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Abstract. In this paper we develop and apply methods for the spectral analysis of non-self-adjoint
tridiagonal in�nite and �nite random matrices, and for the spectral analysis of analogous deterministic
matrices which are pseudo-ergodic in the sense of E. B. Davies (Commun. Math. Phys. 216 (2001),
687{704). As a major application to illustrate our methods we focus on the \hopping sign model"
introduced by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999), 6433{6443), in which the main objects of
study are random tridiagonal matrices which have zeros on the main diagonal and random �1’s as the
other entries. We explore the relationship between spectral sets in the �nite and in�nite matrix cases,
and between the semi-in�nite and bi-in�nite matrix cases, for example showing that the numerical
range and p-norm "-pseudospectra (" > 0, p 2 [1;1]) of the random �nite matrices converge almost
surely to their in�nite matrix counterparts, and that the �nite matrix spectra are contained in the
in�nite matrix spectrum �. We also propose a sequence of inclusion sets for � which we show is
convergent to �, with the n"



is the order n tridiagonal matrix given, for n � 2, by

Abn =

0BBBBBB@

0 1
b1 0 1

b2 0
. . .

. . . . . . 1
bn�1 0

1CCCCCCA ;

where b = (b1; : : : ; bn�1) 2 Cn�1 and each bj = �1. (For n = 1 we set Abn = (0).)

Figure 1: A plot of specAb
n, the set of eigenvalues of Ab

n, for a randomly chosen b 2 f�1gn�1, with n = 5000
and the components bj of b independently and identically distributed, with each bj equal to 1 with probability 1=2.
Note the symmetry about the real and imaginary axes by Lemma 3.4 below, and that the spectrum is contained in
the square with corners at �2 and �2i by Lemma 3.1 below.

The objectives we set ourselves in this paper are to understand the behaviour of the spectrum
and pseudospectrum of the matrix Abn, the spectrum and pseudospectrum of the corresponding
semi-in�nite and bi-in�nite matrices, and the relationship between these spectral sets in the �nite
and in�nite cases. Emphasis will be placed on asymptotic behaviour of the spectrum and pseu-
dospectrum of the �nite matrix Abn as n ! 1, and we will be interested particularly in the case
when the bj are random variables, for example independent and identically distributed (iid), with
Pr(bj = 1) = 0:5 for each j. (A visualisation of specAbn for a realisation of this random matrix with
n = 5000 is shown in Figure 1; cf. [17].) To be more precise, we will focus on the case when the
vector b 2 f�1gn�1 is the �rst n� 1 terms of an in�nite sequence (b1; b2; : : :), with each bj = �1,
which is pseudo-ergodic in the sense introduced by Davies [14], which simply means that every
�nite sequence of �1’s appears somewhere in (b1; b2; : : :) as a consecutive sequence. If the bj are
random variables then, for a large class of probability distributions for the bj , in particular if each
bj is iid with Pr(bj = 1) 2 (0; 1) for each j, it is clear that the sequence (b1; b2; : : :) is pseudo-ergodic
almost surely (with probability one). Thus, although pseudo-ergodicity is a purely deterministic
property, our results assuming pseudo-ergodicity have immediate and signi�cant corollaries for the
case when Abn is a random matrix.
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acts on ‘p(Z), again focusing on the case when b 2 f�1gZ is pseudo-ergodic. The action of Ab is



A key result we obtain on the spectra of our in�nite matrices, in large part through limit operator
arguments described in Section 2, is the following (cf. [14]): if b; c; d 2 f�1gN, ~b; ~c; ~d 2 f�1gZ, and
b, ~b, cd, and ~c ~d are all pseudo-ergodic, then

specAb+ = specAc;d+ = specA~b = specA~c; ~d = � :=
[

e2f�1gZ

specAe =
[

e2f�1gZ

spec1pointA
e: (5)

One surprising aspect of this formula is that the semi-in�nite and bi-in�nite matrices share the
same spectrum, in contrast to many of the cases discussed in [39], this connected to the symmetries
that we explore in Section 3.

