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we study its properties and performance by numerical experiments backed up by rig-
orous numerical analysis. We show that our algorithm is exponentially convergent as
a function of

p
N , where N is the number of degrees of freedom, for �xed wavenumber

k (k = 2�f=c where f is the frequency and c the wave speed). More importantly (and
it is for this property that the hybrid approach is key) our algorithm provably achieves
any desired accuracy, uniformly over all wave numbers k, provided N increases log-
arithmically with k. These results improve on the h-version Galerkin BEM for the
identical problem in [14], which is only algebraically convergent, and we note that
the most sophisticated algorithm to date [20] for smooth 2D convex obstacles, while
accurate for N and k large, is not convergent as N !1 for k �xed.

Our results go beyond those of previous authors in terms of analysis in a number
of important respects. Firstly, these are the �rst numerical analysis results for a
hybrid approach which make explicit the dependence of all constants in the error
estimates on the wavenumber k and both the h and p discretisation parameters.
Secondly, this is the �rst numerical analysis for a bounded obstacle scattering problem
which establishes that it is su�cient to increase N proportional to powers of log k to
maintain accuracy as k ! 1. The best previous result for smooth convex obstacles
([42], re�ning results in [20]) establishes that it is su�cient to increase N slightly
faster than k1=9 to retain accuracy, while the analysis in [14], when completed by
the coercivity estimates of [42] and the estimates in x4 below, also requires a mild
algebraic growth in N as k ! 1 to maintain accuracy. (We note however that the
hybrid h-version BEM proposed in [27], for the special problem of scattering in a half-
plane with impedance boundary conditions, is shown in [27] to achieve any required
accuracy uniformly in the wavenumber with N independent of k.)

We note that the hp-BEM we describe in this paper was briey sketched in [35];
in this paper we describe the method in detail, provide a rigorous derivation of error





and us := u� ui satis�es the Sommerfeld radiation condition (see e.g. [12, (2.9)]). It
follows from standard arguments connecting formulations in classical function spaces
to those in a Sobolev space setting (see e.g. [17, Theorem 3.7] and [12, p. 107]) that if u
satis�es the above BVP then also u 2 H1

loc(D), and, from standard elliptic regularity
results, it follows moreover that u is C1 up to the boundary of @D, excluding the
corners of the polygon [12, Lemma 2.35].

Next we state our integral equation formulation. From [32, Theorems 7.15 and 9.6],
for details see [14], we observe that if u satis�es the BVP then a form of Green’s rep-
resentation theorem holds, namely (cf. also [12, (2.107)])

u(x) = ui(x)�
Z

�

�k(x;y)
@u

@n
(y) ds(y); x 2 D; (2.3)

where �k(x;y) := (i=4)H
(1)
0 (k jx� yj) is the fundamental solution for (2.2) and

@u=@n 2 L2(�) [12, Theorem 2.12], with n the unit normal directed into D. Fur-
thermore, the BVP can be reformulated as a BIE for @u=@n 2 L2(�), taking the
form

A@u
@n

= f; (2.4)

where f 2 L2 (�) and A : L2 (�)! L2 (�) are speci�ed next (for details see [12, x2]).

Classical combined potential formulation. In the standard combined po-
tential formulation (e.g. [18], [12, (2.114) and (2.69)]),

A = Ak;� :=
1

2
I +D0k � i�Sk;

and f = @ui=@n� i�ui, where I is the identity operator,

Sk (x) :=

Z
�

�k(x;y) (y) ds(y); x 2 �;  2 L2(�);

is the single-layer potential,

D0�;



Properties of the boundary integral operators. For both formulations the
following lemma holds provided 
 is Lipschitz and j�j � Ck for the standard formu-
lation. Here and for the remainder of this paper C > 0 denotes a constant whose
value may change from one occurence to the next, but which is always independent
of k, although it may (possibly) be dependent on the geometry of �. We use Cj , cj ,
kj , etc., for j = 0; 1; 2; : : :, to denote speci�c constants whose value remains the same
throughout the paper.

