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ow in 3-d compressible porous media in the presence of multiple line sources and sinks are
presented for examples with h=l � 1=40; results in (4), for single-phase uid ow in two-
dimensional (2-d) axisymmetric and anisotropic porous media, are presented for examples
with h=l � 1=500.

Whereas for standard numerical schemes this small aspect ratio can be problematical,
here we present an approach based on matched asymptotic expansions in � � h=l � 1
(de�ned explicitly in (2.10) below) for which the accuracy improves as
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v = �Dy(x; y; z)
@�p
@y
; (2:3)

�2w = �Dz(x; y; z)
@�p
@z
; (2:4)

for (x; y; z) 2 M 0, t 2 (0;1), whose solution we will study in this paper. Here (x; y; z) are
rectangular ccy7esian coordina7es withz pointing vertically upwards, and the dimensionless
domain is

M 0 = f(x; y; z) 2 R3 : (x; y) 2 
; z 2 (z�(x; y); z+(x; y))g; (2.5)

with closureM
0
and boundary @M

;x<y1y ;,@Mz�98 9287 6.5738 Tf: Tf -0.846 0 Td [(p)]T1751 9d [/F1 1 149.815 595.649 cm
[]0 d1
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permeability scales (divided by constant uid velocity) in the horizontal and vertical
directions respectively. Our matched asymptotic approach will rely on the assumption
that �� 1. This is often the case in practice, with oil and gas reservoirs typically extending
many orders of magnitude further horizontally compared to their depth.

The boundary conditions are, in dimensionless form,

(u(r; t); v(r; t); w(r; t)) � n̂ = 0; for all (r; t) 2 @M 0H � (0;1); (2:11)

w(r; t)�
�
@z+

@x
(x; y)u(r; t)+

@z+

@y
(x; y)v(r; t)

�
=0; for all (r; t) 2 @M 0+ � (0;1);

(2:12)

w(r; t)�
�
@z�
@x

(x; y)u(r; t)+
@z�
@y

(x; y)v(r; t)
�

=0; for all (r; t) 2 @M 0� � (0;1);

(2:13)

where n̂(x; y) for (x; y) 2 @
 represents the outward unit normal �eld to @
, @M 0H � @M 0 is
that part of @M 0 representing the side walls of the boundary, @M 0+; @M

0
� � @M 0 represent

the upper and lower surfaces of @M 0 respectively, with @M 0+ [ @M 0� [ @M 0H = @M 0, and
r := (
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for all (r; t) 2M 0� [0;1), where the constant �̂T , representing the weighted dimensionless
net ux of uid into or out of the porous layer, is given by

�̂T =
1
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for all r 2M 0
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2.1 Solution to [PSSP]
It is shown in (6, x3) that the outer region asymptotic expansions (away from the
sources/sinks) are given by

p̂(r; �) = A(x; y) +O(�2); (2:37)

û(r; �) = �Dx(x; y; z)
@A

@x
(x; y) +O(�2); (2:38)

v̂(r; �) = �Dy

û(
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It follows from (2.7) and (2.20) thatZ Z



F (x; y) dx dy = 0; (2.44)

and hence by classical theory for strongly elliptic boundary value problems (see for
example (9)) that [BVP] has a unique solution. In particular, with A : 
 7! R being
the solution to [BVP], it is shown in (6, equation (3.18)) that

A(x; y) =
��i

4�( �Di
x

�Di
y)

1
2

log

"
(x� xi)2

�Di
x

+
(y � yi)2

�Di
y

#
+Ai0 +O

�
([x� xi]2 + [y � yi]2)

1
2

�
;

(2.45)
as (x; y)! (xi; yi), with Ai0 2 R being a globally determined constant and �Di

x = �Dx(xi; yi),
�Di
y = �Dy(xi; yi), for i = 1; : : : ; N .
In general, except for particularly simple boundaries @
, permeabilities �Dx, �Dy, and line

source/sink locations (xi; yi) 2 @
, i = 1; : : : ; N , [BVP] will need to be solved numerically.
However, [BVP] is a 2-d, regular, strongly elliptic problem, and numerical solution via �nite
element methods can be achieved rapidly and accurately. We defer detailed consideration
of the numerical solution of [BVP] until x3.1.