We do not know a simple test for membership of the set � given by this characterisation (though
see Figures 2 and 3 below for plots of known subsets of �, and see Section 4.3 for an algorithm
for computing approximations to �). But this result implies that specAb � � for every b 2 f�1gZ

which gives the possibility of determining subsets of � by computing specAb for particular choices
of b. In particular, as recalled in Section 2, when b is n-periodic for some n 2 N, i.e. bj+n = bj
for j 2 Z, specAb can be computed by calculating eigenvalues of an order n matrix (a periodised
version of Abn). We compute �n � �, for n = 5; 10; :::; 30 in Section 2, where �n denotes the union
of specAb over all n-periodic b 2 f�1gZ. We speculate at the end of the paper that

�1 :=
[
n2N

�n (6)

is dense in �, and it has been shown recently in [9] that certainly �1 is dense in the unit disc
D = fz : jzj < 1g, which implies that D � �, as established slightly earlier directly from (5) in [5].
(Throughout, S denotes the closure of a set S � C: for an element z 2 C, �z denotes the complex
conjugate.)

To obtain a �rst upper bound on � we compute the ‘2-numerical range, W (Ab), of Ab when
b is pseudo-ergodic. We show that, if b; c; d 2 f�1gN, ~b; ~c; ~d 2 f�1gZ, and b, ~b, cd, and ~c ~d are all
pseudo-ergodic, then

W (Ab+) = W (Ac;d+ ) = W (A~b) = W (A~c; ~d) = � := fz = a+ ib : a; b 2 R; jaj+ jbj < 2g:

Since the spectrum is necessarily contained in the closure of the numerical range, this implies that

D � � � �:

We point out that the numerical range of Abn converges to that of Ab, in particular that W (Abn)% �
as n ! 1, if b is pseudo-ergodic. (Here and throughout, for Tn � C and T � C, the notation
Tn % T means that Tn � T for each n and that dist(T; Tn) ! 0 as n ! 1, with dist(T; Tn) the
Hausdor� distance de�ned in (16) below.)

The largest part of the paper (Section 4) is an investigationince4converges to that of! 1! 1



We can prove neither of these last two conjectures about spectral asymptotics. On the other
hand, our theoretical results for the pseudospectrum are fairly complete. We show �rst in Theorem
3.6 a pseudospectral version of (5), that, if b; c; d 2 f�1gN, ~b; ~c; ~~



implications in a �nal Theorem 5.1, in the same section summarising succintly what we have
established about the spectral sets � and �p" (Theorem 5.2), and outlining a number of open
problems.

In the course of this investigation, focused on a particular operator and matrix class, we develop
results for the larger classes of tridiagonal or banded �nite and in�nite matrices. In particular,
Theorem 4.4 shows that, for p 2 [1;1], " > 0, the ‘p "-pseudospectrum of a general, semi-in�nite
tridiagonal matrix is contained, for "0 > ", in the ‘p "0-pseudospectrum of its n�n �nite section if
n is su�ciently large. It also shows corresponding results relating the pseudospectra of a general
bi-in�nite matrix to that of its �nite sections. In Section 2 we employ recent work [7, 8] on limit
operator methods for the study of spectral sets for very general classes of in�nite matrices. We
make explicit in Theorems 2.1 and 2.9



important property of the lower norm is that

j�(A)� �(B)j � kA�Bk; (10)

for any bounded linear operators A and B on X.

In the case when, for some N 2 N, X = CN and B is an N �N matrix, (i)-(v) are equivalent
additionally to spec"B = f� 2 C : �(B � �I) < "g = specpoint;"B. If k � k = k � k2, then, for every
N � N matrix A, �(A) = smin(A), the smallest singular value of A. Thus these de�nitions are
additionally equivalent to [40]

spec"B = f� 2 C : smin(B � �I) < "g: (11)

Note that (10) implies that

jsmin(B � �I)� smin(B � �I)j � j�� �j; �; � 2 C: (12)

It is equation (11) that we use for the numerical computations of pseudospectra in Section 4.3.

