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Abstract

There are several scoring rules that one can choose from in order to score probabilistic
forecasting models or estimate model parameters. Whilst it is generally agreed that proper
scoring rules are preferable, there is no clear criterion for preferring one proper scoring rule
above another. This manuscript contrasts properties of some commonly used proper scoring
rules and provides incremental guidance on scoring rule selection. In particular, it is shown that
the logarithmic scoring rule prefers erring on the side of caution, but the Continuous Ranked
Probability Score tends to prefer over-confident forecasts.

1 Introduction

Issuing probabilistic forecasts is meant to express uncertainty about the future evolution of a dynam-
ical system. The quality of probabilistic forecasts may be undermined by model mis-specification.
This makes it necessary to assess forecast-quality. Forecast-quality can be assessed using either



This paper presents a novel theoretical analysis of strictly proper scoring rules. It focuses upon
those scoring rules that are commonly used in the forecasting literature, including econometrics
and meteorology. It unravels and contrasts how the different scoring rules would rank competing
forecasts of specified departures from ideal forecasts and provides incremental guidance on scoring



2.2 Logarithmic scoring rule

The logarithmic scoring rule was proposed by Good (1952). It was later termed Ignorance by Roul-
ston & Smith (2002) when they introduced it to the meteorological community. Given a proba-
bilistic forecast f = (f1, f2, . . . , fm), the Ignorance score is given by IGN(f , j) = − log fj j



Proposition 2 Given two forecasts f i = (p + γi, q − γi), i = 1, 2 with 0 < γ1 < γ2 < q and p > q,
the logarithmic scoring rule prefers f1 over f2, in agreement with the Brier score.

Proof: In order to prove this proposition, it is sufficient to consider the expected logarithmic score
of the forecast f = (p + γ, q − γ), which is given by equation (1). Differentiating the equation with
respect to γ yields

d

dγ
E[IGN ] =

γ

(p + γ)(q − γ)
(5)

Equation (5) implies that, if q > γ > 0, E[IGN ] is an increasing function of γ. Hence, the
logarithmic scoring rule prefers the forecast f1, in agreement with the Brier score.

On the other hand, if γ < 0 with |γ| < p, then equation (5) implies that E[IGN ] is a decreasing
function of γ. It then follow that, given γ2 < γ1 < 0 with |γ2| < p, the logarithmic scoring rule will
prefer the forecast f1, again in agreement with the Brier score.

Finally, let



Proposition 4 For positive γ1 and γ2 such that γ1 < q < p and γ2 < p, the entropy of the forecast
f1 = (p+γ1, q −γ1) is lower than that of the forecast f2 = (p−γ2, q +γ2) whenever γ2 ≤ (p− q)/2.

A consequence of this proposition is that the forecast corresponding to γ1 = γ∗ is more informative
than f2 provided γ2 ≤ (p − q)/2. Otherwise, either forecast could be more informative than the
other. We now give the proof of this proposition.

Proof: To prove the above proposition, we consider the derivative of equation (4):

dh

dγ
= − log

(

p + γ

q − γ

)

.

We then note that dh/dγ < 0 provided that (p − q) > −2γ. If γ > 0, this inequality is trivially
satisfied. On the other hand, if γ < 0, then the inequality is satisfied provided |γ| < (p − q)/2. If
γ2 < (p − q)/2, then h(γ) is a strictly decreasing function for all γ ∈ [−γ2, γ2], which implies that
h(γ1) > h(γ2). If γ2 > (p − q)/2, then h(γ) is an increasing function for all γ ∈ (−γ2, −(p − q)/2)
(provided p > 3q) and strictly decreasing function in (−(p − q)/2, γ1), which implies that h(−(p −
q)/2) > max{h(γ1), h(−γ2)}. Hence, in this case, we cannot determine which of h(γ1) and h(−γ2)
is lower.

