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Abstract In this paper we propose and analyse a hybrid numerical-asymptotic
boundary element method for the solution of problems of high frequency acoustic
scattering by a class of sound-soft nonconvex polygons. The approximation space
is enriched with carefully chosen oscillatory basis functions; these are selected via a
study of the high frequency asymptotic behaviour of the solution. We demonstrate
via a rigorous error analysis, supported by numerical examples, that to achieve
any desired accuracy it is sufficient for the number of degrees of freedom to grow
only in proportion to the logarithm of the frequency as the frequency increases,
in contrast to the at least linear growth required by conventional methods. This
appears to be the first such numerical analysis result for any problem of scattering
by a nonconvex obstacle.

Keywords High frequency scattering · Boundary Element Method · Helmholtz
equation

1 Introduction

There has been considerable interest in recent years in the development of numer-
ical methods for time harmonic acoustic and electromagnetic scattering problems
that are able to efficiently resolve the scattered field at high frequencies. Standard
finite or boundary element methods, with piecewise polynomial approximation
spaces, suffer from the restriction that a fixed number of degrees of freedom is
required per wavelength in order to represent the oscillatory solution, leading to
excessive computational cost when the scatterer is large compared to the wave-
length.
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A methodology that has shown a great deal of promise is the so-called “hy-
brid numerical-asymptotic” approach, where partial knowledge of the high fre-
quency asymptotic behaviour is incorporated into the approximation space. This
approach is particularly attractive when employed within a boundary element
method (BEM) framework, since knowledge of the high frequency asymptotics
is required only on the boundary of the scatterer. Whereas conventional BEMs
for two-dimensional (2D) problems require the number of degrees of freedom to
grow at least linearly with respect to frequency in order to maintain a prescribed
level of accuracy as the frequency increases, hybrid numerical-asymptotic BEMs
have been shown, for a range of problems, to require a significantly milder (often
only logarithmic) growth in computational cost. We refer to [14] (and the very
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Of course, the same issues must be overcome in fully asymptotic methods. Al-
though the original version of the Geometrical Theory of Diffraction (GTD) [29]
was deficient in the sense that it did not include the shadow boundary behaviour,
more sophisticated, uniform versions of GTD have been developed which capture
this [30,7]. However, we emphasize that, in the numerical-asymptotic approach
developed here, we do not require the computation of a full asymptotic solution
in order to design our hybrid approximation space. Rather, we need merely a rep-
resentation of the form (1), with an explicit (and relatively simple) term V0 and
explicit phases ψm, that captures the high frequency oscillations present in the
solution. To design hybrid algorithms optimally, and prove their effectiveness by
rigorous numerical analysis, we need additionally to understand the regularity of
the amplitudes Vm, m = 1, . . . ,M , moreover obtaining bounds on these ampli-
tudes that are explicit in their dependence on the wavenumber. This requires high
frequency asymptotics of a new kind which aims at coarser information than the
full asymptotic solution. The results of this kind that we require in this paper are
proved in §3 and §4 below.

As alluded to above, most high frequency algorithms developed to date have
been for convex scatterers. The case of multiple smooth convex scatterers, which
shares many of the difficulties associated with single nonconvex scatterers, has been
considered in [27,24,25,3]. The key theme of that body of work is a decomposition
of the multiple scattering problem into a series of problems of scattering by single
convex obstacles, with in each case the incident field consisting of a combination
of the original incident field with previously scattered waves. This approach does
not generalise easily to single nonconvex scatterers, since the number of terms re-
quired in the series increases rapidly as the distance between the separated convex
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frequency increases. Moreover, it was shown that, when the frequency is fixed, the
convergence rate is exponential as a function of the number of degrees of freedom.
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The starting point of the boundary integral equation (BIE) formulation is that,
if u satisfies the BVP then a form of Green’s representation theorem holds, namely
(see [16] and [14, (2.107)])

u(x) = ui(x) −
Z
Γ
Φk(x,y)

