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EQUIVALENCE OF WEAK FORMULATIONS OF THE STEADY WATER
WAVES EQUATIONS

EUGEN VARVARUCA AND ARGHIR ZARNESCU

Abstract. We prove the equivalence of three weak formulations of the steady water waves
equations, namely the velocity formulation, the stream function formulation, and the Dubreil-
Jacotin formulation, under weak H�older regularity assumptions on their solutions.

1. Introduction
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the kinematic condition that the same particles always form the free surface, while (2.1f) is
the dynamic condition that at the free surface the pressure in the fluid equals the constant
atmospheric pressure. This is a free-boundary problem, because the domain Dη is not known
a priori. The system (2.1) will be referred to as the velocity formulation of the steady water
waves equations. Throughout the paper we assume that, in the moving frame, the horizontal
velocity of all the particles is in the same direction. For definiteness, we assume that

(2.2) u < c in Dη.

(All the results discussed in the paper have corresponding analogues if instead of (2.2) one
assumes that u > c in Dη.)

For the remainder of this section we describe informally, following [2], two other equivalent
formulations of (2.1), assuming that the solutions are smooth enough. The equivalence of
these formulations under weak regularity assumptions is the main aim of the paper, which
will be addressed in the subsequent sections.

2.2. The stream function formulation. Suppose that (2.1) and (2.2) hold. Equation
(2.1a) implies the existence of a function ψ in Dη, called a (relative) stream function, such
that

(2.3) ψy = u − c, ψx = −v in Dη.

The boundary conditions (2.1d) and (2.1e) imply that ψ is a constant on each of y = 0 and
y = η(x). Since ψ is only determined up to an additive constant, one can assume that ψ = 0
on y = η(x), and then we obtain that there exists a constant p0 such that ψ = −p0 on y = 0.
The condition (2.2) can be rewritten as

(2.4) ψy < 0 in Dη,

a consequence of which is that p0 < 0. After expressing the left-hand side in (2.1b) and (2.1c)
in terms of ψ, differentiation of the first of these equations with respect to y and of the second
with respect to x allows us to eliminate the pressure, leading to

(2.5) (∆ψ)xψy = (∆ψ)yψx in Dη,
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for some constant Q. We have therefore obtained the stream function formulation of the
steady water waves equations, which is to find a domain Dη and a function ψ in Dη such that

∆ψ = −γ(ψ) in Dη,(2.8a)

ψ = −p0 on y = 0,(2.8b)

ψ = 0 on y = η(x),(2.8c)

|∇ψ|2 + 2gy = Q on y = η(x),(2.8d)

for some constants p0 < 0 and Q, and some function γ : [0, −p0] → R.

Conversely, suppose that ψ satisfies (2.8) and (2.4) in a domain Dη. Then one can define
in Dη a velocity field (u, v) by (2.3) and a pressure field P by (2.7) with a suitable choice of
the constant in the right-hand side, and easily check that (2.1) and (2.2) hold.

2.3. The height (or Dubreil-Jacotin) formulation. An elegant way to overcome the
difficulty that in (2.8) the fluid domain Dη needs to be found as part of the solution has been
first observed by Dubreil-Jacotin: the fact that ψ is constant on the top and the bottom of
Dη can
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Using these identities, one can easily reformulate (2.8) as the following system for the function
h defined above:

(1 + h2
q)hpp − 2hqhphqp + h2

phqq = −γ(−p)h3
p in R,(2.15a)

h = 0 on p = p0,(2.15b)

1 + h2
q + (2gh − Q)h2

p = 0 on p = 0.(2.15c)

This is the height (or Dubreil-Jacotin) formulation of the steady water waves equations.

Conversely, suppose that h satisfies (2.15) and (2.12). Let η : R → R be given by η(q) =
h(q, 0) for all q ∈ R. Then (2.12) implies that (q, p) 7→ (x, y) = (q, h(q, p)) is a bijection
between R and Dη. Defining ψ by (2.11), the formulae (2.13)–(2.14) are valid, and one can
easily deduce from (2.15) and (2.12) that (2.8) and (2.4) hold.

3. Weak formulations of the steady water waves problem

3.1. Weak velocity formulation. For sufficiently smooth scef 51.91 0 Td[)
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Again, (3.2a) may be required to hold in the sense of distributions. We will be interested in
solutions of (3.2) with η ∈ C1,α(R), ψ ∈ C1,α(Dη) and Γ ∈ C0,α([p0, 0]) for some α ∈ (0, 1],
with (3.2b)–(3.2d) being satisfied in the classical sense, and (3.2a) being satisfied in the sense
of distributions (with ψx, ψy being understood in the classical sense).

