

Three-dimensional variational data assimilation (3dVar) is basically a cycled Tikhonov

scheme with weighted norms. For this section let us restrict our arguments to the n-

dimensional case where X = Rn with some n 2 N and Y = Rm, m 2 N. For some

symmetric positive de�nite matrix � we de�ne the weighted scalar product

h�; �i� := h� ;��i ; (2.10)

where h�; �i denotes the standard L2 scalar product in Rn. Given a linear operator

H : X ! Y , we denote the adjoint operator with respect to the standard scalar products

by H 0 and the adjoint with respect to the weighted scalar products by H�.

Let B be the covariance matrix for the background system and R the covariance

matrix for the measurements. Then the cost function for the cycled 3dVar scheme

(compare [LLD06] Chapter 20) is given by

J3dV ar(

J

J

m J(;(2.10)J 0 :]TJ/ Tf ance

m

00]TJ/ Tf ance

m’6-167(;6-1669R)]T3F25547019]TJ/F1..5913T(3)]TF33 117.973 Tf 23r7 31.9552 Ta 587andard]TJ/ Tf ance
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with yj 2 Y . Then we can write (2.20) as

J4dV ar(x) := jjx� x0jj2B�1 + jjy �Hxjj2R�1 ; (2.26)

which corresponds to (2.11) for one iteration step. Thus, 4dVar for linear systems can be

written as a 3dVar algorithm and in a second step as a cycled Tikhonov regularization,

such that results for cycled Tikhonov regularization apply both 3dVar and 4dVar.

3. Instability of Variational Data Assimilation

The goal of this section is to carry out the stability analysis for cycled variational

assimilation algorithms with ill-posed observation operators, in particular for a cycled

Tikhonov regularization (which according to the above arguments then also hold for

3dVar and 4dVar). We will show that all cycled assimilation schemes can exhibit strong

instabilities when remote sensing operators are involved.

3.1. Cycled Tikhonov Regularization

We have shown that for linear models choosing appropriate norms the cycled 3dVar

or 4dVar can be written as a cycled Tikhonov regularization. Thus, without loss of

generality, we can restrict our attention to the update formula (2.8). We denote the

true system by x
(true)
k with true data y

(true)
k = Hx

(true)
k . The real measured data is

assumed to be of the form

yk = Hx
(true)
k + y

(�)
k ; k 2 N: (3.1)
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Theorem 3.2 Assume that H : X ! Y is a compact injective operator from a Hilbert

space X into a Hilbert space Y . Then we have the pointwise convergence�
I + ��1H�H

��k
’! 0; k !1 (3.12)

for every �xed element ’ 2 X.

Proof. To show the convergence (3.12) we use � = 1 to keep things readable, the

general case is carried out analogously. We haveD
(I +H�H) ; (I +H�H) 

E
= jj jj2 + 2jjH jj2 + jjH�H jj2

> jj jj2 (3.13)

if H 6= 0. If we use  = (I +H�H)�1’, we estimate

jj(I +H�H)�1’jj < jj’jj: (3.14)

This observation can be generalized. We calculateD
(I +H�H)k ; (I +H�H)k 

E
= jj jj2 + 2kjjH jj2 + Uk (3.15)

with some terms Uk for which we show later that they are positive or zero. As a

consequence we obtain

jj(I +H�H)�k’jj2 + 2kjjH(I +H�H)�k’jj2 < jj’jj2: (3.16)

Now, we know that �k := (I + H�H)�k’ is bounded in X. Assume that it is not

convergent towards zero. Then there is a weakly convergent subsequence (�kj
)j2N, which

tends weakly towards  2 X,  6= 0. But now H�kj
! H in X. From (3.16) we then

obtain H = 0 and thus  = 0, which is a contradiction to our assumption and shows

that (3.12) must be satis�ed.