An alternative de�nition of the pseudospectrum is to replace the strict inequality > in (i) by
�, so that the "-pseudospectrum is de�ned to be

Spec"B = specB [ f� 2 C : k(B � �I)�1k � "�1g:

This has the attraction that Spec"B, like specB, is a compact set for " > 0. An interesting question
is whether spec"B = Spec"B, which hinges on the question of whether or not it is possible for the
norm of the resolvent of B, k(B��I)�1k, to take a �nite constant value on a open set G � C. Let
us say that the Banach space X has the strong maximum property if, for every open set G � C,
every bounded linear operator B on X, and every M > 0, it holds that

(k(B � �I)�1k �M; 8� 2 G)) (k(B � �I)�1k < M; 8� 2 G):

If X has the strong maximum property, then no bounded linear operator on X can have a resolvent
norm with a constant �nite value on an open subset of C, and it is easy to see that



For S; T � C, let

dist(S; T ) := max(supfdist(z; S) : z 2 Tg; supfdist(z; T ) : z 2 Sg): (16)

(This notion of distance, when applied to compact subsets of C, is an instance of the Hausdor�
distance between compact subsets of a metric space.) Given a sequence Tn � C and T � C, let
us write Tn ! T if dist(Tn; T ) ! 0 as n ! 1. Additionally, let us write Tn % T if Tn ! T and
Tn � T for each n, and write Tn & T if Tn ! T and T � Tn for each n. It is an easy calculation
to show that

spec"B & specB as "! 0+: (17)

Similarly, it holds for " > 0 that spec"0B & Spec"B, as "0 ! "+, and spec"0B % spec"B, as
"0 ! "�. Thus, in the case where X has the strong maximum property so that spec"B = Spec"B,
it holds for " > 0 that

spec"0B & spec"B; as "0 ! "+; and spec"0B % spec"B; as "0 ! "�; (18)

so that spec"B depends continuously on ".

The spectrum and "-pseudospectra are connected to the numerical range. In the case that X
is a Hilbert space with inner product (�; �), and where B is a bounded linear operator on X, the



and note that VjMb = MVjbVj , for j 2 Z, b 2 ‘1(Z). In terms of these notations, the operators
Ab and Ab;c, corresponding to the in�nite matrices (



which is not only bounded but also quasi-periodic, i.e. for some � 2 C with j�j = 1, xk+n = �xk,
k 2 Z. It is easy to see that this implies that

specAb;c =
[
j�j=1

spec
�
Ab;cn +Bb;cn;�

�
; (23)

where Ab;cn is given by (3) (with Ab;c1 := (0)) and Bb;cn;� is the n � n matrix whose entry in row i,
column j is �i;n�j;1�cn + �i;1�j;n�

�1bn, where �ij is the Kronecker delta. We will abbreviate Bb;cn;�
as Bbn;� in the case that c = (1; :::; 1).

An important case where Ab is self-similar is where Ab is pseudo-ergodic in the sense of Davies
[14]. The following is a specialisation of the de�nition from [14].

De�nition 2.2 Call b 2 f�1gZ and the operator Ab pseudo-ergodic if, for every N 2 N and every
w 2 f�1gN , there exists J 2 Z such that bn+J = wn, for n = 1; :::; N .

We see from this de�nition that Ab is pseudo-ergodic if and only if every �nite sequence of
�1’s appears somewhere in the bi-in�nite sequence b. The signi�cance of this de�nition is that,
for many cases where the entries bn are random variables, the sequence b is pseudo-ergodic with
probability one. In particular, the following lemma follows easily from the Second Borel Cantelli
Lemma (e.g. [3, Theorem 8.16]), the argument sometimes called the ‘In�nite Monkey Theorem’.

Lemma 2.3 If the matrix entries bn, for n 2 Z, are iid random variables taking the values �1
with Pr(bn = 1) 2 (0; 1), then Ab is pseudo-ergodic with probability one.