∂u

∂n
(y) ds(y), x ∈ D, (5)

where Φk(x,y) := (i/4)H
(1)
0 (k |x − y|) is the fundamental solution for (3), H

(1)
ν

the Hankel function of the first kind of order ν, and ∂u/∂n is the normal derivative,
with n the unit normal directed into D. We note that, as discussed in [16] and [14,
Theorem 2.12], it holds that ∂u/∂n ∈ L2(Γ ). It is well known (see, e.g., [14, §2])
that, starting from the representation formula (5), we can derive various BIEs for
∂u/∂n ∈ L2 (Γ ), each taking the form

A∂u

∂n
= f, (6)

where f ∈ L2 (Γ ) and A : L2 (Γ ) → L2 (Γ ) is a bounded linear operator.
In the standard combined potential formulation (see [14, (2.114) and (2.69)]),

A = Ak,η :=
1

2
I + D′

k − iηSk, (7)

and f = ∂ui/∂n − iηui, where η ∈ R is a coupling parameter, I is the identity
operator, and the single-layer potential operator Sk and the adjoint double-layer
potential operator D′

k are defined by

Skψ(x) :=

Z
Γ
Φk(x,y)ψ(y) ds(y), x ∈ Γ, ψ ∈ L2(Γ ),

D′
kψ(x) :=

Z
Γ

∂Φk(x,y)

∂n(x)
I
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any Galerkin method of approximation of (6) is invertible, and, via Céa’s lemma,
implies explicit error estimates for the Galerkin method solution, as discussed
below.

For both formulations the following lemma holds provided Ω is Lipschitz and
provided |η| ≤ Ck in the standard formulation (we shall assume henceforth that
this condition always holds). Here and for the remainder of this paper C > 0
denotes a constant whose value may change from one occurence to the next, but
which is always independent of k, although it may (possibly) be dependent on Ω.

Lemma 21 [13, Theorem 3.6], [36, Theorem 4.2] Assume that Ω is a bounded
Lipschitz domain and k0 > 0. In the case A = Ak,η assume additionally that
|η| ≤ Ck. Then for both A = Ak and A = Ak,η there exists a constant C0 > 0,
independent of k, such that

‖A‖L2(Γ ) ≤ C0k
1/2, k ≥ k0.

Lemma 21 suggests at worst mild growth in ‖A‖L2(Γ ) for both formulations as
k increases. For the case A = Ak,η, with η proportional to k, it is shown in [13,5]

that ‖A‖L2(Γ ) does grow proportionally to k1/2 for a polygonal scatterer, i.e. for
this case at least it is known that the bound is sharp.

As alluded to above, in certain cases A also satisfies the following assumptions:

Assumption 22
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3 Regularity of Solutions

Our goal is to derive a numerical method for the solution of the BIE (6) (and hence
of the scattering problem), whose performance does not deteriorate significantly as
the wavenumber k (which is proportional to frequency) increases, equivalently as
the wavelength λ := 2π/k decreases. Specifically, we wish to avoid the requirement
of conventional schemes for a fixed number of degrees of freedom per wavelength.
To achieve this goal, our numerical method for solving (6) uses an approximation
space (defined explicitly in §5) which is adapted to the high frequency asymptotic
behaviour of the solution ∂u/∂n on each of the sides of the polygon. For the case
of a sound-soft convex polygon, this behaviour was determined in [28,16]. A key
contribution of this paper is to introduce new methods of argument which enable
us to deduce precisely and rigorously this behaviour for a range of cases when the
polygon is not convex.

At present our full analysis applies only to a particular class of polygons,
defined below. This class includes all convex polygons, but also a large set of
nonconvex star-like and non-star-like polygons.

Definition 31 Let C denote the class of all polygons Ω ⊂ R2 for which the fol-
lowing two conditions are satisfied:

1. Each external angle is either greater than π or equal to π/2.
2. For each external angle equal to π/2, if Ω is rotated into the configuration in

Figure 2(a), then Ω is contained entirely in the region bounded by the sides Γnc

and Γ ′
nc and the two dotted lines.