Finally, we need to show that the terms Uk are positive. We use the binomial

formula to calculateD
(I +H�H)k ; (I +H�H)k 

E
=
D kX
�=0

�
k

�

�
(H�H)� ;

kX
�=0

�
k

�

�
(H�H)� 

E

=
kX
�=0

kX
�=0

�
k

�

��
k

�

�D
(H�H)� ; (H�H)� 

E
: (3.17)

Each scalar product in (3.17) can be seen to be positive by transforming them into terms

of the form D
(H�H)l ; (H�H)l 

E
= jj(H�H)l jj2 (3.18)

with l = (� + �)=2 for � + � even orD
(H�H)l+1 ; (H�H)l 

E
= jjH(H�H)l jj2 (3.19)

with l = (� + � � 1)=2 for � + � odd, and the proof is complete. �
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For H injective we have shown the pointwise convergence �ke0 ! 0 for k !1 for

any e0 2 X. To fully study the behaviour of ek we further need to calculate the second

term in (3.6) or (3.7), respectively. We need to investigate

(I � �)�1S = (R�H)�1R�y
(�): (3.20)

Under the condition that H�H is invertible, we calculate

(R�H)�1R� =
�

(�I +H�H)�1H�H
��1

(�I +H�H)�1H�

= (H�H)�1H�; (3.21)

which is the Moore-Penrose pseudo inverse. Since H and H� are compact, in general

invertibility is not given, but we obtain invertibility of R�H on the subspace

Z := (�I +H�H)�1H�H(X) � Y:

We capture the phenomena in the following lemma.

Lemma 3.3 Assume that H and H� are injective. If y(�) 2 H(X), i.e. there is x(�) 2 X
such that y(�) = Hx(�), then with S = R�y

(�) we obtain� k�1X
�=0

��
�
S ! x(�); k !1: (3.22)

In the case where y(�) 62 H(X), we have

jj
� k�1X
�=0

��
�
Sjj ! 1; k !1: (3.23)

Proof. In the case y(�) 2 H(X) we have

(I � �)
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convergent sequence into a strongly convergent sequence, i.e. H�kj
! H . We further

have the convergence

(R�H)
� kj�1X

�=0

��
�
S = (I � �)

� kj�1X
�=0

��
�
S

= (I � �kj )S

! R�y
(�); j !1: (3.27)

and

(R�H)
� kj�1X

�=0

��
�
S = R�H�kj

! R�H ; j !1: (3.28)

Since R� is boundedly invertible, from (3.27) and (3.28) we obtain the identity

H = y(�), i.e. y(�) is in the images space H(X). This shows that under the condition

y(�) 62 H(X) the sequence (�k)k2N cannot be uniformly bounded and the proof is

complete. �

Finally, we summarize our results and apply them to variational data assimilation

schemes as a corollary.

Corollary 3.4 (Instability of Assimilation Schemes) The cycled Tikhonov

regularization and thus also the data assimilation schemes 3dVar and 4dVar for a con-

stant model M
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with coe�cients an;k. The coe�cients of the data vectors yk at time tk are de�ned by

yk =
1X
n=0

bn;kgn; k = 1; 2; : : : (3.32)

According to (3.29) an application of the operators H or H�
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for n0 !1. Given � > 0 we �rst choose n0 such that
P1

n=n0+1 �n’n is smaller than �=2

in norm. Then, we choose k0 > 0 such that
n0X
n=1

����1 +
1

�
�2
n

��k
�n

���2 < �

2
(3.47)

for k � k0. This yields������ �I + ��1H�H
��k

’
������2 � �; (3.48)

thus (3.38) is satis�ed for k ! 1. To show (3.39) we employ the trivial identity

I = (I + ��1H�H)� ��1H�H to calculate

(I + ��1H�H)�1’ = (I + ��1H�H)�1
�

(I + ��1H�H)� ��1H�H
	
’

= ’� (I + ��1H�H)�1��1H�H’

= ’ (3.49)

for ’ 2 N(H�H
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Lemma 3.9 Let a; b 2 R, then we have

ja� bj2 � jaj
2

2
� jbj2 (3.53)

Proof.
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3.3. Instability for spectrally expanding or collapsing systems