The link to limit operators is provided by the following lemma (see [14, Lemma 6], [26, Corollary
3.70] or [8, Theorem 7.6]):

Lemma 2.4 For b 2 f�1gZ, Ab is pseudo-ergodic if and only if �op(Ab) = fAc : c 2 f�1gZg.

Combining this lemma with Theorem 2.1 gives the following characterisation of the spectrum
and pseudospectrum of Ab in the case when b is pseudo-ergodic:

Theorem 2.5 If b 2 f�1gZ and Ab is pseudo-ergodic, then

specAb = specessA
b =

[
c2f�1gZ

specAc = � :=
[

c2f�1gZ

spec1pointA
c (24)

and
specp" A

b = �p" :=
[

c2f�1gZ

specp"A
c; (25)

for " > 0 and p 2 [1;1].

Limit operator ideas, the \In�nite Monkey" argument and the validity of the �rst two \="
signs in (24) are not new in the spectral theory of random matrices (see e.g. [4, 13, 14, 19, 33]).
Equation (25) is previously shown, for a general class of pseudo-ergodic operators for the case p = 2
in [14



for the pseudospectrum specp"A
b. In particular, specAc � � if c 2 �n, for some n 2 N, where

�n := fc 2 f�1gZ : c is n-periodicg. Thus

�n :=
[
c2�n

specAc =
[
c2�n

spec1pointA
c � �; (26)

for every n 2 N: this is informative as �n can be computed explicitly by (23) as the union of



Figure 2: Our �gure shows the sets �n, as de�ned in (26), for n = 5; 10; :::; 30, computed using the characterisation
(23), which is made explicit for n = 1; 2 and 3 in Lemma 2.6. In particular, �1 = [�2; 2] [ i[�2; 2] and, for each n,
�1 � �n and, by Lemma 3.1, �n � � = fx+ iy : x; y 2 R; jxj+ jyj � 2g.

Theorem 2.7 [5, Proposition 2.1] D � �.

Recently [9], an alternative proof of this theorem has been obtained, through a construction that
shows that �1 is dense in D. It is an open (and interesting) question as to whether �1 is dense in
�. An interesting, related, case where the union of the spectra of all periodic operators is shown
to be dense in the spectrum of the pseudo-ergodic case is studied in [29], but there are other
pseudo-ergodic bi-in�nite tridiagonal examples where this is not true.

The above results concern bi-in�nite matrices, but similar results apply to the semi-in�nite
matrices Ab+ and Ab;c+ . We say that the operator induced by the bi-in�nite matrix B = (bij)i;j2N
is a limit operator of the operator induced by the banded semi-in�nite matrix A+ = (aij)i;j2N if,
for a sequence h1; h2; ::: of integers with hk ! +1, it holds that

ai+hk;j+hk
! bijA !





3 The Numerical Range and Symmetry Arguments

Let us �rst introduce some properties of and notation related to adjoint operators. Given a banded
bi-in�nite matrix A = (aij)i;j2Z, with supij jaij j < 1, A� will denote th-354(denot 0 Td [19sr9307.9626 Tf 6.345 0 Td [(A)]TJ/F13 6.9738 Tf 7.472 3.616 Td [(�)]TJ7.69.9626 Tf 8.1010.582 0 Td -1et)-26 [(=)-312(()]TJ/F11 9.9626 Tf 14.733 0 Td [(a)]TJ/F10 6.9738 Tf 5.26ji-1.494 Td [(ij)]TJ/F8 9.9626 Tf 7.017 1.494 Td [())]TJ/F10 6.9738 Tf 3.874 -1.494 Td [(i;j)]TJ/F13 6.9738 Tf 8.885 0 Td [(2)]TJ/F46 9.9738 Tf 5.368 0 Td [(Z)]TJ/F8 9.9626 Tf 7.0.-274()-296229anded

< < 1



that W (Ab



Lemma 3.3 For n 2 N, a 2 f�1gn, and b; c 2 f�1gn�1,

Da
nA

b;c
n Da

n = Abd;cdn ;

where d = (a1a2; :::; an�1an), so that

specAb;cn = specAbd;cdn = specAbcn :

Further, for p 2 [1;1] and " > 0, where q 2 [1;1] is given by p�1 + q�1 = 1,

specp"A
b;c
n = specp"A

bd;cd
n = specp"A

bc
n = specq"A

b;c
n :

Moreover, for 1 � p � r � 2 and " > 0, specr"A
b;c
n � specp"A

b;c
n .