3 Density Forecasts

This section considers scoring rules for for forecasts of continuous variables. It is in some sense a
generalisation of the previous section. As before, we consider how each scoring rule would rank two
competing predictive distributions of fairly good quality. In the case of the logarithmic scoring rule
and the Continuous Ranked Probability Score, we consider errors of each predictive distribution,
f(x), from the target distribution, p(x), that are odd functions, i.e. γ(x) = f(x) − p(x) with
γ(−x) = −γ(x).

3.1 The Quadratic scoring rule

A continuous counterpart of the Brier score is the quadratic score (Gneiting & Raftery, 2007), given
by

QS(f,X) = ||f ||22 − 2f(X),

where X is a random variable. Taking the expectation yields

E[QS(f,X)] = ||f − p||22 − ||p||22. (9)

We can now write f(x) = p(x) + γ(x), where
∫

γ(x)dx = 0, and substitute it into (9) to obtain

E[QS(f,X)] = ||γ||22 − ||p||22 (10)

As was the case with the Brier score, the functions ±γ(x) yield the same quadratic score. For any
two forecasts, fi(x) = p(x) + γi(x), i = 1, 2 with ||γ1||2 < ||γ2||2, the quadratic scoring rule would
prefer f1(x).
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3.2 The Logarithmic scoring rule

The expectation of the logarithmic (or Ignorance) score for this forecast is

E[IGN(f,X))] = −

∫

p(x) log(p(x) + γ(x))dx.

Further more,

E[IGN ]± =

∫

p(x) log

(

p(x) − γ(x)

p(x) + γ(x)

)

dx. (11)

It is necessary that |γ(x)| ≤ p(x) for (11) to be well defined. Consider the case when p(x) = p(−x).
If, in addition, γ(x) is an odd function, i.e. γ(−x) = −γ(x), then equation (11) yields E[IGN ]± = 0.

We now turn to the general case where p(x) is not necessarily even and γ(x) is not necessarily
odd. If we let ϕ(x) be a test function, then the functional derivative of E[IGN ]±, denoted by
δE[IGN ]±/δγ, satisfies the relation

〈

δ

δγ
E[IGN ]±, ϕ

〉

=
d

dε

∫

p(x) log

(

p(x) − γ(x) − εϕ(x)

p(x) + γ(x) + εϕ(x)

)

dx

∣

∣

∣

∣

ε=0

,

from which it follows that
δ

δγ
E[IGN ]± =

−2p2(x)

p2(x) − γ2(x)
. (12)

Hence, the functional derivative is negative for all γ(x) such that |γ(x)| < p(x), which implies
that E[IGN ]± is a decreasing functional of γ(x). Tx: (x



where we used p(|x|) ≤ p(x) to obtain the last inequality. To justify the use of this inequality, we
need to show that the function



Plugging (15) into (15) yields

δh(γ) = −

∫

∞

−∞

[log(p(x) + γ(x)) + 1]δγ(x)dx

= −

∫

0

−∞

[log(p(x) + γ(x)) + 1]δγ(x)dx −

∫

∞

0

[log(p(x) + γ(x)) + 1]δγ(x)dx

= −

∫

0

−∞

[log(p(x) + γ(x)) + 1]δγ(x)dx +

∫

−∞

0

[log(p(−x) + γ(−x)) + 1]δγ(−x)dx

= −

∫

0

−∞

[log(p(x) + γ(x)) + 1]δγ(x)dx −

∫

0

−∞

[log(p(−x) + γ(−x)) + 1]δγ(−x)dx

= −

∫

0

−∞

[log(p(x) + γ(x)) + 1]δγ(x)dx +

∫

0

−∞

[log(p(−x) − γ(x)) + 1]δγ(x)dx

= −

∫

0

−∞

log

(

p(x) + γ(x)

p(−x) − γ(x)

)

δγ(x)dx,

where we have applied a change of variable x → −x in the second integral of the third line and
assumed δγ(−x) = −δγ(x) in the fifth line. In particular,

δh(γ)|γ=0 = −

∫

0

−∞

log

(

p(x)

p(−x)

)

δγ(x)dx.

