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Abstract

This note discusses the idea of using a censored likelihood to develop an
improved capture-recapture estimator when heterogeneity can be validly
described by an exponential mixture. Capture–Recapture methods aim
to estimate the size of an elusive target population. Each member of
the target population carries a count of identifications – the number of
times it has been identified during the observational period. Only posi-
tive counts are observed and inference needs to be based on the observed
count distribution. A widely used assumption for the count distribution
is a Poisson mixture. If the mixing distribution can be described by an
exponential density, the geometric distribution arises as the marginal. We
use this result to show and exploit a number of beneficial properties. The
zero-truncated geometric is a geometric distribution itself with support on
the positive integers and the maximum likelihood estimator is available
in closed–form. Since the maximum likelihood estimator is sensitive to
model misspecification alternative estimators are considered including a
version of Chao’s estimator adapted and developed for the truncated ge-
ometric likelihood. Chao’s estimator developed here gives a lower bound
estimator which is valid under arbitrary mixing on the parameter of the
geometric. However, Chao’s estimator is also known for its relatively large
variance (if compared to the maximum likelihood estimator), due to the
fact that it only uses limited information stemming from counts of ones
and twos only. Another estimator based on a censored geometric likeli-
hood is suggested which uses the entire sample information but only for
counts larger than 1 in a censored manner. The motivation behind this
approach is the idea that violations of the geometric model assumption
can be expected to be less influential than for the uncensored geometric
likelihood. Simulation studies illustrate that the proposed censored es-
timator comprises a good compromise between the maximum likelihood
estimator and Chao’s estimator, e.g. between efficiency and bias.

Some key words:



1 Introduction and Background

For integer N , we consider a sample of counts Y1, Y2, ..., YN





(1 − p), in other words the ratio of neighboring geometric probabilities is con-

stant. An estimate of gy+1/gy is given by fy+1/fy which we see plotted in

dependence of y for the data of the Scottish needle exchange program in Figure

2. There appears to be evidence of a fairly constant pattern.
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Figure 1: Ratio fy+1/fy of neighboring frequencies for the data of the Scottish
needle exchange program

We also see in Figure 2 that the geometric distribution provides a much better
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Figure 2: Observed frequencies with fitted frequencies under Poisson and geo-
metric for the data of the Scottish needle exchange program

as follows. In section 2 we consider classical maximum likelihood estimation for

the zero-truncated geometric including a form of Mantel-Haenszel estimation.

In section 3, we develop Chao-estimation based upon a specific form of truncated

likelihood. This estimator is appropriate for strong heterogeneity, but has the

disadvantage of a large variance. In section 4 we develop an estimator that uses

all available information but censors counts larger than 1. Finally, in section

5 we compare all estimators and demonstrate that the censored estimator is

appropriate for mild or moderate forms of heterogeneity.
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2 Maximum Likelihood Estimation

We first consider conventional maximum likelihood estimation. For y = 1, 2, ..,

let g+
y = gy/(1 − p) = (1 − p)y−1p be the associated zero-truncated geometric.

Then the log–likelihood is given as

log L(p) =
m∑

y=1

(y −1)fy log(1−p)+n log(p) = S log(1−p)+n(log p− log(1−p)),

(3)

where S =
∑

y=1 yfy. It is easy to verify that (3) leads to the score–equation

n

p
=

S − n

1 − p
,

which is uniquely solved for p̂ML = n/S. Since e0 = E(f0|p) = Np = (e0 + n)p

we have that e0 = np/(1 − p), so that ê0 = np̂ML/(1 − p̂ML) and N̂ML =

n + e0 = n/(1 − p̂ML). Note that N̂ML can be simply written as

N̂ML =
n

1 − n/S
=

nS

S − n
.

Since gy+1/gy = 1 − p it is intuitively reasonable to consider a weighted

estimator of the form
∑m−1

y=1 wyfy+1/fy. With wy = fy we get the Mantel-

Haenszel estimator

1 − p̂MH =

∑m−1
y=1 fy+1∑m−1

y=1 fy

=
n − f1

n − fm
, (4)

which, with N̂MH = n/(1 − p̂MH) = n(n − fm)/(n − f1), will not only be less

affected by zero frequencies, but also is expected to behave more robust towards

misspecification of the geometric than the maximum likelihood estimator.

3 Chao’s Estimator Revisited

Clearly, the geometric model might not hold for the entire target population.