Lemma 2.1 ([11, Theorem 3.6], [42, Theorem 4.2]). Assume that 
 is a bounded
Lipschitz domain and k0 > 0. For the case A = Ak;� assume additionally j�j � Ck.
Then for both A = Ak and A = Ak;� there exists a constant C0 > 0, independent of
k, such that

kAkL2(�) � C0k
1=2; k � k0:



on each of the sides of the polygon, which we now consider. The results that follow
in this section are for the case of a convex polygon.

We �rst de�ne some notation. We label the corners of the polygon counter-
clockwise by Pj , j = 1; : : : ; ns, where ns is the number of sides. In addition, we set
Pns+1 := P1, and, for j = 1; : : : ; ns, denote the side between the corners Pj and Pj+1

by �j . We represent the point x 2 �, whose arc-length measured counterclockwise
around � from P1 is s, parametrically by

x(s) = Pj +
�
s� ~Lj�1

��Pj+1 �Pj

Lj

�
; for s 2 [ ~Lj�1; ~Lj ]; j = 1; : : : ; ns; (3.1)

where Lj = jPj+1 �Pj j is the length of the side �j , and ~Lj :=
Pj
m=1 Lm, j =

1; : : : ; ns, denotes the arc-length distance from P1 to Pj+1. We also set ~L0 = 0, and

denote the total length of � by L := ~Lns . We say that a side �j is illuminated by
the incident wave if d � n < 0 on �j , and is in shadow if d � n � 0 on �j . We denote
by 
j the exterior angle at the corner Pj



Theorem 3.2. The functions v�j (s), j = 1; : : : ; ns, are analytic in the right
half-plane Re [s] > 0, where they satisfy the bounds

jv�j (s)j �

(
C�j Mkjksj��

�
j ; 0 < jsj � 1=k;

C�j Mkjksj�1=2; jsj > 1=k;
(3.5)

where �+
j , ��j 2 (0; 1=2) are given by �+

j := 1��=
j and ��j := 1��=
j+1 and M by

M := sup
x2D
ju(x)j: (3.6)

For j = 1; : : : ; ns, the constants C+
j depend only on c� and 
j, and the constants C�j

depend only on c� and 
j+1.
Remark 3.3. The dependence of the constant M on the wavenumber k is not

yet fully understood. In x4 we prove that, when 
 is a star-like polygon, M =
O(k1=2 log1=2 k) as k ! 1. However, it is plausible, and supported by numerical
experiments, that in fact M = O (1) as k ! 1 in this case (and indeed for a more
general class of polygons, see [13] for details) .

Bounds on the derivatives of the functions v�j (s) for s 2 (0;1) have previously
been derived in [14, Theorem 3.2, Corollary 3.4]. Here we show that it is possible
to understand not just the behaviour of v�j (s) for s > 0 but also to understand the

behaviour of the analytic continuation of v�j (s) into the complex plane. This will be
an essential component of our hp analysis, which follows in x5, but may also be of
wider interest, as indicated in the Introduction. The proof of Theorem 3.2 relies on a
number of intermediate results. We �rst note the following:

Lemma 3.4. The function �(z) is analytic in the half-plane Re [z] > 0, with

j�(z)j � 2

�
jzj�3=2

�
jzj�1=2 +

r
�

2

�
; Re [z] > 0: (3.7)

Proof. By standard properties of the Hankel function H
(1)
1 (z) (see e.g. [1, (10.7.2),

(10.7.8)]), �(z) is analytic in the cut z-plane, with branch cut along the negative real
axis. By [37, equation (12.32)],

�(z) =
�2i

�

Z 1
0

(t2 � 2it)1=2e�zt dt; Re [z] > 0; (3.8)

where the branch of (t2 � 2it)1=2 is chosen so that Re
�
(t2 � 2it)1=2

�
� 0 for t > 0.

The integral in (3.8) is a parametrization of the contour integral

I(z) :=

Z
0

(



Re [w]

Im [w]

0

�

2i

��

Fig. 3.1. The contours 0 and �.

so that

jI(z)j �
Z 1

0

Re�rR dR+
p

2

Z 1
0

R1=2e�rR dR =
1

r2
+

p
�p

2r3=2
;

and the result follows.

We now consider the solution behaviour near the corners.