A �rst application of the above lemmas is the following symmetry result (cf. [22]).

Lemma 3.4 For b 2 f�1gZ, " > 0, and p 2 [1;1], specAb, specessA
b, spec p"A

b, specAbn, and
specp"A

b
n are invariant under re
ection in the real and imaginary axes. Further, where S(b) denotes

any one of these sets, it holds that S(�b) = iS(b). The set �, which is the set specAb = specessA
b

in the case that b is pseudo-ergodic, and, for " > 0 and p 2 [1;1], the set �p", which is the set
spec p"A

b for b pseudo-ergodic, are invariant under re
ection in either axis and under rotation by
900.

Proof. We prove the results for Ab using Lemma 3.2; the proof for Abn using Lemma 3.3 is similar.
That the entries of the matrix Ab are real implies the symmetry about the real axis. De�ning
a 2 f�1gZ by ak = (�1)k, k 2 Z, so that d = aV�1a is the constant sequence d = (:::;�1;�1; :::),
it follows from Lemma 3.2 that MaA

bM�1
a = �Ab, which implies that the sets specAb, specessA

b,
and spec p"A

b are also invariant under re
ection in the origin, so that they are also invariant under
re
ection in the imaginary axis. De�ning, instead, a 2 ‘1(Z) by ak = ik, we obtain, similarly,
that MaA

bM�1
a =1� A



Similarly, for x 2 ‘2e(Z) and k 2 N, (Ab;cx)�k = b�k�1x�k�1 + c�kx�k+1 = ckxk+1 + bk�1xk�1 =
(Ab;cx)k, so that Ab;c : ‘pe(Z) ! ‘pe(Z). Further, for k 2 N, (EAb+x)k = bk�1xk�1 + xk+1 =
bk�1xk�1 + ckxk+1 = (Ab;co x)k, so that (29) holds. Since E and P are isometric isomorphisms
and E = P�1, it follows that specAb+ = specAb;co and that specp"A+ = specp"A

b;c
o , for " > 0 and

p 2 [1;1]. The remaining results follow from Lemma 2.8 and Lemma 3.2.

Putting the results from the previous section and this section together gives the following
characterisations of the spectrum, essential spectrum, and pseudospectrum in the pseudo-ergodic
case.

Theorem 3.6 If b; c; d 2 f�1gN, e; f; g 2 f�1gZ, and b, cd, e, and fg are pseudo-ergodic,
then specAb+ = specAc;d+ = specAe = specAf;g = specessA

b
+ = specessA

c;d
+ = specessA

e =
specessA

f;g = � and, for " > 0 and p 2 [1;1], where q 2 [1;1] is given by p�1 + q�1 = 1,
specp"A

b
+ = specp"A

c;d
+ = specp"A

e = specp"A
f;g = �p" = �q". Further, for 1 � p � r � 2 and " > 0,

�r" � �p".

Proof. From Lemma 3.2



4.1 That the �nite matrix spectral sets are contained in the in�nite
matrix counterparts

For n 2 N, introduce the n� n matrices

In =

0B@ 1
. . .

1

1CA and Jn =

0@ 1
: .

.

1

1A ;

so that In is the order n identity matrix. The proof of the following result uses a similar construction
to that of the bi-in�nite matrix Ab;c in the proof of Lemma 3.5.

Theorem 4.1 If b is pseudo-ergodic then, for n 2 N,

specAbn � �n :=
[

f2f�1gn�1

specAfn � �2n+2 � specAb = �:



and hence, using repeated re
ections, i.e. by putting

Ac;d :=

0BBBBBBBBBBBBBBBBBBBBBB@

. . . 1



The inclusion �n � �2n+2 is illustrated for n = 4 in Figure 4.