3.3. Weak height formulation. For sufficiently smooth functions h and γ, the algebraic
identity{

−
1 + h2

q

2h2
p

+ Γ(p)

}
p

+

{
hq

hp

}
q

=
1

h3
p

{
(1 + h2

q)hpp − 2hqhphqp + h2
phqq + γ(−p)h3

p

}
shows that, in the presence of (2.12), (2.15) is equivalent to{

−
1 + h2

q

2h2
p

+ Γ(p)

}
p

+

{
hq

hp

}
q

= 0 in R,(3.3a)

h = 0 on p = p0,(3.3b)

1 + h2
q

2h2
p

+ gh − Q

2
= 0 on p = 0.(3.3c)

We will be interested in solutions of (3.3) with h ∈ C1,α(R) and Γ ∈ C0,α([p0, 0]) for some
α ∈ (0, 1], with (3.3b)–(3.3c) being satisfied in the classical sense, and (3.3a) being satisfied
in the sense of distributions (with hp, hq understood in the classical sense).

4. The equivalence of the weak formulations

Weak solutions (in the sense described in the previous section) of the steady water waves
problem have been studied only very recently in [3]. That paper deals with waves which
are periodic in the horizontal direction, the subscript per being used in what follows to
indicate this periodicity requirement. In [3] the authors develop a global bifurcation theory
for weak solutions of (3.3) with h ∈ C1,α

per (R), under the assumption Γ ∈ C0,α([p0, 0]), for some
α ∈ (0, 1). These would formally correspond to solutions of the weak velocity formulation
with η ∈ C1,α

per (R) and u, v, P ∈ C0,α
per (Dη). However, no rigorous proof of this equivalence

is given in [3]. The only result there on the equivalence of the weak formulations, see [3,
Theorem 2], is the following:

Let 0 < α < 1 and r = 2
1−α

. Then the following are equivalent:

(i) the weak velocity formulation (3.1) together with (2.2), for η ∈ C1,α
per (R) and u, v, P ∈

W 1,r
per(Dη) ⊂ C0,α

per (Dη);
(ii) the stream function formulation (2.8) together with (2.4), for γ ∈ Lr[0, −p0], η ∈

C1,α
per (R) and ψ ∈ W 2,r

per(Dη) ⊂ C1,α
per (Dη);

(iii) the weak height formulation (3.3) together with (2.12), for Γ ∈ W 1,r[p0, 0] and h ∈
W 2,r

per(R) ⊂ C1,α
per (R).

As one can see, in the above result the velocity field (u, v), the pressure P , the stream
function ψ, the height h, and the function Γ, are assumed to have more regularity, namely an
additional weak (Sobolev space) derivative, than one would really like.
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Our main result, given below, proves the equivalence of the weak formulations under the
‘right’ regularity assumptions, albeit only for the case when the Hölder exponent satisfies
α ∈ (1/3, 1]. (In particular, under our assumptions, the function Γ need not have a (weak)
derivative.) While the weak stream function and the weak height formulations will be seen
to be, in fact, equivalent for any α ∈ (0, 1], it remains an open problem whether the weak
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Then, for any ε > 0 such that V ε is non-empty, where V ε def
= {
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of (3.3a), which we need to prove: for any φ̃ ∈ C1
0(R),

(4.7)

∫
R

(
−

1 + h2
q

2h2
p

+ Γ(p)

)
φ̃p +

hq

hp

φ̃q dqdp = 0.

For any such φ̃, let φ ∈ C1
0(Dη) be given by φ(x, y) = φ̃(x, −ψ(x, y)) for all (x, y) ∈ Dη. By

changing variables in the integral, using (2.13)–(2.14), one can rewrite (4.7) as

(4.8)

∫
D�

Γ(−ψ)φy − (ψxψy)φx +
1

2
(ψ2

x − ψ2
y)φy dxdy = 0.

But (4.8) is valid, as a consequence of (3.2a). This shows that (3.3a) holds. We have thus
proved that (iii) holds.