Lemma 3.5. Suppose that x 2 D satis�es jx � Pj j =: r 2 (0; 1=k]. Then there
exists a constant C > 0, depending only on 
j and c�, such that (with M given
by (3.6))

ju(x)j � CM(kr)�=
j :

Proof. Let (r; �) be polar coordinates local to a corner Pj , chosen so that the side
�j�1 lies on the line � = 0 and the side �j lies on the line � = 
j . For R > 0 let
GR � D denote the set of points with polar coordinates f(r; �) : 0 < r < R; 0 � � �

jg. With Rj := min fLj�1; Lj ; �=(2k)g, it follows from [14, Theorem 2.3] and [14,
(3.14)] that, for 0 < R < Rj ,

ju(x)j � 2M(r=R)�=
j

cos kR
�
1� (r=R)�=
j

� ; x 2 GR: (3.9)

Now choose R = 3Rj=4, and suppose that 0 < r < Rj=2. Then, since min fc�; �=2g �
kRj � �=2, (3.9) implies thatj,

ju(
2 fc ; �= 2f=



Proof. (Proof of Theorem 3.2.) The analyticity of v�j (s) in Re [s] > 0 is clear

from (3.3){(3.4) and Lemma 3.4. To prove the bounds (3.5) for v+
j (the proof for v�j

goes analogously and will be omitted here), we �rst note that

jv+
j (s)j � k2

2

Z 1
0

j�(k(s+ t))jju(yj(~Lj�1 � t))jdt: (3.10)

If 0 < jsj � 1=k then we split the integral in (3.10) into a sum of two integrals,
the �rst over t 2 (0; 1=k) and the second over t 2 (1=k;1). For the second integral,
Lemma 3.4 implies that, since Re [st over (s



(convex or non-convex). This result appears to be new, and could be used to improve
the estimates of [14] directly, as well as being crucial to the k-explicit error analysis
of our hp scheme which follows in x6. We begin with the following estimate of the
norm of the single-layer potential operator in the domain.

Lemma 4.1.



Hence

k�k(x; �)k2L2(�) �
5ĉ2

8 log 2
k�1

nsX
j=1

log (2 + kLj) �
5ĉ2

8 log 2
k�1ns log (2 + kL�);

and, recalling (4.2), the result follows.
Next, we require a bound on the norm of @u=@n.
Lemma 4.2. For a star-like Lipschitz scatterer,@u@n


L2(�)

� L1=2 (1 + 4k diam 
)

ess infx2�(x � n(x))
; k > 0:

Proof. By (2.4), @u@n


L2(�)

�
A�1


L2(�)

kfkL2(�) ; (4.4)

and applying Lemma 2.2 with A = Ak, and recalling Remark 2.4, we haveA�1

L2(�)

� 2= ess infx2�(x � n(x)); k > 0: (4.5)

It remains to bound kfkL2(�), where f(x) = x � rui(x)� i�̂ui(x) and �̂ = kjxj+ i=2

(where 
 is star-like with respect to the origin of our coordinate system). Recall-
ing (2.1), we have rui = ikdui, and hence

jf(x)j =
����kx � d� kjxj � i

2

���� � 1

2
+ 2kjxj � 1

2
+ 2k diam 
;

so that

kfkL2(�) � L
1=2

�
1

2
+ 2k diam 


�
; k > 0: (4.6)

Inserting (4.5) and (4.6) into (4.4), the result follows.
We are now ready to state and prove the main result of this section.
Theorem 4.3. For all k3 > 0, if 
 is a star-like polygon then

M := sup
x2D
ju(x)j � C3(kL)1=2 log1=2 (2 + kL�); k � k3;

where the constant C3 > 0 depends only on k3 and 
, speci�cally

C3 = (k3L)�1=2 log�1=2 (2 + k3L�) +
C2n

1=2
s

ess infx2�(x � n(x))

�
k�1

3 + 4 diam 

�
;

where C2 � 2:65 is the constant from L6.2267d [(is)aL6.226Td .6.54 -5)1



5. hp Approximation Space and Best Approximation Results. We are
now ready to design an approximation space VN;k � L2 (�) to represent

’(s) :=
1

k

�
@u

@n
(x(s))�	(x(s))