Finally, we will study the behaviour of the error of data assimilation algorithms with a

compact observation operator in the case of spectrally expanding or collapsing systems

as introduced in (2.1). We start with the spectral update formula (3.35) and use the

dynamics introduced in (2.2)

a
(b)
n;k+1 = dna

(a)
n;k; k = 0; 1; 2; ::: (3.60)

which is spectrally diagonal with respect to the singular system of the observation

operator H. In this case the coe�cients show an exponential behaviour

a
(true)
n;k = dkna

(true)
n;0 ; k = 1; 2; 3; :::: (3.61)

Then, the assimilation (3.35) with data yk = Hx
(true)
k + y

(�)
k , k = 1; 2; 3; :::, leads to the

update formula

a
(a)
n;k+1 = qndna

(a)
n;k + (1� qn)a

(true)
n;k+1 + (1� qn)

b
(�)
n;k+1

�n
: (3.62)

Note that the true solution is dynamical as well and we need to build this dynamics into

our induction formula to study the dynamical evolution of the analysis and the errors.

One key question is how the data error evolves. Here, we assume that

the measurements are remote sensing data which are independent of the system
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= qk+1
n dk+1

n an;0 + (1� qk+1
n )dk+1

n a
(true)
n;0 +

� kX
�=0

q�nd
�
n

�
(1� qn)

b
(�)
n

�n
;

which is the desired formula with k replaced by k + 1. Finally, (3.65) is obtained by

standard geometric series, and the proof is complete. �

1) The Convergence Case. We can now investigate the asymptotic behavior, where

two main situations arise. We have convergent terms in (3.65) if the condition

jdnqnj =
���� �dn
� + �2

n

���� < 1 (3.66)

is satis�ed. The condition (3.66) can be rewritten as

jdnj < 1 +
�2
n

�
; n 2 N: (3.67)

The spectral expansion coe�cient d
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y = Hx(true) + y(�) =2 H(X). We have shown in Lemma 3.10 that in this case we have

jjx(a)
k jj ! 1; k !1: (4.1)

Further, from (3.37) we deduce that the spectral coe�cient of the analysis error is

exponentially convergent towards

b
(�)
n

�n
; n 2 N: (4.2)

The speed of this convergence is proportional to

qn =
�

� + �2
n

; n 2 N; (4.3)

i.e. it is depending on the particular mode. Since j�nj ! 0 for n!1 the convergence

is quick for small modes and decreases when n gets larger.

�
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Figure 3 shows the relative reconstruction error. We see that the error decreases

until it reaches a minmum after 11 steps. After that point the sum of the error according

to (3.57) takes over and the full system behaves as seen in (3.59). This con�rms the

evolution given by Lemma 3.10 for a practically relevant example.

5. Summary

We have investigated the instability which can occur when measurements are assimilated

into a dynamical system evolution which are linked to the system state ’ in an in�nite

dimensional state space X by a compact measurement operator H. For simple systems

we have shown that cycling of standard data assimilation schemes can lead to severe

instabilities of the analysis, i.e. small measurement errors accumulate over time and can

lead to large analysis errors. We have worked out explicit spectral formulas which

show the instable behaviour. Further, numerical results in simple cases and from

dynamical magnetic tomography con�rm the results. These results are interesting also

in seismology and earth sciences.

The systems investigated in this work can be seen as a simple model if the speed of

change in the dynamical system is small compared to the frequency of measurements.

But if even these quite stable systems can show severe instable behaviour, more general

systems are even more likely to show similar behaviour. Subsequent work has already

been carried out by Potthast, Moodey, Lawless and van Leeuwen [PMLvL], where

dynamical systems M of trace class are investigated. Note that the systems here, in

particular the constant system M = I, are not of trace class, but trace class systems

damp higher modes as it is usually carried out in global atmospheric models. For trace

class systems the authors show similar results, but also provide a stable assimilation

setup to control the analysis error over time. Further research in this direction is highly

interesting to learn more about possible instabilities of operational data assimilation

systems, which by causing large forecast error can have a signi�cant impact on many

parts of society.
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