Γ ′
nc

Γnc
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Fig. 3 Geometry of a typical convex side Γc.
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Theorem 32 On a convex side Γc the representation

∂u

∂n
(x(s)) = Ψ(x(s)) + v+(s)eiks + v−(Lc − s)e−iks, s ∈ [0, Lc], (9)

holds, where

(i) Ψ := 2∂ui/∂n if Γc is illuminated and Ψ := 0 otherwise;
(ii) the functions v±(s) are analytic in the right half-plane Re [s] > 0; further,

for every k0 > 0 we have

|v±(s)| ≤
(
CM(u)k|ks|−δ

±
, 0 < |s| ≤ 1/k,

CM(u)k|ks|−1/2, |s| > 1/k,
Re [s] > 0, (10)

for k ≥ k0, where δ± := 1 − π/ω± ∈ (0
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(iii) the function v(s) is analytic in the k-independent complex neighbourhood
Dε := {s ∈ C : dist(s, [0, Lnc]) < ε} of [0, Lnc], where

ε := L′
nc/(32

√
2 ); (13)

further

|v(s)| ≤ CC1k
1+β1 log1/2(2 +



High frequency scattering by nonconvex obstacles 13

Dirichlet Green’s function for this domain is known explicitly (see (15)) by the
method of images. (This simple representation for the Green’s function simplifies
the calculations throughout this section; it is this which motivates the requirement
in Definition 31 that the exterior angles less than π are exactly π/2.) This gives
∂u/∂n on Γnc
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As a consequence of Lemma 41(iii) we have that

∂u

∂n
(x) =

∂Ψ1

∂n
(x) +

Z
γ∪γ′

∂2Gk(x,y)

∂n(x)∂n(y)
u(y) ds(y), x ∈ Γnc. (21)

Theorem 36 follows from a careful analysis of the integral in (21). The terms
v+(Lnc + s)eiks and v−(Lnc − s)e−iks in the representation (12) arise from the
integral over γ. Indeed, noting that

∂2Gk(x,y)

∂n(x)∂n(y)
= 2

∂2Φk(x,y)

∂n(x)∂n(y)
− 2

∂2Φk(x,y′)

∂n(x)∂n(y)
, x ∈ Γnc, y ∈ γ,

where y′ := (−y1, y2), we find that, for x ∈ Γnc,Z
γ

∂2Gk(x,y)

∂n(x)∂n(y)
u(y) ds(y) = 2

Z
γ

∂2Φk(x,y)

∂n(x)∂n(y)
u(y) ds(y) − 2

Z
γ̃

∂2Φk(x,y)

∂n(x)∂n(y)
u(y′) ds(y),

(22)

with γ̃ :=
˘

(x1,−L′
nc) : x1 > Lnc

¯
. This expression is very similar to that encoun-

tered in the derivation of the regularity results on a convex side. Indeed, arguing
almost exactly as in [28, §3] (and see also [16, §3]), it can be shown from (22) thatZ
γ

∂2Gk(x,y)

∂n(x)∂n(y)
u(y) ds(y) = v−(Lnc − s)e−iks + v+(Lnc + s)eiks, x(s) ∈ Γnc,

where v±(s) are analytic in Re [s] > 0, where they satisfy the bounds (10) with
δ± = 1 − π/ω. This is the assertion in paragraph (ii) of Theorem 36.

We now consider the integral over γ′ in (21). Noting that

∂2Gk(x,y)

∂n(x)∂n(y)
= −4

∂2Φk(x,y)

∂x2∂y1
, x ∈ Γnc, y ∈ γ′,

and using the decomposition u = ui + us, we have, for x ∈ Γnc, thatZ
γ′

∂2Gk(x,y)

∂n(x)∂n(y)
u(y) ds(y) = −4

Z
γ′

∂2Φk(x,y)

∂x2∂y1
ui(y) ds(y) − 4

Z
γ′

∂2Φk(x,y)

∂x2∂y1
us(y) ds(y).

(23)

The assertions in paragraphs (i) and (iii) of Theorem 36 then follow from (21),
(23) and Lemmas 42 and 43 below.