�
; s 2 [0; L]; (5.1)

based on (3.2). Here N denotes the total number of degrees of freedom in the method
(to be elucidated later), and the subscript k on VN;k serves to illustrate that our
hybrid approximation space depends explicitly on the wavenumber k. The function
’, which we seek to approximate, can be thought of as the di�erence between @u=@n
and its \Physical Optics" approximation 	 (recall Remark 3.1), scaled by 1=k so that
’ is nondimensional (cf. [14]). Instead of approximating ’ directly by conventional
piecewise polynomials, on each side �j , j = 1; : : : ; ns, we instead use the representa-

tion (3.2) with v+
j (s � ~Lj�1) and v�j (~Lj � s), s 2 [ ~Lj�1; ~Lj ], replaced by piecewise

polynomials supported on overlapping geometric meshes, graded towards the singu-
larities at Pj and Pj+1 respectively.

Definition 5.1. Given A > 0 and an integer n > 0 we denote by Gn(0; A) the
geometric mesh on [0; A] with n layers, whose meshpoints xi are de�ned by

x0 := 0; xi := �n�iA; i = 1; 2; : : : ; n;

where 0 < � < 1 is a grading parameter. Given a vector p 2 (N0)n we denote by
Pp;n(0; A) the space of piecewise polynomials on the geometric mesh Gn(0; A) with
degree vector p, i.e.

Pp;n(0; A) :=
�
� : [0; A]! C : �j(xi�1;xi) is a polynomial of

degree less than or equal to (p)i; i = 1; : : : ; ng :

In the case where (p)i = p for all i = 1; : : : ; n, for some integer p � 0, we write
Pp;n(0; A) for Pp;n(0; A).

A smaller value of � represents a more severe grading. While the value � =
(
p

2 � 1)2 � 0:17 is in some sense optimal, [41, p.96], [22], it is common practice to



The regularity results provided by Theorem 3.2 allow us to prove that, under
appropriate assumptions on the choices of N�j and p�j , the best approximation error
in approximating ’ by an element of VN;k decays exponentially as the maximum
degree of the approximating polynomials increases.

For simplicity of presentation we shall assume henceforth that the degree of poly-
nomial approximation is constant within each mesh, so that

(p�j )m = p�j ; m = 1; : : : ; N�j ; (5.4)

for some integers p�j � 0, j = 1; : : : ; ns



where n� is the largest i 2 f1; : : : ; ng such that xi�1

2 < 1. Then one can prove best
approximation estimates similar to (5.7) and (5.9) in the space Pp;n(0; A). For further
details see Appendix A, Theorem A.3.

Combining Theorem 5.2 with Theorem 3.2 we can then deduce the following best
approximation result:

Theorem 5.4. Suppose that

N�j � c
�
j p
�
j ; (5.10)

for some c�j > 0. Then there exist constants Ĉ+
j > 0, depending only on �, c� and


j, and Ĉ�j > 0, depending only on �, c� and 
j+1, such that

inf
v2P

p
�
j
;N
�
j

(0;Lj)
kv�j � vkL2(0;Lj) � Ĉ

�
j Mk1=2

�
(kLj)

1=2���j + log1=2(2 + kLj)
�

e�p
�
j �
�
j ;

where ��j = min
�
c�j j log �j

�
1=2� ��j

�
; �
	
> 0.

Proof. Applying Theorem 5.2 to g(z) := v�j (z=k), which, by Theorem 3.2, satis�es

the bounds (5.6) with Ĉ = C�j Mk and � = ��j , and noting that

inf
v2P

p
�
j
;N
�
j

(0;Lj)
kv�j � vkL2(0;Lj) =

1

k1=2
inf

w2P
p
�
j
;N
�
j

(0;kLj)
kg � wkL2(0;kLj)

;

the result follows.
We conclude this section with an estimate for the best approximation error asso-

ciated with the approximation of ’ on � by an element of VN;k. We assume here that
(5:4) holds, but a similar result holds when the polynomial degree is reduced towards
the singularities, as outlined in Remark 5.3 above. Here and in what follows we make
the obvious identi�cation between L2(�) and L2(0; L), via the parametrization x(s).