Using the assumption that p(x) ≥ p(−x) whenever x < 0, we consequently obtain

δh(γ)|γ=0 ≤ 0, (16)

if δγ(x) > 0 for all x < 0. In effect, we have just proved the following proposition:

Proposition 6 Given that γ(−x) = −γ(x),
∫

γ(x)dx = 0, γ(|x|) ≤ 0, p(|x|) ≤ p(x) and |γ(x)| <
p(x), then the entropy of the forecast density f+(x) = p(x) + γ(x) is lower than that of the fx+ � ) = p(� ) =



Using this result, we obtain the first variation of E[IGN ] as

δE[IGN ] =

∫

∞

−∞

δE[IGN ]

δγ(x)
δγ(x)dx

=

∫

∞

−∞

−p(x)

p(x) + γ(x)
δγ(x)dx

=

∫

0

−∞

−p(x)

p(x) + γ(x)
δγ(x)dx +

∫

∞

0

−p(x)

p(x) + γ(x)
δγ(x)dx

=

∫

0

−∞

−p(x)

p(x) + γ(x)
δγ(x)dx +

∫

−∞

0

p(−x)

p(−x) + γ(−x)
δγ(−x)dx

=

∫

0

−∞

−p(x)

p(x) + γ(x)
δγ(x)dx +

∫

0

−∞

p(−x)

p(−x) − γ(x)
δγ(x)dx

=

∫

0

−∞

[

p(−x)

p(−x) − γ(x)
−

p(x)

p(x) + γ(x)

]

δγ(x)dx

≥

∫

0

−∞

[

p(x)

p(x) − γ(x)
−

p(x)

p(x) + γ(x)

]

δγ(x)dx

=

∫

0

−∞

2p(x)γ(x)

p2(x) − γ2(x)
δγ(x)dx

≥ 0,

provided δγ(x) > 0 for x < 0 and δγ(−x) = −δγ(x), and this completes the proof.
We shall now consider two forecasts, f1(x) = p(x) + γ1(x) and f2(x) = p(x) − γ2(x) with

|γ1(x)| ≤ |γ2(x)| ≤ p(x). In this case, the quadratics scoring rule would prefer f1(x) over f2(x). In



Thinking of γ1(x) as fixed, the first variation of H(·, γ2) with respect to γ2(x) is given by

δH(·, γ2) =

∫

∞

−∞

δH(·, γ2)

δγ2(x)
δγ2(x)dx

=

∫

∞

−∞

−p(x)

p(x) − γ2(x)
δγ2(x)dx

=

∫

0

−∞

−p(x)

p(x) − γ2(x)
δγ2(x)dx +

∫

∞

0

−p(x)

p(x) − γ2(x)
δγ2(x)dx

=

∫

0

−∞

−p(x)

p(x) − γ2(x)
δγ2(x)dx −

∫

−∞

0

p(−x)

p(−x) + γ2(x)
δγ2(x)dx

=

∫

0

−∞

−p(x)

p(x) − γ2(x)
δγ2(x)dx +

∫

0

−∞

p(−x)

p(−x) + γ2(x)
δγ2(x)dx

=

∫

0

−∞

[

p(−x)

p(−x) + γ2(x)
−

p(x)

p(x) − γ2(x)

]

δγ2(x)dx

≤

∫

0

−∞

[

p(x)

p(x) + γ2(x)
−

p(x)

p(x) − γ2(x)

]

δγ2(x)dx

=

∫

0

−∞

−2p(x)γ2(x)

p2(x) − γ2
2
(x)

δγ2(x)dx.