Lemma 42 For x = (−s,−L′
nc) ∈ Γnc,

−4

Z
γ′

∂2Φk(x,y)

∂x2∂y1
ui(y) ds(y) = Ψ(x) − ∂Ψ1

∂n
(x) + eikrW i(s),

where W i(s) is analytic in Dε, with ε given by (13); further, for every k0 > 0,˛̨
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Lemma 43 If Assumption 22 holds, then, for x = (−s,−L′
nc) ∈ Γnc,

−4

Z
γ′

∂2Φk(x,y)

∂x2∂y1
us(y) ds(y) = eikrW s(s),

where W s(s) is analytic in Dε, with ε given by (13); further, where β1, k1 and C1

are the constants in Assumption 22,

|W s(s)| ≤ CC1k
1+β1 log1/2(2 + k), s ∈ Dε, k ≥ k1, (24)

where C > 0 depends only on Ω and k1.

We begin by proving Lemma 43. Some of the results needed for this proof will
be used again in the proof of Lemma 42.

4.1 Proof of Lemma 43

For x = (−s,−L′
nc) ∈ Γnc we have r = r(s) =

p
s2 + L′2

nc. Thus, to prove the
lemma we have to show that

W s(s) := −4 exp
“

−ik
p
s2 + L′2

nc

” Z
γ′

∂2Φk(x,y)

∂x2∂y1
us(y) ds(y)

is analytic in Dε, satisfying the bound (24). Substituting for us using (5), and
switching the order of integration, justified by Fubini’s theorem, gives

W s(s) =

Z
Γ
K(s, z)

∂u

∂n
(z) ds(z), (25)

where, for s ∈ R and z ∈ Γ ,

K(s, z) := 4 exp
“

−ik
p
s2 + L′2

nc

” Z ∞

0

∂2Φk
`
(−s,−L′

nc), (0, y2)
´

∂x2∂y1
Φk((0, y2), z) dy2,

(26)

and, by the recurrence and differentiation formulae for Hankel functions [1, §10.6],

Φk((0, y2), z) =
i

4
H

(1)
0

„
k

q
z2

1 + (y2 − z2)2

«
,

∂2Φk((−s,−L′
nc), (0, y2))

∂x2∂y1
= − ik2s(L′

nc + y2)

4 (s2 + (L′
nc + y2)2)

H
(1)
2

„
k

q
s2 + (L′

nc + y2)2

«
.

We recall that H
(1)
n (z) is analytic in |z| > 0, | arg(z)| < π. To derive bounds on

K(s, z) we need bounds on H∗
n(z) := e−izH

(1)
n (z). From [1, §10.2(ii), §10.17.5] it

follows that, for some constant C > 0,

|H∗
0 (z)| ≤ C|z|−1/2, |z| > 0, | arg(z)| ≤ π/2 (27)

and that, for every c > 0 there exists C > 0 such that

|H∗
2 (z)| ≤ C|z|−1/2, |z| > c, | arg(z)| ≤ π/2. (28)
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Note that, for s ∈ R and z ∈ Γ ,

K(s, z) =

Z ∞

0
eikφ(s,y2,z)Sk(s, y2, z) dy2, (29)

where φ(s, y2, z) := χ(s, L′
nc, y2) − χ(s, L′

nc, 0) + χ(z1,−z2, y2) and

Sk(s, y2
nc, 2( s; L ′: (∞)-∞(7)]TJ
ET′5′
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it follows that µ1 ≥ 0, and hence (30) holds.
For (ii), note that, when c = teiπ/4 with t ≥ 0, we have ξ = a2 + b2 +

√
2bt ≥

a2 + b2 and η = t(
√

2b+ t) ≥ t2, and (32) follows from (34). Also, by (35),

2(a2 + b2) Im
h
χ(a, b, teiπ/4)

i2
= b2t2 + µ2,

where µ2 := −(b2t2+(a2+b2)ξ)+(a2+b2)
p
ξ2 + η2. A little algebraic manipulation

reveals that

(a2 +b2)2(ξ2 +η2)−(b2t2 +(a2 +b2)ξ)2 = t3a2
“

2
√

2 b(a2 + b2) + (a2 + 2b2)t
”

≥ 0.