Theorem 5.5. Suppose that (5.10) holds for each j = 1; : : : ; ns. Then, with
p := maxj;�fp�j g, there exists a constant C4 > 0, depending only on f
jgnsj=1, � and

c�, and a constant � > 0, depending only on f
jgnsj=1, �, and fc�j g
ns
j=1, such that

inf
v2VN;k

k’� vkL2(�) � C4Mk�1=2G(k) e�p� ; (5.11)

where

G(k) := (1 + kL�)
1=2��� + log1=2(2 + kL�);

and �� := minj;�f��j g.
Proof



(described in the next section). Importantly, however, and as we demonstrate in x7
via numerical examples, this issue does not seem to a�ect the accuracy of the solution
in the domain, the far �eld pattern, or indeed the boundary solution when measured
in the weaker L1 norm.



with Sk given by (4.1), and the result follows from Lemma 4.1 and Theorem 6.1.
An object of interest in applications is the



Equilateral triangle Regular pentagon

Fig. 7.1. Scattering con�gurations and plots of the real part of u = ui + us, for k = 10.

7. Numerical Results. We now present numerical results for the solution of (6.1).
We consider two di�erent polygonal scatterers, an equilateral triangle and a regular
pentagon. In each case the sides of the polygon are of length 2�, so the number of
wavelengths per side is equal to k. The scatterers, the incident direction vectors d (re-
call (2.1)), the corresponding total �elds for k = 10, and a circle of radius 2� on which
we compute the total �eld (see Figures 7.3 and 7.4 below), are plotted in Figure 7.1.
For both scatterers we demonstrate exponential decay of the L2 norm of the error
on the boundary as p increases, with only very mild dependence on the wavenumber
k, as predicted by (6.2) and (6.3). We also demonstrate how these results extend to
the computation of both the solution in the domain and the far �eld pattern, error
estimates for which are given in (6.4) and (6.8), and we investigate how the accuracy
of our results depends on the geometry of the scatterer. The results presented here
are computed using the standard combined potential formulation, with A = Ak;�;
we make this choice because we wish to demonstrate that our numerical results are
entirely consistent with our theoretical predictions, even though we do not yet have
a complete theory for this case (since, as discussed in Remark 2.4, Assumption 2.3
has not yet been shown to hold for A = Ak;�). In all of our experiments we take the
same degree p of polynomial approximation on each element, and the same number
of layers Nl := 2(p+ 1) on each graded mesh. According to (5.5), with N�j = Nl and

p�j = p for each j = 1; : : : ; ns, the total number of degrees of freedom is given by

N = 4ns(p+ 1)2: (7.1)

Since for each example N depends only on p (through (7.1)), we simplify our pre-
sentation by de�ning  p(s) := ’N (s). For the purposes of comparison with the
theoretical results, we note that in both examples (5.10) is satis�ed with c�j = 2 for
each j = 1; : : : ; ns.

In Figure 7.2 we plot the relative L2 and L1 errors (each on a logarithmic scale)
against p, for both examples and for a range of values of k. In each case we take the
\exact" reference solution to be that computed with p = 7; further veri�cation of our
method via comparison with solutions computed using the h-version scheme of [14],
with a large number of degrees of freedom, has also been performed, but is not reported
in detail here. The L2 and L1 norms are computed by a high-order composite Gaussian

17



Triangle - relative L2 errors Triangle - relative L1 errors

Pentagon - relative L2 errors Pentagon - relative L1 errors

Fig. 7.2. Relative L2 and L1 errors in boundary solution.

quadrature scheme on a mesh graded towards the corner singularities; experimental
evidence suggests that these calculations are accurate to at least four digits of precision
(a far higher accuracy than that achieved by the corresponding quadrature scheme
in [14], which used a uniform mesh).