It is shown in (6) that the outer region asymptotic expansions (2.37){(2.40) become non-
uniform when r 2 ��i as �! 0 (i = 1; : : : ; N). To obtain a uniform asymptotic representation
of the solution to [PSSP] when r 2 ��i as �! 0, we must therefore introduce an inner region
at each line source/sink location (x; y) = (xi; yi), i = 1; : : : ; N . In the inner region we write
(x; y) = (xi; yi) + �(X;Y ), with (X;Y )Dx,8d.01d [(x)]TJ8738  [(;)-167(y)]T4193 Td [(as)]TJ2.e-2.519 Td [(D)]T4 9 1.n812 -1heix
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eigenfunctions of the regular Sturm-Liouville eigenvalue problem,�
~Dz(z) 0(z)

�0
+ �� ~Dh(z) (z) = 0; z 2 (zi�; z

i
+); (2:48)

 0(zi�) =  0(zi+) = 0; (2:49)

which we refer to as [SL]. The eigenvalues of [SL] have 0 = ��0 < ��1 < ��2 < : : :, (see
e.g. (11, chapters 7,8)) with ��r !1 as r !1, and the corresponding eigenfunctions are
normalised so that

h j ;  ki =
Z zi

+

zi
−

~Dh(s) j(s) k(s) ds = �jk; (2.50)

for j; k = 0; 1; 2; : : :. The constants Br, r = 1; 2; : : : are given by

Br =
1

2�

Z zi
+

zi
−

si(�) r(�) d�; r = 1; 2; : : : : (2.51)

The asymptotic expansions for the ow �elds û, v̂, ŵ in the inner region are then given by

û(X;Y; z; �)=��1

0@�~Dx(z)
X
~Ri

0@ ��i
2� �Di

h
~Ri
�
1X
j=1

Bj��
1=2
j K1(��1=2

j
~Ri) j(z)

1A+O(�)

1A ;(2Ax(z
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(vii) Compute the transient pressure ~p, given by (2.59), via computation of the coe�cients
cr, r = 1; 2; : : :, given by (2.60){(2.61);

(viii)Compute the approximations to the dimensionless uid pressure and velocity �elds,
given by (2.16){(2.19) and (2.6).

We outline the implementation (used to generate the numerical results of x4) for each of
these steps in xx3.1{3.8.

3.1 Numerical solution of [BVP]

To solve [BVP], given by (2.41){(2.43), we use a standard �nite element method, with a
piecewise linear approximation space on a quasi-uniform triangulation of the 2-d domain 
.
There is a very wide literature on the e�cient implementation of �nite element methods for
the solution of elliptic problems such as this (see e.g. (13, 14)), but we provide some brief
details here both for completeness and also to ease the explanation of the implementation
details provided in xx3.2{3.8.

A weak formulation of (2.41){(2.42) is: Find A 2 H1(
) such thatZ



�Dx
@A

@x

@v

@x
+ �Dy
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gives us
NeX
j=1

uj

Z Z



�̂(x; y)�j(x; y) dx dy = I0:

Applying this immediately to (3.3) would lead to an overdetermined system, so to avoid this
we add �

RR


�̂(x; y)�m(x; y) dxdy to the left hand side of (3.3) for each m = 1; : : : ; Ne, to

give a uniquely solvable (Ne+1)�(Ne+1) linear system for the unknowns uj , j = 1; : : : ; Ne
and �, with � = 0 returning (3.3) exactly. More speci�cally, we de�ne the matrixK = [Km;j ]
j;m = 1; : : : ; Ne by