Suppose now that (iii) holds. Let h ∈ C1,α
per (R) be such that (3.3) and (2.12) hold, where

Γ ∈ C0,α([p0, 0]). Defining η and ψ as in Section 2, we then have that η ∈ C1,α
per (R) and

ψ ∈ C1,α
per (Dη), and the formulae (2.13)–(2.14) are still valid. Clearly (3.3b)–(3.3c) imply

(3.2b)–(3.2d), and (2.12) implies (2.4). The weak form of (3.2a), which we need to prove, is
written explicitly as (4.8), for any φ ∈ C1

0(Dη). For any such φ, let φ̃ ∈ C1
0(R) be given by

φ̃(q, p) = φ(q, h(q, p)) for all (q, p) ∈ R. By changing variables in the integral, using (2.13)–
(2.14), one can rewrite (4.8) as (4.7). But (4.7) is valid, as a consequence of (3.3a). This
shows that (3.2a) holds. We have thus proved that (ii) holds.

We now prove the equivalence of (i) and (ii), making essential use of the assumption α >
1/3.

Suppose that (i) holds. Since η ∈ C1,α
per (R) and u, v ∈ C0,α

per (Dη), it follows from (3.1a), by
arguments similar to those in [1, Lemma 3], in which our Lemma 2 plays a key role, that there
exists ψ ∈ C1,α

per (Dη), uniquely determined up to an additive constant, such that (2.3) holds.
Clearly, (2.2) implies (2.4). Also, it follows from (3.1d) and (3.1e) that ψ is constant on each
of y = 0 and y = η(x). The additive constant in the definition of ψ may be chosen so that
(3.2c) holds, and then (3.2b) also holds for some constant p0 < 0. Using the definition of ψ
we rewrite (3.1b)–(3.1c) in the weak distributional form (with ψx, ψy in the classical sense):

(ψ2
y)x − (ψxψy)y = −Px in Dη,(4.9a)

−(ψxψy)x + (ψ2
x)y = −Py − g in Dη.(4.9b)

Let us denote

(4.10) F
def
= P +

1

2
|∇ψ|2 + gy in Dη.

It follows from (4.9) that we have, in the sense of distributions (with ψx, ψy in the classical
sense):

Fx =
1

2
(ψ2

x − ψ2
y)x + (ψxψy)y in Dη,(4.11a)

Fy = (ψxψy)x − 1

2
(ψ2

x − ψ2
y)y in Dη.(4.11b)

We now show that there exists a function Γ ∈ C0,α([p0, 0]) such that

(4.12) F (x, y) = Γ(−ψ(x, y)) for all (x, y) ∈ Dη.
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to prove (4.15) for φ, we write, for any ε ∈ (0, ε0),∫
D�

F (ψyφx − ψxφy) dxdy

=

∫
K

(Fψy − F εψε
y)φx − (Fψx − F εψε

x)φy dxdy +

∫
K

F εψε
yφx − F εψε

xφy dxdy

def
= Iε + Jε.

It is a consequence of Lemma 1(i) that Iε → 0 as ε → 0. To estimate Jε, we first integrate
by parts, then use (4.18) to cancel some terms, and then integrate by parts again, to get

Jε =

∫
K

(F ε
xψε

y − F ε
y ψε

x)φ dxdy

= −
∫
K

[
1

2
Rε(ψx, ψx)x

1

2
Rε(ψy, ψy)x + Rε(ψx, ψy)y

]
(ψε

yφ) dxdy

+

∫
K

[
Rε(ψx, ψy)x − 1

2
Rε(ψx, ψx)y +

1

2
Rε(ψy, ψy)y

]
(ψε

xφ) dxdy

=

∫
K

[
1

2
Rε(ψx, ψx) − 1

2
Rε(ψy, ψy)

]
[(ψε

yφ)x + (ψε
xφ)y] dxdy

+

∫
K

Rε(ψx, ψy)[(ψ
ε
yφ)y − (ψε

xφ)x] dxdy.

Expanding the square brackets, we write Jε as a sum of six terms, all of which can be estimated
in a similar way, by using Lemma 1, to the one shown below:

|
∫
K

Rε(ψx, ψy)(ψ
ε
xφ)x dx| = |

∫
K

Rε(ψx, ψy)
(
ψε
xφx + ψε

xyφ
)

dx|

≤ C(ε2α∥ψx∥2
C0;�(K0)∥ψy∥C0;�(K0) + ε3α−1∥ψx∥3

C0;�(K0)),

where C is a constant which depends on φ, but is independent of ε ∈ (0, ε0). The assumption
α > 1/3 now implies that Jε → 0 as ε → 0. We have thus proved that (4.15) holds for any
φ ∈ C1