The linear plots in Figure 7.2 clearly demonstrate exponential decay with increas-
ing polynomial degree p, as predicted for the L2 error by Theorem 6.2. We shall make
comparisons between the four plots in Figure 7.2 shortly. However, we �rst focus on



k N
L=� k 7 �  4kL2(�) �

k 7� 4kL2(�)

k 7kL2(�)

k 7� 4kL1(�)

k 7kL1(�)
COND cpt(s)

5 20.00 1.96�10�1 -0.40 1.44�10�1 8.33�10�3 3.50�102 621
10 10.00 1.48�10�1 -0.40 1.55�10�1 1.24�10�2 2.77�101 612
20 5.00 1.12�10�1 -0.40 1.66�10�1 1.58�10�2 3.51�101 600
40 2.50 8.50�10�2 -0.40 1.78�10�1 1.74�10�2 4.60�101 691
80 1.25 6.44�10�2 -0.40 1.91�10�1 1.83�10�2 6.12�101 665
160 0.63 4.88�10�2 -0.40 2.04�10�1 1.91�10�2 8.27�101 648
320 0.31 3.70�10�2 -0.40 2.19�10�1 2.02�10�2 1.12�102 746
640 0.16 2.80�10�2 -0.38 2.35�10�1 2.06�10�2 3  [(1)]T�10�2



k = 10 k = 160

Fig. 7.3. Total �eld for the triangle, evaluated on the circle of Figure 7.1.

the solution on the boundary remains bounded, even as 
j ! 2�. The plots in
Figure 7.2 reect this, with the errors in the L1 norm being much smaller than the
corresponding L2 errors, and this di�erence being particularly pronounced for the
scatterer with sharper corners (the triangle). Moreover, there is little di�erence in
either the magnitude or rate of decay of the L1 errors between the two examples,
which suggests that the L1 error is not signi�cantly a�ected by corner angles. We
return to this observation at the end of the paper.

We now turn our attention to the approximation of u(x), x 2 D, and of the far
�eld pattern F (often the quantities of real interest in scattering problems). As might
be expected of linear functionals of the boundary solution, we �nd that the errors in
u(x) and F are, in general, much smaller than the relative errors in ’. Moreover, the
sensitivity to the corner angles seen in the L2 errors in ’ does not seem to be present
in the approximations of u(x) and F .

To investigate the accuracy of our solution in the domain, we compute the solution
on a circle of radius 2� surrounding the scatterer, as illustrated in Figure 7.1. To allow
easy comparison between di�erent discretizations, noting again that for each example
N depends only on p (recall (7.1)), we denote the solution on the circles (with a
slight abuse of notation) by up(t) := uN (x(t)), t 2 [0; 2�], where t = 0 corresponds
to the direction from which ui is incident. Plots of ju7(t)j (i.e. the total �eld on
the circle as computed with our �nest discretization) for the equilateral triangle, for
k = 10 and k = 160, are shown in Figure 7.3. The shadow region and the regions in
which specularly reected waves are present are indicated (compare Figure 7.3 with
Figure 7.1).

In Figure 7.4 we plot for both examples the relative maximum error on the circle,

maxt2[0;2�] ju7(t)� up(t)j
maxt2[0;2�] ju7(t)j

;

computed over 10000 evenly spaced points in [0; 2�], for k = 10, k = 40, and k = 160.
The exponential decay with respect to increasing p predicted by Theorem 6.3 is clear
for both examples (note the logarithmic scale on the vertical axes). Moreover, for �xed
p, the relative maximum error seems to be, if anything, decreasing with increasing
k, suggesting that the theoretical error bound (6.4) in Theorem 6.3 is not sharp in
terms of its k dependence. As alluded to above, the errors in the domain are much

20



Triangle Pentagon

Fig. 7.4. Relative maximum errors on the circles of Figure 7.1.

k=10 k=160

Fig. 7.5. Far �eld patterns for the triangle.

smaller than the relative errors in the computation of the boundary data in Figure
7.2, and, importantly, for �xed k and p the errors for the two examples are of similar
magnitude. This suggests that the bound (6.4) in Theorem 6.3 is not sharp in terms
of its dependence on the corner angles, either.

Finally, we compute our approximation to the far �eld pattern (6.7). As above,
to allow easy comparison between di�erent discretizations we denote (again with a
slight abuse of notation) Fp(t) := FN (x̂(t)), t 2 [0; 2�], where t = 0 again corresponds
to the direction from which ui is incident. Plots of jF7(t)j (i.e. the far �eld pattern as



Triangle Pentagon

Fig. 7.6. Absolute maximum errors kF7 � FpkL1(0;2�) in the far �eld pattern.

and p the errors are comparable in magnitude for the two examples, suggesting that,
as for the solution in the domain, the bound (6.8) may not be optimal in terms of its
dependence on the corner angles, either.