Km;j =
Z




�
�Dx
@�j
@x

@�m
@x

+ �Dy
@�j
@y

@�m
@y

�
d
; j;m = 1; : : : ; Ne; (3.4)

the vector f = [f1 : : : fNe
]T by

fm =
NX
i=1

�i�m(xi; yi)� �̂T
Z Z




�̂(x; y)�m(x; y) dxdy; m = 1; : : : ; Ne; (3.5)

the vector b = [b1 : : : bNe
]T by

bm =
Z Z




�̂(x; y)�m(x; y) dxdy; m = 1; : : : ; Ne; (3.6)

and we take u = [u1 : : : uNe
]T . The linear system that we solve for the unknown coe�cients

uj , j = 1; : : : ; Ne, of (3.2) is then�
K b
bT 0

� �
u
�

�
=
�

f
I0

�
: (3.7)

To evaluate meas(M
0M
0
0



unsteady fluid flow in a thin porous layer iii 13

initial pressure variation is given by the �nal solution from a previous run (if one wishes to
consider the e�ect of varying production rates, for example, see x4), then the integration
scheme outlined above may not be su�ciently accurate. In this case, a better approach
would be to use a partition of unity to split the integral, so that the inner and outer
regions can be considered separately, with the approach described above being appropriate
for the outer region, and a more suitable graded mesh being used on each inner region in
order to deal with the singular behaviour of the solution near the line sources/sinks. This
is the approach used to compute the constants cr, de�ned by (2.60), arising in the series
representation for the transient pressure �eld ~p, given by (2.59), and full details are provided
in x3.7 below.

3.2 Computation of outer region asymptotic expansions
Having solved [BVP], we are now in a position to construct the outer region asymptotic
expansions, accurate to O(�2), given by (2.37){(2.40), that is,

p̂(x; y; z; �) � A(x; y); (3:9)

û(x; y; z; �) � �Dx(x; y; z)
@A

@x
(x; y);

v̂(x; y; z; �) � �Dy(x; y; z)
@A

@y
(x; y);

ŵ(x; y; z; �) �
Z z

z−(x;y)

�
@

@x

�
Dx(x; y; �)

@A

@x
(x; y)

�
+

@

@y

�
Dy(x; y; �)

@A

@y
(x; y)

��
d�

��̂T
Z z

z−(x;y)

��(x; y; �) d�:

The approximation to the pseudo-steady state pressure �eld on the outer region, p̂, follows
immediately from our approximation to A(x; y), but to �nd û, v̂ and ŵ we need to do a bit
more work.

To approximate û, rather than di�erentiating the function A(x; y) explicitly (which would
lead to a piecewise constant approximation, discontinuous across element boundaries),
we instead write û(x; y; z; �) �

PNe

i=1 ûi(z; �)�i(x; y), and determine the functions ûi(z; �)
(which will provide an approximation to û(~xi; ~yi; z; �)) by solving a weak form of

NeX
i=1

ûi(z; �)�i(x; y) = �Dx(x; y; z)
@A

@x
(x; y);

speci�cally (recalling (3.2))

NeX
i=1

ûi(z; �)
Z Z




�i(x; y)�m(x; y) dxdy =�
NeX
j=1

uj

Z Z



Dx(x; y; z)
@�j(x; y)

@x
�m(x; y) dxdy;

(3.10)
for m = 1; : : : ; Ne. To determine ûi(z; �), i = 1; : : : ; Ne, from (3.10), we use a form of
mass lumping. We de�ne �h : C(
) 7! Sh to be the linear interpolation operator from the
space of continuous functions on 
 to the space of functions that are linear on each triangle
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i, so that for v 2 C(
), �hv(~xj ; ~yj
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j = 1; : : : ;MSL, with ~�j(~zm) = �jm. We then replace  in (3.13) with  M de�ned by

 M (z) =
MSLX
j=0

~�j(z) M (~zj); (3.14)

and require this equation to hold for each ~� = ~�m, m = 0; : : : ;MSL, leading to the linear
system

~Kv = �� ~Mv; (3.15)

where v = [ M (~z0) : : :  M (~zMSL
)]T , ~K = [ ~Km;j ] and ~M = [ ~Mm;j ], j;m = 0; : : : ;MSL, with

~Km;j =
Z zi

+

zi
−

~Dz(z)~�0j(z)~�0m(z) dz; j;m = 0; : : : ;MSL; (3:16)

~Mm;j =
Z zi

+

zi
−

~Dh(z)~�j(z)~�m(z) dz; j;m = 0; : : : ;MSL: (3:17)