Hence, δH(·, γ2) ≤ 0 provided δγ2 > 0. It follows that H(·, γ2) has a maximum when γ2 = 0,
i.e. H(·, γ2) ≤ H(·, 0). In particular, H(0, γ2) ≤ H(0, 0) = 0. For γ2 6= 0, we have the strict
inequality, H(0, γ2) < 0. But, H(γ2, γ2) > 0. Therefore, continuity implies that H(γ1, γ2) = 0 for
some γ1(x) = γ∗(x) such that |γ∗| < |γ2|, and this completes the proof.

3.3 Continuous Ranked Probability Score

Finally, we consider the Continuous Ranked Probability Score (CRPS) of the density forecast f(x)
whose cumulative distribution is F (x). The CRPS is a function of F and the verification X and is
defined by (Gneiting & Raftery, 2007)

CRPS(F,X) =

∫

∞

−∞

(F (y) − I{y ≥ X})2dy. (18)

Its associated entropy function is (Gneiting & Raftery, 2007)

G(F ) =

∫

∞

−∞

F (y)(1 − F (y))dy (19)

and its divergence function is

d(P,F ) = −

∫

∞

−∞

(P (y) − F (y))2dy, (20)

where P is the true cumulative distribution function, i.e. P (x) =
∫ x
−∞

p(τ)dτ . Again, we consider
the case when p(|x|) ≤ p(x). Since E[CRPS(F,X)] = G(F ) − d(P,F ), it follows from (19) and (20)
that

E[CRPS(F,X)] =

∫

∞

−∞

F (y)(1 − F (y))dy +

∫

∞

−∞

(P (y) − F (y))2dy. (21)

Define F±(x) = P (x) ± Γ(x), where Γ(x) =
∫ x
−∞

γ(τ)dτ . It can be shown that γ(−x) = −γ(x)
implies that Γ(−x) = Γ(x). If we now define ∆G(F±) = G(F+) − G(F−), then the following
proposition holds:
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Proposition 9 If δγ(x) ≥ 0 for every x < 0 and δγ(−x) = −δγ(x), then the first variation of
∆G(F±) is non-negative, i.e.

δ{∆(F±)} ≤ 0.

Proof: The functional derivative of ∆G(F±) with respect to Γ(x) is

δ{∆G(F±)}

δΓ(x)
= 2 − 4P (x).



rule prefers the higher entropy forecast. Preferring the higher entropy forecast may be thought of
as taking a more cautious stance of less confidence. The logarithmic scoring rule selects a lower
entropy forecast only if it is nearer to the target distribution in the sense of the L2 norm.

We extended the investigation from the binary forecasts to the continuous case, where we
considered the Quadratic score, Logarithmic score and the Continuous Ranked Probability Score
(CRPS). Just like the Brier score in the binary case, the Quadratic Score does not distinguish
between forecasts with equal L2 norms of their error from the target distribution. Given two density
forecasts whose errors from the target forecast differ by a sign, the logarithmic scoring rule prefers
the distribution with higher entropy. On the other hand, the CRPS prefers the forecast distribution
with lower entropy; bear in mind that lower entropy corresponds to more confidence (Shannon,
1948).

Our findings indicate that the logarithmic scoring rule encourages a more cautious decision
when forecasts depart from the ideal forecast. This is in agreement with the idiom that we should
“err on the side of caution.” We consider this to be an advantage over the CRPS which ecourages
erring on the side of risk. In an investment scenario, erring on the side of risk can result in
substantial losses. Some have critised the logarithmic scoring rule for placing a heavy penalty on
assigning zero probability to events that materialise (e.g. Boero et al., 2011; Gneiting & Raftery,
2007); but assigning zero probability to events that are possible is also discouraged by Laplace’s
rule of succession (Jaynes, 2003). The logarithmic scoring rule is good at highlighting misplaced
confidence of forecasts. Such forecasts may have to be dealt with appropriately. One way of dealing
with over-confident forecasts is to apply shrinkage estimators discussed in Casella (1985); Efron &
Morris (1977).
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