Hence it seems more appropriate to consider additional heterogeneity∫ 1

0

gy(p)q(p)dp =
∫ 1

0

(1 − p)yp q(p)dp (5)
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The importance of the mixture (5) can be seen in the fact that it is a natural

model for modeling population heterogeneity. There appears to be consensus

(see for example Pledger [15] for the discrete mixture model approach and Do-

razio and Royle [6] for the continuous mixture model approach) that a simple

model gy(p) is not flexible enough to capture the variation in the re-capture

probability for the different members of most real life populations. Every item

might be different, as might be every animal or human being. However, re-

cently there has been also a debate on the identifiability of the binomial mixture

model (see Link [11], [12] and Holzmann et al. [10]). Furthermore, using the

nonparametric maximum likelihood estimate (NPMLE) of the mixing density

in constructing an estimate of the population size leads to the boundary prob-

lem implying often unrealistically high values for the estimate of the population

site (Wang and Lindsay [17], Wang and Lindsay [18]). Hence, a renewed inter-

est has re-occurred in the lower bound approach for population size estimation

suggested by Chao [3]. In the lower bound approach there is neither need to

specify a mixing distribution, nor is there need to estimate it. In this sense it is

completely non-parametric. To give some details on the lower bound approach

recall that for two random variables U and V we have the Cauchy-Schwarz in-

equality E(UV )2 = E(U2)E(V 2). Now, choose U = (1 − p)
√

p and V =
√

p,

then

E(UV )2 =
(∫ 1

0

(1 − p)pq(p)dp

)2

≤
∫ 1

0

(1−p)2pq(p)dp

∫ 1

0

pq(p)dp = E(U2)E(V 2).

Now, the LHS can be estimated by f2
1 /N2, whereas the RHS can be estimated

by (f0/N)(f2/N) from where Chao’s lower bound estimator f0 = f2
1 /f2 follows.

In total, we have that

N̂C = n + f2
1 /f2.

We note that this lower bound estimator is specific for the geometric mixture

kernel in (5) and differs from the original lower bound estimator n + f2
1 /(2f2)
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which was developed for the Poisson mixture kernel and is clearly too small for

the situation considered here.

It is interesting to see that a truncated likelihood approach yields Chao’s

estimator. Since the Chao estimator uses only frequencies with counts of 1 and

2, a truncated sample consisting only out of counts of ones and twos might

be considered. We call this the binomial truncated sample. The associated

truncated Poisson probabilities are

q1 =
(1 − p)p

(1 − p)p + (1 − p)p2
= 1/(2 − p) and q2 = (1 − p)/(2 − p).

This truncated sample leads to a binomial log-likelihood f1 log(q1) + f2 log(q2)





5 Simulation Study

To illustrate the performance of the estimators a simulation study was under-

taken. Since we show in the appendix that, under geometric homogeneity, all

estimators are asymptotically unbiased, the focus of the simulation will be on

scenarios where the model is misspecified.

5.1 Design

A number of scenarios were investigated. Initially, the case was considered that

the geometric density is the true model. This is the situation under which all

estimators were derived. Secondly, a contamination model (1−α)gy(p)+αgy(q)

was considered with α = 0.1 (small amount of contamination) and with α = 0.5

(large amount of contamination). We also study as a continuous heterogeneity

distribution the beta-distribution with density

b(p|α, β) =
Γ(α + β)
Γ(α)Γ(β)

pα−1(1 − p)β−1,

so that sampling arises from the marginal∫ 1

0

gy(p) b(p|α, β) dp.

The forms of the beta-density we have considered are provided in Figure 3.

5.2 Results

Table 2 and Table 3 presents the results in terms of mean, standard error of esti-

mate and root mean squared error for the maximum likelihood estimator, Chao’s

lower bound estimator adapted to to the geometric case, and the proposed cen-

sored estimator. We are not presenting any results for the Mantel-Haenszel

estimator since they are almost identical to the censored case. Table 2 provides
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6 Discussion

We have tried in section 5 to compare the suggested estimators by means of a

simulation study. There is one problem which arises in any comparison involving

biased estimators. Recall that we are considering in the simulation study tow

types of misspecified models: in one model the geometric parameter is sampled

from a tow-component mixture and in the other model it sampled from a beta-

distribution. Under these two models all three estimators are asymptotically



Simulation studies are an important tool to evaluate a series of estimators.

However, they also have their limitations since they can only mirror a reality

envisioned in the design of the study with natural restrictions in complexity.

Hence it is of interest to study the proposed estimators in data sets where the

population size is known in advance. Borchers et al. (2004) report the following

capture–recapture experiment in St. Andrews. N
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Appendix: Proof of Theorems

Theorem 1 a) Let log L(p) = f1 log(q1) + f2 log(q2) with q1 = 1/(2 − p) and

q2 = (1 − p)/(2 − p) being the geometricgelog L
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