The matrix ~K is tridiagonal, and for the results of x4 we evaluate the integrals (3.16) using
the trapezoidal rule with ~zj , j = 0; : : : ;MSL as the nodes. To evaluate ~M we use an
analogous procedure to that described in x3.2 of replacing the integrand in (3.17) by its
piecewise linear interpolant, which leads to a diagonal matrix. The �rst few eigenvalues of
[SL] are then approximated by the �rst few eigenvalues of ~M�1 ~K, and the eigenfunctions
of [SL] are approximated using (3.14) with v the corresponding eigenvectors of ~M�1 ~K. It
then just remains to normalise the eigenfunctions, using (2.50). Given an eigenfunction
 M , the normalised eigenfunction is given by

~ M =
 Mr
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To approximate the integral in the denominator on the right hand side of (3.23) we use
the same procedure applied in (3.22), i.e. we replace the integrand by its piecewise linear
interpolant on the triangulation of 
. This allows us to reuse some of the computations
required in the setting up of the mass matrix for [EVP]0. Speci�cally, recalling (3.21), we
have

Z Z



�̂(x; y)[ ~A(x; y)]2 dxdy �
Z Z




�h

8><>:�̂(x; y)

0@ NeX
j=1

~aj�j(x; y)

1A2
9>=>; dxdy;

=
NeX
j=1

~a2
j

�
�̂(~xj ; ~yj)

Z Z



�j(x; y) dx dy
�
:

Comparing with (3.22) it is clear that the integral in the denominator on the right hand
side of (3.23) can be computed with only a very small number of additional calculations.

3.7 Computation of transient pressure ~p
Having solved [EVP]
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of I1 being appropriate for the outer region, and a more suitable graded mesh being used to
evaluate the integrals on the inner region in order to deal with the singular behaviour there.
Speci�cally, we choose constants 0 < a < b, where a; b = O(�), and we write I2 =

PN+1
j=1 Ij2 ,

where for j
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4. Numerical examples

For all of the examples in this section M
0

is given by (2.5), with 
 the ellipse 
 = f(x; y) :
x2 + 4y2 < 1g, and the variable upper and lower boundaries given by

z+(x; y) =
1
2

(x2 + 4y2) +
1
2
; and z�(x; y) = �1

2
(x2 + 4y2)� 1

2
;

for x; y 2 
. The permeability of the layer is nonuniform, with

Dx(x; y; z) = Dy(x; y; z) =
1
2

(x2 + 4y2 + 1)(2 + z); Dz(x; y; z) =
1
2

(2 + z);

for (x; y; z) 2M 0. Finally, we take the dimensionless parameter � = 0:01. Recalling (2.10),
this corresponds to e.g. horizontal and vertical length scales of l = 100 and h = 1
respectively, and permeability scales in the horizontal and vertical directions DH

0 = DL
0 = 1

respectively, all associated with the dimensional reservoir.

Example 4.1 (Single line sink, constant porosity and initial pressure). For our �rst example,
we take the porosity and initial pressure variation to be uniform throughout the layer, with
��(x; y; z) = 1 and f(x; y; z) = 1, for (x; y; z) 2M 0, and we consider the case of a single line
sink at (x1; y1) = (0; 0) 2 
 with volumetric strength

s1(z) = �6(z+ � z)(z � z�); (4.1)

and hence �1 = �1, �p0 = 1.
The computation of the remaining important quantities (meas(M

0
) (and hence I0, in

this case), A1
0, Bj , ��j , cj and ~�j , for j = 1; 2; : : :) then depends on the values of the

various discretisation parameters discussed in x3. In particular: our approximations to ��j
and Bj , for j = 1; 2; : : :, depend on the number of degrees of freedom MSL used in the
solution of [SL]; our approximations to meas(M

0
), A1

0 and ~�j , for j = 1; 2; : : :, depend on
the maximum side length, ĥ, of the triangles used to discretise 
; our approximations to cj ,
for j = 1; 2; : : :, depend on both ĥ and on the parameter L used to de�ne the graded mesh
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ĥ = 0:16 ĥ = 0:08 ĥ = 0:04 ĥ = 0:02 ĥ = 0:01
cpt(s) 3.9�100 5.4�100 1.5�101 5.5�101 2.6�102

Ne 69 281 1125 4527 18134
Nt 109 503 2128 8811 35779

meas(M
0
) 2.3148 2.3469 2.3540 2.3556 2.3561

A1
0 1.2398 1.2143 1.2037 1.1895 1.2036

Table 3 Computing times (in seconds), number of elements, and the dependence of
meas(M

0
) and A1

0 on ĥ.