In summary, our numerical examples demonstrate that the predicted exponential
convergence of our hp scheme is achieved in practice. Moreover, for a �xed number
of degrees of freedom, the accuracy of our numerical solution appears to deteriorate
only very slowly (or not at all) as the wavenumber k increases. In fact, our results
lead us to conjecture that the theoretical error bounds provided by Corollary 6.2 and
Theorems 6.3 and 6.4 are not sharp in their k dependence. In particular, we believe
that this is partly due to the lack of sharpness of our estimate for M derived in x4;
indeed, we conjecture (cf. Remark 3.3) that M = O (1) as k !1, but, as yet, we do
not have a proof of this result.

We also conjecture that the theoretical error bounds provided by Theorems 6.3
and 6.4 are not sharp in their dependence on the corner angles of the polygon. To
explain this, we recall that our error estimates for the approximation of u by uN ,
(6.4), and of F by FN , (6.8), were derived via the Cauchy-Schwarz inequality and
our L2 estimates for ’ � ’N , (6.2) and (6.3), which we know to blow up to in�nity
if one (or more) interior corner angle(s) tend to zero, reecting that, in this limit, ’
ceases to be in L2(�). Our choice of L2(�) as the space for error analysis is motivated
by the very recent results in [42], where coercivity was established with frequency
independence for a second kind BIE formulation. One way to obtain error estimates



the form presented here, appropriately modi�ed versions of Lemma 2.1, Lemma 2.2
and Assumption 2.3 would also be required. We do not explore these issues further
here, except to say that the di�culty in dealing with the singularities when the corner
angles are sharp is unrelated to considerations regarding the oscillatory nature of the
solution, which form the main focus of this paper.

8. Acknowledgements. The authors thank S. N. Chandler-Wilde for many
helpful discussions and A. Twigger for assistance with computing numerical results.
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Lemma A.2. Suppose that a function g is analytic and bounded in Ea;b;r for some
�1 < a < b <1 and r > b� a. Then

inf
v2Pp(a;b)

kg � vkL1(a;b) �
2

�� 1
��p kgkL1(Ea;b;r) ; (A.2)

where

� =
1

b� a

�
r +

p
r2 � (b� a)2

�
> 1: (A.3)

Using this result we can prove Theorem 5.2.
Proof. (Proof of Theorem 5.2.) Part (ii) is clearly a trivial consequence of part

(i). To prove (i), it is convenient to introduce the notation

Ei := inf
v2Pp(xi�1;xi)

kg � vkL1(xi�1;xi)
; (A.4)

Ii := inf
v2Pp(xi�1;xi)

kg � vkL2(xi�1;xi)
; (A.5)

for each i = 1; 2; : : : ; n. We then have

inf
v2Pp;n(0;A)

kg � vkL (0 ;A [(i)]TJ/F8 9.3738Td [(L)]TJ/858-



If n � 2, then for i = 2; 3; : : : ; n, g is analytic and bounded in the half plane
Re [z] > xi�1

2 . With reference to Figure A.1, we note that for the general ellipse Ea;b;r
of De�nition A.1, setting w = w� reveals that r = 2e+(b�a). Hence the largest ellipse
Exi�1;xi;ri lying inside the half-plane Re [z] > xi�1

2 has ri = (xi � xi�1) + xi�1 = xi,
so Lemma A.2 implies that

Ei �
2Bi
�� � 1

��p� ; i = 2; 3; : : : ; n; (A.10)

where Bi := kgkL1(Exi�1;xi;ri
) and

�� :=
1

xi � xi�1

�
ri +

q
r2
i � (xi � xi�1)2

�
=

1

1� �
�
1 +
p
�
p

2� �
�
> 1: (A.11)

Hence

I2
i �

4B2
i (xi � xi�1)

(�� � 1)2
��2p
� ; i = 2; 3; : : : ; n: (A.12)

Now de�ne n� to be the largest i 2 f1; : : : ; ng such that xi�1

2 < 1, i.e.