An interesting question, alluded to already in Section 2, is whether �1, which is contained in �,
or �1, which is a countable subset of �1, are dense in �, the spectrum of Ab for b pseudo-ergodic.
Of course, we do not know what � is, so that this question is di�cult to resolve! We do know
however (Theorem 2.7) that the unit disc D � �, and we can consider the question as to whether
�1 or �1 are dense in D. Recall that the sets �n, for n = 5; 10; :::; 30, are plotted already in Figure
2. Studying Figures 2 and 3, it appears that there is a \hole" in both �n and �n around the origin,
though these holes appear to be reducing in size as n increases. And in fact, as mentioned already
in Section 2, it has been shown recently that �1 is dense in D. Further, it appears to us plausible,
comparing the two �gures, to conjecture that �1 is dense in �1 and so dense in D.

Figure 5: This is a zoom into �25 { the 5th picture of Figure 3. The location of this zoom is near the point 1 + i,
which is the midpoint of the northeast edge of the square W (Ab) = �. The picture clearly suggests self-similar
features of the set �25.

Figure 5, taken from [5], zooms into the part of the set �25 around 1 + i. Intriguingly this set,
the collection of all eigenvalues of a set of 224 matrices of size 25 � 25 (25 � 224 = 419; 430; 400
eigenvalues in all!), appears to have a self-similar structure. We have no explanation for these
beautiful geometrical patterns, and it is not clear to us how to gain insight into the geometry of
this set.

In the next theorem and corollary we show the analogue of Theorem 4.1 for pseudospectra.

21



Theorem 4.2 If b



4.2 Convergence of the �nite matrix spectral sets to their in�nite matrix
counterparts

As we have remarked at the beginning of this section, it is not clear that the spectrum of a
general banded matrix should have anything to do with the spectra of its �nite submatrices. In



since j!N (j) � !N (j + 1)j � (N � 1)�1, for k 2 Z. Since also, for each k 2 ‘; :::;m, exk ! xk as
N !1, it is clear that, for every � > 0, if N is chosen large enough, then kexk1 � 1� �, and also
keyk1 < ~"+ �. But this implies that � 2 specp"A‘;m if N is large enough and ‘ � �N and m � N .

If �� 2 specqpoint;"A
� then essentially the identical argument shows that �� 2 specq"A

�
‘;m. But this

implies that � 2 specp"A‘;m [40, Section 4]. This completes the proof of the �rst step.

To �nish the proof of the theorem we argue as follows. Given "0 > " > 0 and p 2 [1;1], let
� := ("0�")=2, and "� = "+�. Let S := specp"A, and let O := f�+�D : � 2 Sg. Then O is an open
cover of the compact set S, and so has a �nite subcover, i.e. there exists a �nite set � � specp"A
with S �

S
�2�(�+ �D) = �D + �. Now � � specp"A � specp"�A. Applying the result shown in the

�rst step, we see that we can choose N so that, for ‘ � �N and m � N , � � specp"�A‘;m. Thus
specp"A � S � �D + � � �D + specp"�A‘;m � specp"0A‘;m, by (15).

To apply this result, for ‘;m 2 Z with ‘ � m, let Ab‘;m denote A‘;m, the matrix of order m+1�‘
as de�ned in the above theorem, in the case that A = Ab. So, in particular, Ab1;n = Abn for n 2 N.

Corollary 4.5 If b 2 f�1gN is pseudo-ergodic then, for every " > 0 and p 2 [1;1],

specp"A
b
n = specp"A

b
1;n % specp"A

b
+ = �p" ; as n!1:

If b 2 f�1gZ is pseudo-ergodic then, for every " > 0 and p 2 [1;1],

specp"A
b
‘;m % specp"A

b = �p" ; as ‘! �1 and m!1:

Proof. We will prove the second of these statements. The proof of the �rst is similar. From
Corollary 4.3 and Theorem 4.4, given any "0 2 (0; ") there exists N 2 N such that

specp"0A � specp"A‘;m � specp"A; for ‘ � �N and m � N: (32)