Hence µ2 ≥ 0 and (33) follows.

In order to prove Lemma 43 we must consider the analytic continuation of
K(s, z) into the complex s-plane. But before complexifying s it is helpful to modify
the representation (29) by deforming the contour of integration off the real line.
From (29) it follows from Cauchy’s theorem that, for s ∈ R and z ∈ Γ , where
f(w) := eikφ(s,w,z)Sk(s, w, z),

K(s, z) =

Z
γ∗
f(w) dw = eiπ/4

Z ∞

0
eikφ(s,teiπ/4,z)Sk(s, teiπ/4, z) dt, (36)

where γ∗ = {w = teiπ/4 : t ≥ 0}. This application of Cauchy’s theorem is valid
since, by Lemma 44(i), f(w) is analytic in Re [w] > 0; further, Im [φ(s, w, z)] ≥ 0,
so that |eikφ(s,w,z)| ≤ 1, if Re [w] > 0 and Im [w] ≥ 0; moreover, the bounds (30),
(27), and (28) imply that

Sk(s, w, z) = O
“

|w|−1/2
”
, as |w| → 0, Sk(s, w, z) = O

“
|w|−2

”
, as |w| → ∞,

uniformly in arg(w), for 0 ≤ arg(w) ≤ π/4.
Having established the validity of the representation (36) for s ∈ R, we now

show that this same formula represents the analytic continuation of K(s, z).

Lemma 45 For z ∈ Γ , K(s, z), defined by (36), is analytic as a function of s in
Dε, with ε given by (13). Further, for every k0 > 0,

|K(s, z)| ≤ Ck1/2ζ(z), s ∈ Dε, k ≥ k0, z ∈ Γ, (37)

where C > 0 depends only on Ω and k0, and

ζ(z) :=

(
1, 0 < k |z| < 1,

(k |z|)−1/2, k |z| ≥ 1.

The proof of Lemma 45 is based on the following two intermediate results.

Lemma 46 For t ≥ 0 and z ∈ Γ , φ(s, teiπ/4, z) is analytic as a function of s in
Dε, with ε given by (13). Further,

Im
h
φ(s, teiπ/4, z)

i
≥ L′

nct

2
√

2
p
L′2

nc + L2
nc

, s ∈ Dε, t ≥ 0, z ∈ Γ. (38)
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Proof Suppose t ≥ 0 and z ∈ Γ . For s0 ∈ [0, Lnc],

Im
h
φ(s0, te

iπ/4, z)
i

= Im
h
χ(s0, L

′
nc, te

iπ/4)
i

+ Im
h
χ(z1,−z2, te

iπ/4)
i

≥ L′
nct

√
2
q
s2

0 + L′2
nc

,

(39)

by (33) and (31), applied to χ(s0, L
′
nc, te

iπ/4) and χ(z1,−z2, te
iπ/4), respectively.

We next note that, for s ∈ C,

φ(s, teiπ/4, z) =
A

B(s)
+ χ(z1,−z2, te

iπ/4),

where A := teiπ/4(2L′
nc + teiπ/4) and B(s) := χ(s, L′

nc, te
iπ/4)+χ(s, L′

nc, 0). Thus,
for s0 ∈ [0, Lnc] and |s− s0| < ε,

|φ(s, teiπ/4, z) − φ(s0, te
iπ/4, z)| =

|A| |B(s) −B(s0)|
|B(s0)| |B(s)| ≤ |A| |B(s) −B(s0)|

|B(s0)| ||B(s0)| − |B(s) −B(s0)|| .

(40)

Now |A| ≤ t(2L′
nc + t), and, by (30),

|B(s0)| ≥ Re [B(s0)] ≥ L′
nc +

t√
2

+
q
s2

0 + L′2
nc.