n� :=

(l
n�

�
logA�log 2
j log �j

�m
; �A=2 � 1;

n; otherwise:
(A.13)

Then

Bi �

8><>:
Ĉ
�xi�1

2

���
= Ĉ

�
�n�i+1A

2

���
; 2 � i � n�;

Ĉ
�xi�1

2

��1=2
= Ĉ

�
�n�i+1A

2

��1=2

; n� + 1 � i � n:
(A.14)

Hence if n� � 2, then for i = 2; : : : ; n� we have

B2
i (xi � xi�1) � Ĉ2

�
�n�i+1A

2

��2�

�n�iA(1� �) =
22�Ĉ2

�
�n�iA

�1�2�
(1� �)

�2�
;

(A.15)

so that

I2
i �

22+2�Ĉ2
�
�n�iA

�1�2�
(1� �)

�2�(�� � 1)2
��2p
� ; i = 2; : : : ; n�: (A.16)

By the de�nition of n�,
xn��1

2 = A�n�n�+1

2 < 1, so �n�iA = �n�n��1A�n�+1�i <
2��2�n�+1�i, and

n�X
i=2

�
�n�iA

�1�2� � (2��2)1�2�
n�X
i=2

e�2(n�+1�i)# � (2��2)1�2�e�2#

1� e�2#
; (A.17)

with # de�ned as in (A.8). Hence

n�X
i=2

I2
i � Ĉ2D2�

�2p
� ; (A.18)
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where

D2(�; �) =
22+2�(2��2)1�2�e�2#(1� �)

(1� e�2#)�2�(�� � 1)2
=

8��1�4�(1� �)

(1� �1�2�)(�� � 1)2
: (A.19)

If n� � n�1 (i.e. �A=2 � 1), then for i = n�+1; : : : ; n we have the simpler result

B2
i (xi � xi�1) = Ĉ2

�
�n�i+1A

2

��1

�n�iA(1� �) =
2Ĉ2(1� �)

�
; (A.20)

so that

I2
i �

8Ĉ2(1� �)

�(�� � 1)2
��2p
� ; i = n� + 1; : : : ; n: (A.21)

Hence
nX

i=n�+1

I2
i � (n� n�)Ĉ2D3�

�2p
� ; (A.22)

where

D3(�) =
8(1� �)

�(�� � 1)2
: (A.23)

Note also that since �A=2 � 1 in this case, we can bound

n� I(�.)8d [(f 10.5169 Td 5s9 Tf 6.05 rTd [(p)]TJ -10.198 -6.52a1 9.9626 Tf 3.874 ;)]TJ/F8 9.9626 Tf 90.A 9.11 9.e15s9 Tf 6.05 rT510.198 -6.52a1 9.962,Tf 3.874 57m704]TJ 6.13 11 9.9626 Tf 5.665 3.956 Td [(:)]T.01522.39626 Tf7j962I�



(i) there exists a constant C 0 > 0, depending only on � and �, such that the best L2

approximation error in Pp;n(0; A) satis�es

inf
v2Pp;n(0;A)

kg � vkL2(0;A) � C
0Ĉ
�
A1=2��e�n# + (2 +A)1=j log �je�n�

+ log1=2(2 +A)e�p�
�
; (A.27)

where # and � are as de�ned in Theorem 5.2, and � = min f#=2; p�=n�g;
(ii) furthermore, if n is chosen such that n � cp for some constant c > 0, then

inf
v2Pp;n(0;A)

kg � vkL2(0;A) A0Ĉ
�
A1



where

D04 = max

�
D1; D

0
2;

D3

j log �j

�
; (A.36)

giving

inf
v2 ~Pp;n(0;A)

kg � vkL2(0;A) � C
0Ĉ
�
A1=2��e�n# + e�n�� + log1=2(2 +A)e�p�

�
;

(A.37)

where C 0 :=
p
D04. Finally, we obtain (A.27) by noting that

n� � n�
log (2 +A)

j log �j
; (A.38)

which follows from (A.24) for �A=2 � 1 and the fact that n� = n for �A=2 < 1.
Part (ii) follows trivially from part (i) and the fact that n� = minfn#=2; np�=n�g �

pminfc#=2; �g.
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