ĥ = 0:16 ĥ = 0:08 ĥ = 0:04 ĥ = 0:02 ĥ = 0:01
~�1 4.2460�10+0 4.3161�10+0 4.3299�10+0 4.3335�10+0 4.3341�10+0

~�2 1.2714�10+1 1.3199�10+1 1.3303�10+1 1.3327�10+1 1.3332�10+1

~�3 1.6001�10+1 1.6560�10+1 1.6674�10+1 1.6701�10+1 1.670TJ/F7 6.9738 Tf 9.963 3.61
/F8 9.9
Tf 2]TJ/F8 9.9626 Tf 7.749 0 Td [(10)]TJ/F7 6.9738 Tf
1 0 0 1 484.668 535.BT
/a83630.398 wTJ/F7 6.9738 Tf 9.963 3.615 Td [(+1)]TJ
 6.d 0C101.67011.6560�1.6001� �1.6560� � 1.67011.9626 Tf /F14 9.9626 Tf 27.674 0 Td [(�)]TJ/F8 9.67011.6701� �

1.670TJ/F7 6.9738 Tf 9.963 3.61
/F8 9.9
Tf 2]TJ/F8 9.9626 Tf 2.72 535Td [(10)]TJ/F7 6.9738 Tf
1496.46.311 522.198 cm
[]0 d 0 J 0.398 w 0 0 m 0 12.869 l S
Q
BT
/F8+1

1.33031.3303

1.9626 Tf496.46.311 522.198 cm
[]0 d 0 J 0.398 w 0 0 m 0 12.869 l S
Q
BT
/F0 1 195.201 14C10

1.6560

1.9626 Tf496.46.311 522.198 cm
[]0 d 0 J 0.398 w 0 0 m 0 12.869 l S
Q
BT
/F0 1 270.501 14C10

1.67011.9626 Tf496.46.311 522.198 cm
[]0 d 0 J 0.398 w 0 0 m 0 12.869 l S
Q
BT
/F0 1 341.01 14C101.6701

1..9626 T496.46.311 522.198 cm
[]0 d 0 J 0.398 w 0 0 m 0 1[(+1)]TJ
ET
q
1 0 496.26.311 522.198 cm
[]0 d 0 J 0.38.d  Tf00 m 0 1[(+1)]TJ
ET
q
1 0 4.96106.311 522.198 cm
[]0 d 0 J 0.398626 50 m 0 12.869d [(1.670TJ/F1/F1 5. 4.38 937 3780c[(1.6701)]TJ/F14 9426 Tf6 Tf 7.749 0.647 525.785 Td [(1.38 Tf
14.96106.311 522.198 cm
[]0 d 0 J 0.398626 50 m 0 12.869 l S
Q
BT
/F8+1)0 1 4.38 937 37805.7442d 0 J 0.398 w 0 0 m 0 12.869 l S
Q
BT
/F8 9.9626 Tf 133.318 525.785 Td [(1.6131)]TJ/F14 9.9626  83/F7 3780Q
B [(1.6701)]TJ/F14 96.227525.785  Td [(10)]TJ/F7 6.976560)]T4.96106.311 522.198 cm
[]0 d 0 J 0.398626 50 m 0 12.869 l S
Q
BT
/F204.565 4.38 937 37809622349738 d70

1.671311.6701
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(a) A(x; y) � p̂(x; y; z; �) (b) û(x; y; 0; �)

(c) v̂(x; y; 0; �) (d) ŵ(x; y; 0; �)

Fig. 1 Outer region pseudo-steady state pressure and ow �elds, Example 4.1.