Also, Re
h
χ(s, L′

nc, te
iπ/4)

i
> 0 for s ∈ Dε, since ε < L′

nc so that Re
h
s2 + (L′

nc + teiπ/4)2
i

≥
−Im [s]2 + L′2

nc > 0. Thus, using (32),˛̨̨
χ(s, L′

nc, te
iπ/4) − χ(s0, L

′
nc, te

iπ/4)
˛̨̨

=
|s− s0| |s+ s0|˛̨

χ(s, L′
nc, teiπ/4) + χ(s0, L′

nc, teiπ/4)
˛̨

≤ ε(2s0 + ε)

Re
ˆ
χ(s0, L′

nc, teiπ/4)
˜

≤ 4ε(s0 + L′
nc)q

s2
0 + L′2

nc

≤ 4
√

2ε. (41)

This implies that |B(s) −B(s0)| ≤ 8
√

2 ε. Inserting these bounds into (40) gives

|φ(s, teiπ/4, z) − φ(s0, te
iπ/4, z)| ≤ 8

√
2 tε(2L′

nc + t)“
2L′

nc + t/
√

2
” „

L′
nc +

q
s2

0 + L′2
nc − 8

√
2ε

«
≤ L′

nct

2
√

2
q
s2

0 + L′2
nc

, (42)

on using (13). The result (38) follows by combining (39) and (42).

Lemma 47 For t ≥ 0 and z ∈ Γ , Sk(s, teiπ/4, z) is analytic as a function of s in
Dε, with ε given by (13). Further, for every k0 > 0,
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Proof Suppose t ≥ 0 and z ∈ Γ . By (30) and (32) we have, for s0 ∈ [0, Lnc],

Re
h
χ(s0, L

′
nc, te

iπ/4)
i

≥ L′
nc, Re

h
χ(z1,−z2, te

iπ/4)
i

≥ |z| + t

2
. (44)

Combining (44) with (41) and recalling (13) gives

Re
h
χ(s, L′

nc, te
iπ/4)

i
≥ 7L′

nc

8
, s ∈ Dε. (45)

Therefore, Sk(
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of Γ . Then it is clear that, if Γ ∗ is not one of the sides of Γ adjacent to P′, thenR
Γ ∗(ζ(z))2 ds ≤ Ck−1, for k ≥ k0. On the other hand, if Γ ∗ has length L∗ and is

adjacent to P′, thenZ
Γ ∗

(ζ(z))2 ds ≤ C

Z 1/k

0
ds+ Ck−1

Z L∗

1/k
t−1 dt ≤ Ck−1 log(2 + k).

Thus ‖ζ‖L2(Γ ) ≤ Ck−1/2 log1/2(2 + k), so that, by (37),

‖K(s, ·)‖L2(Γ ) ≤ C log1/2(2 + k), (49)

where C > 0 depends only on Ω. Finallyon
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If α ∈ (π/2, 3π/2), however, (51) no longer holds (since cosα < 0). In this case
we write ui = ud + (ui − ud), and note that, by Lemma 35, for y ∈ γ′,

ui(y) − ud(y) = 2eiky2h
“p

2ky2 sin (α/2)
”
,

where h(w) := e−iw2
Fr(w). The function h(w
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For α ∈ (π/2, 3π/2) we have 2∂Ψ@ 	(
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Lemma 52 If the function g is analytic and bounded in Ea,b,r, for some a, b, r ∈ R
with a < b and r > b− a, then

inf
v′∈Pp(a,b)

‚‚g − v′‚‚
L∞(a,b)

≤ 2

ρ− 1
ρ−p ‖g‖L∞(Ea,b,r) ,

where ρ = (r +
p
r2 − (b− a)2)/(b− a) > 1.

Lemma 52 implies the following best approximation results for the two non-
singular terms in the representation on a nonconvex side.
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Theorem 55 (cf. [28, Theorem 5.4]) Suppose that Assumption 22 and (56)
hold. Then, for every k0 > 0, for the approximation of v+(s) and v−(Lc − s) on a
convex side Γc we have

inf
v′∈Pp,n(0,Lc)

‖v± − v′‖L2(0,Lc) ≤ CM(u)k1−δ∗ e−pτ , k ≥ k0,

where τ > 0 depends only on σ, the corner angles at the ends of Γc, and c (the
constant in (56)), and C > 0 only on Ω and k0. The same estimate holds for the
approximation of v−(Lnc − s) on a nonconvex side, except that Lc is replaced by
Lnc in the above formula, and τ depends now on σ, c, and the exterior angle ω in
Figure 4(a).