Since, from (18), specp"0A % specpp
"specpZsuch that

spec0p
"specpZsuch that



The previous subsection already provides potential methods for computing these sets. We have
that, if b 2 f�1gn is pseudo-ergodic, then

�2
" = lim

n!1
spec2

"A
b
n: (33)

This then implies, by (18), that
� = lim

"!0
lim
n!1

spec2
"A

b
n: (34)

In principle, these equations can be used as the basis of algorithms for computing �p" and �. In
particular, to approximate �2

" one uses the sequence of sets spec2
"A

b
n, n = 1; 2; :::, which can be

computed as described in Section 1.2. The di�culty with this scheme is that one has no idea of the
rate of convergence of spec2

"A
b
n



the notation introduced in Corollary 4.3, it must hold that
S
‘2Z spec2

�A
b
‘;‘+n�1 � �2

n;�, for every
� > 0. For small values of n, "n in the above theorem can be calculated explicitly, in particular

"1 = 2 and "2 =
p

2: (35)

Example 4.8 As a �rst example of application of the above theorem, consider the case when
bm = 1 for each m. Then Ab‘;‘+n�1 = Ab1;n = Abn for each ‘. Further, this matrix is self-adjoint, so
that spec2

�A
b
n = specAbn + �D, for every � > 0. Thus the statements of the theorem reduce to

specAb � specAbn + "nD and spec2
"A

b � specAbn + ("+ "n)D; " > 0: (36)

In this simple case we can compute the above sets explicitly, to check that the above inclusions hold,
�nding that specAb = [�2; 2], spec2

"A
b = [�2; 2] + "D, and specAbn =

n
2 cos j�

n+1 : j = 1; :::; n
o

.



Figure 6: Plots, for n = 6; 12 and 18, of the sets �2
n;"n

, which are inclusion sets for � = specAb, when b 2 f�1gZ

is pseudo-ergodic. Also shown, overlaid in red, is the square �, with corners at �2 and �2i, which is W (Ab), the
numerical range of Ab. Overlaid on top of that in blue is the set �30 [D which, by de�nition and Theorem 2.7, is a
subset of �.

In Figure 6 we plot �2
n;"n

, for n = 6; 12, and 18. Each of these sets contains �, by Theorem 4.9,
and note that each set is invariant under re
ection in either axis or under rotation by 900, by Lemma
3.4. On the same �gure we plot the square � which, by Lemma 3.1, also contains �. It appears
that, for n � 18, � � �2

n;"n
. If this were to hold for all n 2 N then it would follow, from Theorem

4.9, which tells us that �2
n;"n

& �, and Lemma 3.1, which tells us that � � �, that � = �. It
seems impossible from these plots to take an educated guess as to whether or not � � �2

n;"n
holds

for all n, not least because the convergence rate of �2
n;"n

to � may be slow: Theorem 4.9 tells us
that dist(�2

n;"n
;�) � dist(�2

"n
;�) but it follows from (13) that dist(�2

"n
;�) � "n � 2�=(n+ 2).

We have not been able to produce similar plots to those in Figure 6 for much larger values of
n because of the large computational cost. But it is feasible to compute Sn(�) for a single � for
larger n. We have carried out this computation for � = 1:5 + 0:5i, a quarter of the way along one
of the sides of �. Computing in standard double-precision 
oating point arithmetic we �nd that

S34(1:5 + 0:5i) = 0:17201954132506::: > "34 = 0:169830415547956::: : (42)

This implies that 1:5+0:5i 62 �2
34;"34

and so 1:5+0:5i 62 �, which of course implies that � is a strict
subset of �. In fact, in view of (41) and the symmetries of � noted in Lemma 3.2, the inequality
(42) implies more, namely that

(:



Theorem 5.1 Suppose that the entries of b 2 f�1gZ are iid random variables, with Pr(bm = 1) 2
(0; 1). Then:

(i) specAb � �, specAb+ � �, with specessA
b = specAb = specessA

b
+ = specAb+ = � almost

surely.

(ii) W (Ab+) �W (Ab) � �, with W (Ab) = W (Ab+) = � almost surely.