(a) Comparing A(x; 0) with log(x2)=(4�) (b) Comparing A(x; 0) � log(x2)=(4�) with
�0:1633x+ 1:2089

Fig. 2 Verifying equation (2.45).

a very good �t to the data, suggesting a value of the constant A1
0 � 1:2089 in (4.2). This

compares well with the value of A1
0 = 1:
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û, the y-direction, v̂, and the z-direction, ŵ, each on a slice through M
0

on the plane z = 0.
The plots of û(x; y; 0; �) and v̂(x; y; 0; �), in Figures 1(b) and 1(c) respectively, demonstrate
how the ow �elds in the x and y directions are highly peaked near the line sink, and the
dependence on the derivatives of A(x; y) as plotted in Figure 1(a) is clear. The plot of
ŵ(x; y; 0; �) in Figure 1(d) shows that the ow is almost entirely horizontal away from the
wells, with the ow �eld in the vertical direction being very highly peaked at the line sink.

In Figure 3 we plot the pseudo-steady state pressure and ow �elds in the inner regions.
Each of these is computed at a distance �=100 from the line sink, at the point x = y =
�=(100

p
2), and then plotted as a function of z, the vertical coordinate. At this very small

(a) p̂(0:01; z; �) (b) û(0:01=
p

2; 0:01=
p

2; z; �)

(c) v̂(0:01=
p

2; 0:01=
p

2; z; �) (d) ŵ(0:01=
p

2; 0:01=
p

2; z; �)

Fig. 3 Inner region pseudo-steady state pressure and ow �elds.

distance from the line sink, the pseudo-steady state pressure �eld and the pseudo-steady
state ow �elds in the x and y directions each take their largest absolute values near the
centre of the layer. The pseudo-steady state ow �eld in the z-direction is close to zero at the
upper and lower boundaries, as we would expect from the Neumann boundary conditions,
but the vertical ow �eld is also close to zero near the centre of the layer, positive in the
lower part of the layer, and negative in the upper part of the layer, indicating that the uid
is owing towards the centre of the layer at all points near the line sink. We remark that
the approximation to ŵ is piecewise constant, and at the level of graphical magni�cation
this is evident in Figure 3(d).

We plot our approximation to the transient pressure �eld ~p(r; t) for t = 1=400 and t = 0:1
in Figure 4. Recalling (2.59), we note that our approximation to ~p is only valid when
t� �2 = 1=10000. Examining the scales on the right of each of these �gures, the decay of the
transient pressure �eld with respect to time is clear (recall (2.34) and (2.36)). Further plots
for larger values of t look identical to Figure 4(b), but with j~p(r; t)j decreasing (apparently
uniformly) as t increases. Although the early time solution is peaked near the line sink, it
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(a) t = 1=400 (b) t = 0:1

Fig. 4 Transient pressure �eld, ~p(r, t), computed at t = 1/400 and t = 0.1, Example 4.1.

is smooth at this point, with the singularity being captured entirely by the pseudo-steady
state solution, and the evolutionary problem providing a smooth solution.

The transient ow �elds in the x and y directions, ~u(r; t) and ~v(r; t) respectively, de�ned
by (2.33) and computed at t = 1=400, are plotted on a slice through z = 0 in Figure 5. The

(a) ~u(r; t) (b) ~v(r; t)

Fig. 5 Transient ow �elds in x- and y-directions, computed at t = 1/400, z = 0, Example 4.1.

relationship between these ow �elds and the corresponding transient pressure �eld plotted
in Figure 4(a) can be clearly seen.