We now combine these results into a single estimate for the best approximation
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Corollary 64 Suppose that Ω is a star-like member of the class C
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1. α = 5π/4, as shown in Figure 1(a); in this case, multiply-reflected rays are
present in the asymptotic solution.

2. α = 5π/3, as shown in Figure 1(b); in this case, one of the nonconvex sides is
partially illuminated.
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Table 1 L2 and L1 errors for each example, fixed p = 4 (and hence N = 320), various k, with
N/(L/λ) the average number of degrees of freedom per wavelength along the boundary.

α k N
L/λ

‖ψ7 − ψ4‖L2(Γ ) µ
‖ψ7−ψ4‖

L2(Γ )
‖ψ7‖

L2(Γ )

‖ψ7−ψ4‖
L1(Γ )

‖ψ7‖
L1(Γ )

5π/4 5 10.67 8.37×10−1 -0.35 3.90×10−1 1.03×10−2

10 5.33 6.55×10−1 -0.19 4.04×10−1 1.43×10−2

20 2.67 5.72×10−1 -0.29 4.24×10−1 1.69×10−2

40 1.33 4.68×10−1 -0.91 4.47×10−1 1.85×10−2

80 0.67 2.48×10−1 -0.20 4.39×10−1 1.91×10−2

160 0.33 2.16×10−1 4.62×10−1 2.09×10−2

5π/3 5 10.67 8.64×10−1 -0.46 4.05×10−1 1.17×10−2

10 5.33 6.30×10−1 -0.54 4.18×10−1 1.60×10−2

20 2.67 4.32×10−1 -0.46 4.27×10−1 1.80×10−2

40 1.33 3.15×10−1 -0.46 4.40×10−1 1.80×10−2

80 0.67 2.30×10−1 -0.45 4.54×10−1 1.88×10−2

160 0.33 1.69×10−1 4.69×10−1 1.92×10−2

nitude are seen in the corresponding convex case [28]. There it is noted that the

2
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approximations to ‖F7 − Fp‖L∞(S1) for k = 10, 40, and 160, for the two incident
directions. To approximate the L∞ norm, we compute F7 and Fp at 30,000 evenly

(a) α = 5π/4 (b) α = 5π/3

Fig. 10 Absolute maximum errors ‖F7 − Fp‖L∞(0,2π) in the far field pattern.

spaced points on the unit circle. The exponential decay as p increases predicted
by Theorem 63 is clearly seen. For fixed p, the error does not grow significantly
as k increases, indicating that the mild k-dependence of the bound (72) may not
be optimal. The errors are comparable in magnitude for each incidence angle,
suggesting that our algorithm copes equally well with cases of multiple reflection
and partial illumination.

In summary, our numerical examples demonstrate that the predicted exponen-
tial convergence of our hp scheme is achieved in practice. Moreover, for a fixed
number of degrees of freedom, the accuracy of our numerical solution appears to
deteriorate only very slowly (or not at all) as the wavenumber k increases. The p-
and k-dependence of our results appears to mimic closely that of the comparable
results for the convex polygon in [28]. The k-explicit error bounds in Corollary 64
predict at worst a mild growth in errors as k increases, which can be controlled by
a logarithmic growth in the degrees of freedom N , as discussed in Remark 66. The
numerical results support the conjecture that this mild growth is pessimistic; the
estimates in Corollary 64 are not quite sharp in their k-dependence. We suspect
that this is due to lack of sharpness in the dependence on k of the estimate (69)
for M(u), of our best approximation estimate (60), and of the quasi-optimality
estimate (62).

References

1. Digital Library of Mathematical Functions. National Institute of Standards and Technol-
ogy, from http://dlmf.nist.gov/, release date: 2010-05-07
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