(iii) For n 2 N, specAbn � � and W (Abn) � �, and, as n!1, W (Abn)% �, almost surely.

(iv) For " > 0 and p 2 [1;1], specp"A
b � �p", specp"A

b
+ � �p", with specp"A

b = specp"A
b
+ = �p"

almost surely.

(v) For " > 0, p 2 [1;1], and n 2 N, specp"A
b
n � �p" and, as n ! 1, specp"A

b
n % �p", almost

surely.

Similarly, if b; c 2 f�1gZ, and the entries of bc are iid random variables, with Pr(bmcm = 1) 2
(0; 1), then (i)-(v) hold with Ab, Ab+, Abn, replaced by Ab;c, Ab;c+ , and Ab;cn , respectively.

Proof. To see that (i)-(v) hold, note that, by Lemma 2.3 and the remarks at the end of Section
2, the condition of the theorem imply that b and also b+ := (b1; b2; :::) are pseudo-ergodic with
probability one. Then (i) follows from the de�nition of � in Theorem 2.5, and from Lemma 3.5
and Theorem 3.6. That (ii) and (iii) hold follows from Lemma 3.1, Theorem 4.1 and Corollary
4.6. That (iv) holds follows from the de�nition of �p" in Theorem 2.5, and from Lemma 3.5 and
Theorem 3.6. Finally, (v) follows from corollaries 4.3 and 4.5. That (i)-(v) hold for the case where
Ab, Ab+, Abn are replaced by Ab;c, Ab;c+ , and Ab;cn , respectively, and the entries of bc are iid random
variables, with Pr(b



Proof. Part (i) follows from Theorem 2.7 (taken from [5]) and Lemma 3.1, and that � is a strict
subset of � holds, as discussed at the end of 4.3, provided � = "34 � S34(1:5 + 0:5i) > 0. Part (ii)
is Theorem 4.1, with �p" � �p"0 because �p" = specp"A

b if b 2 f�1gZ is pseudo-ergodic (Theorem
3.6). Part (iii) is Lemma 3.4, (iv) is from 3.2, (v) is part of Theorem 4.9, and (vi) is from the end
of Section 4.3.

It is clear from the above results that we understand well, in Theorem 5.1, the interrelation
between the numerical ranges and pseudospectra of the semi-in�nite, bi-in�nite, and �nite random
matrix cases, and have shown that the almost sure spectrum is the same set � for the semi-in�nite
and bi-in�nite cases, and contains the spectrum in the �nite matrix case. Interesting open questions
are whether or not, similarly to the analogous results for the pseudospectra, specAbn % � almost
surely as n!1, which would imply that �1 is dense in �, so that �1 is dense in �. (That �1
is dense in � was conjectured in [5].) Note that, if it does hold that specAbn % � almost surely,
then both Figs 2 and 3 are visualisations of sequences of sets converging to �.

Regarding the geometry of � (and of the pseudospectra �p"), we have some information in
Theorem 5.2, including in the last part of this theorem establishing a computable sequence of sets
converging from above to � (a sequence of three of these plotted in Figure 6). However there is
much that is not known. Is � connected (which would imply, by general results on pseudospectra
[40, Theorem 4.3], that also �p" is connected)? In fact, is � simply-connected? What is the
geometry of the boundary of �, and the geometry of the sets �n, the �nite-dimensional analogues
of � (cf. Figure 5)? We have conjectured in [5] that � is a simply-connected set which is the closure
of its interior and which has a fractal boundary, which is plausible from, or at least consistent with,
Figure 6, if it holds that �1 = �. Our methods and results provide no information about what is
a usual concern of research on random matrices, to obtain asymptotically in the limit as n ! 1
the pdf of the density of eigenvalues, except, of course, that we have shown in Theorem 5.1(iii)
that the support of this pdf is a subset of �.

There are many possibilities for applying the methods introduced in this paper to much larger
classes of random (or pseudo-ergodic) operators. For some steps in this direction we refer the
reader to [30, 6, 9].
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