Example 4.2 (Change in strength of line sources/sinks). For our second example, we
consider the e�ect of changing the strength of the single line source/sink located at
(x1; y1) = (0; 0), keeping everything else the same. In order to model a change in the
line source/sink volumetric strengths, there is no need to repeat all of the calculations,
particularly if the line source/sink locations are not changed. In this case we just rede�ne
si, for i = 1; : : : ; N , and then solve [IBVP] for these new line source/sink strengths, taking
the �nal solution from the previous run as our initial data. Here, we take our initial data
to be the solution from Example 4.1 at t = 0:2, and we halve the strength of the sink at
(x1; y1) = (0; 0) (given by (4.1) for Example 4.1), so that now

s1(z) = �3(z1
+ � z)(z � z1

�):

This corresponds to halving the production rate at the well. In Figure 6 we plot the
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dimensional dynamic uid pressure,

p(x; y; 0; t0) = Q�p(x; y; 0; t) (4.3)

(see (6, x2) for details, recalling that Q is given by (2.9)), computed at a dimensionless
distance �=100 from the line sink, as for the computations of Figure 3 above, against
dimensional time (t0 = 5000t, again see (6, x2) for details) with the line sink strength
having been halved at t = 0:2, corresponding to t0 = 1000. Looking �rst at the solution for

Fig. 6 Dimensional dynamic uid pressure (computed at a dimensionless distance ε/100 from the
line sink) plotted against dimensional time, with the production rate being halved at t′ = 1000.

t0 2 (0; 1000), the initial e�ect of the transient �eld is clear. By about t0 = 300 this has
been overtaken by the linear decay in the pressure, due to the fact that �̂T , corresponding
to the sum of the volume uxes from the line sources/sinks (recall (2.20)), is negative. At
t0 = 1000, we see the e�ect of the change in production rate. The computing time required
to approximate the dynamic uid pressure for t0 2 (1000; 2000) is only 64 seconds, compared
to a computing time of 260 seconds for Example 4.1 (both values correct to two signi�cant
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sti�ness matrix for the solution of both [BVP] and [EVP]0 is una�ected by changes to the
strengths/locations of the sources/sinks. As a third example, we consider the case of three
line sources/sinks, located at (x1; y1) = (�0:5; 0), (x2; y2
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In Figure 8 we plot the pseudo-steady state pressure and ow �elds in the inner regions
around each line source/sink. Each of these is computed at a distance �=100 from each line
sink, at the point (x� xi) = (y � yi) = �=(100

p
2), for i = 1; 2; 3, and plotted as a function

of z, the vertical coordinate. The behaviour near each line source/sink is comparable to

(a) p̂(x; y; z; ; �) (b) û(x; y; z; ; �)

(c) v̂(x; y; z; ; �) (d) ŵ(x; y; z; ; �)

Fig. 8 Inner region pseudo-steady state pressure and ow �elds, each computed at a distance
ε/100 from each source/sink. The legend is the same for each plot.

that seen in Figure 3 for Example 4.1. For the sink at (x3; y3) = (0; 0:1), the vertical ow
�eld is positive in the lower part of the layer, and negative in the upper part of the layer,
indicating that the uid is owing towards the centre of the layer at all points near the line
sink. For each of the sources, the vertical ow �eld is negative in the lower part of the layer,



30 s. langdon ET AL.

(a) t = 1=400 (b) t = 0:05

(c) t = 0:1 (d) t = 0:2

Fig. 9 Transient pressure �eld, ~p(r, t), computed for various t, Example 4.3.

(a) ~u(r; t) (b) ~v(r; t)

Fig. 10 Transient ow �elds in x- and y-directions, computed at t = 1/400, z = 0, Example 4.3.

(a) source at (x1; y1) = (�0:5; 0) (b) source at (x2; y2) = (0:5; 0) (c) source at (x3; y3) = (0; 0:1)

Fig. 11 Dimensional pressure plotted against dimensional time, computed at a dimensionless
distance ε/100 from each line source, Example 4.3.
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pressure, due to the fact that �̂T , corresponding to the sum of the volume uxes from the
line sources/sinks, is positive.

Example 4.4 (Nonuniform porosity). Finally we remark that having solved [IBVP] once,
one can change certain properties of the porous layer, such as its porosity or permeability,
and then recompute the solution to [IBVP] with a greatly reduced computing time, with
no need to repeat calculations that are not explicitly dependent on the changed feature. To
illustrate this, for our �nal example, we change the porosity function so that it is no longer
constant, but instead is de�ned by �� = �(x; y; z)=�0
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