0(Dη). As discussed earlier, this implies the existence of Γ ∈ C0,α([p0, 0]) such that
(4.12) holds. It therefore follows from (4.11) that, in the sense of distributions (with ψx, ψy

in the classical sense),

Γ(−ψ)x =
1

2
(ψ2

x − ψ2
y)x + (ψxψy)y in Dη,(4.19a)

Γ(−ψ)y = (ψxψy)x − 1

2
(ψ2

x − ψ2
y)y in Dη.(4.19b)

Rearranging (4.19b) gives exactly (3.2a). Also, recalling (4.10), we obtain from (3.1f) the
validity of (3.2d) for some constant Q. We have thus proved that (ii) holds.

Suppose now that (ii) holds. We define in Dη the velocity (u, v) by (2.3) and, up to an
additive constant, the pressure P , by

(4.20) P
def
= −1

2
|∇ψ|2 − gy + Γ(−ψ) in Dη.

Then u, v, P ∈ C0,α
per (Dη). Moreover, the definition of u and v implies (3.1a), while (3.2b)–

(3.2d) imply (3.1d)–(3.1f), provided the additive constant in the definition of P is chosen
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in a suitable way. Also, (2.4) implies (2.2). It therefore remains to prove the validity of
(3.1b)–(3.1c). Using our definition of u, v and P , (3.1b)–(3.1c) can be equivalently rewritten
as (4.19). However, (4.19b) is exactly (3.2a), which we are assuming to hold, and therefore
it only remains to prove (4.19a). We now show that (4.19b) implies (4.19a). For notational

convenience, we denote F
def
= Γ(−ψ). We claim that, with this definition of F , (4.16) neces-

sarily holds. Indeed, (4.16) can be written explicitly as (4.15) for any φ ∈ C1
0(Dη), which,

using the same notation as earlier in the proof, is equivalent to (4.14) for any φ̃ ∈ C1
0(R),

which is clearly true with our definition of F . Let V
def
= Dη and let, for any ε > 0, let

V ε def
= {(x, y) ∈ V : dist((x, y),R2 \ V ) > ε}. Using Lemma 2, (4.16) implies that, for any

ε > 0 such that V ε is not empty, in the notation (4.1),

(4.21) (F εψε
y)x − (F εψε

x)y + Rε(F, ψy)x − Rε(F, ψx)y = 0 iny +yy x)y = 0ε(F, ψ y)x −ε R
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It is a consequence of Lemma 1(i) that Kε → 0 as ε → 0. Now note that (2.4) implies that
there exists ε̃ ∈ (0, ε0) and δ > 0 such that, for all ε ∈ (0, ε̃),

(4.26) ψε
y ≥ δ in K.

To estimate Lε, we first integrate by parts using (4.17a) with θ := ψε, then use (4.24) to
cancel some terms, and then integrate by parts again, to obtain, for any ε ∈ (0, ε̃),

Lε = −
∫
K

(F ε
x − ψε

x∆ψε)φ

= −
∫
K

ψε
x

ψε
y

[
Rε(ψx, ψy)x − 1

2
Rε(ψx, ψx)y +

1

2
Rε(ψy, ψy)y

]
φ dxdy

+

∫
K

1

ψε
y

[Rε(F, ψy)x − Rε(F, ψx)y] φ dxdy

=

∫
K

Rε(ψx, ψy)

(
ψε
x

ψε
y

φ

)
x

− 1

2
Rε(ψx, ψx)

(
ψε
x

ψε
y

φ

)
y

− 1

2
Rε(ψy, ψy)

(
ψε
x

ψε
y

φ

)
y

dxdy

−
∫
K

Rε(F, ψy)

(
1

ψε
y

φ

)
x

− Rε(F, ψx)

(
1

ψε
y

φ

)
y

dxdy.

Thus we have written Lε as a sum of five terms, all of which can be estimated in a similar
way, by using Lemma 1, to the one shown below:

|
∫
K

Rε(ψx, ψy)

(
ψε
x

ψε
y

φ

)
x

dxdy| = |
∫
K

Rε(ψx, ψy)

(
ψε
xψε

y

(ψε
y)

2
φx +

ψε
xxψε

y − ψε
xψε

xy

(ψε
y)

2
φ

)
dxdy|

≤ C(ε2α||ψx||2C0;�(K0)||ψy||2C0;�(K0) + ε3α−1||ψx||2C0;�(K0)||ψy||2C0;�(K0)),

where C
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