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solution, fronts are resolved more accurately than with the
standardL2-norm regularisation of 4DVar.

The aim of this paper is to examime the potential
benefits of usingL1-norm regularisation in variational
data assimilation. It presents a preliminary study showing
that the method has potential to give improvement over
existing approaches. Further investigation remains to be
done in order to evaluate the technique in an operational
setting.

Section2 gives an introduction to 4DVar and shows
its relation to Tikhonov regularisation. In Section3 we
introduce the new algorithm and in Section4 we explain
how we solve theL1-norm regularisation problem and the
mixed TVL1-L2-norm regularisation problem. In Section
5 we state the model equations. Section6 presents numer-
ical examples, where the newL1-norm regularisation is
compared to standard 4DVar. In our examples we intro-
duce several kinds of model error. Under these conditions
it can be seen thatL1-norm regularisation outperforms
4DVar when sharp fronts are present (see Sections6). We
conclude with a section on future work.

2 4DVar and its relation to Tikhonov regularisation

In nonlinear 4DVar we aim to minimise the objective
function
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are vectors whereas∇λi, i = 0, . . . , N are square matrices
of the dimension of the system state.

The approximate Hessiañ∇∇J (x0) and∇J (x0) are
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Firstly, in this paper we consider the effects ofL1-
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subject to
Ew = g and F w ≥ 0, (25)

where

w =




z
v+

v−


 , H =




2(GT G + µ2I) 0 0
0 0 0
0 0 0


 ,

c =




−2GT f
1
1


 , E =

[
δDC

1/2
B −I I

]
,

F =




0 0 0
0 −I 0
0 0 I


 , g = −δDxb

0,

and the block matricesI and 0 as well as the vectors
1 of all ones in the matricesH, E, F and c are of
appropriate size. The objective function in (24) is convex
asH is symmetric positive semi-definite. In order to solve
the quadratic programming problem (24) with constraints
(25) we use the MATLAB in-built functionquadprog.m.

In the following section we consider a square wave
advected using the linear advection equation as an exam-
ple. We use a ‘true’ model (from which we take the obser-
vations) and another model, which is different from the
truth and hence introduces a model error. The different
models we use are introduced in the next section. In all
examples we observe that the new edge-preserving mixed
TV L1-L2-norm regularisation indeed gives better results
than the standardL2-norm approach and the simpleL1-
norm regularisation.

In all the examples we keep the regularisation par-
ameterµ fixed, as we are only investigating the influence
of the norm in the regularisation term, but not the size of
the regularisation parameterµ.

5 Models

In this section we consider the problem

ut + [f(u)]x = 0, (26)

wheref(u) is given by

f(u) = u, (27)
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is obtained if we use the correct initial conditions and the
(imperfect) model. It represents the best solution that we
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Table I. Comparison between errors in the analysis in standard 4DVar,L1-norm regularisation and mixed TVL1-L2-norm regularisation
measured in theL2-norm
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