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familiar from Lagrangian fluid dynamics, and their numerical application to PDEs can be found
for example in the Moving Finite Element method [4], the Deformation method [5], the GCL



focus on a two-phase model to clearly demonstrate the velocity-based moving mesh schemes,
which can be adapted to numerically solve more sophisticated models.

In the next section we present the normalised one-dimensional model proposed in [1], fol-
lowed by§3 where we surmise the fixed numerical mesh method used in [1],so as to compare
results with the three moving mesh strategies. The details of these strategies are given in§4,
where we solve the tumour growth model numerically using each one in turn. The results from
the fixed mesh method and the three moving mesh methods are discussed in§5. Finally, in§6 we
conclude that a moving mesh method can prove to be an elegant and accurate numerical approach
that updates the mesh smoothly with the solution of the orginal model, whilst preserving cho-
sen features of the model such as local mass balance, or relative partial masses, (for self-similar
problems, similarity can be preserved). However, since themesh depends upon the model, care
must be taken when choosing a feature of the model to preserve.

2. A mathematical model of tumour growth

The model assumes the tumour consists of two phases, water and live cells, which are treated
as incompressible fluids whose densities are equal, to leading order. The model is derived by
applying mass balance to the cell and water phases. Further assumptions made are that inertial
effects are negligible, no external forces act on the system, and, on the timescale of interest, the
cell and water phases can be treated as viscous and inviscid fl



In the next three sections we show that moving the mesh to preserve features of the model can
produce results in line with [1]. We also present results which demonstrate that the local feature
of the model used to track the nodes needs to be carefully chosen.

3. Rescaling to a fixed numerical mesh

In [1] the moving domainx ∈ [0, ℓ(t)] is mapped to a fixed numerical domainξ ∈ [0, 1] by
the transformationξ = x/ℓ(t), τ = t. Using the chain rule to differentiateα(ξ, τ) with respect to
timeτ, the transformed problem is
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with initial and boundary conditions
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Step F2: Findum
j by applying central finite differences to (9),
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for j = 1, 2, . . . , N − 1, whereαm
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to a linear system of equations. At the inner boundaryum
0 = 0, as given by (12). To
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This velocity-based strategy is similar to the numerical mapping in §





The updated total massθm+1 ≈ θ(tm+1) is then found using (31) and the same time-stepping
approach used in Step 4, i.e.θm+1

= θm
+ ∆tθ̇m.

To derive an expression for the mesh velocity, we again use Leibnitz’ integral rule on (29) to
calculate

γ j θ̇(t) =
d
dt

∫ x̃ j (t)

0
α t
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Since each step of our scheme is second order in space and firstorder in time, and recalling that
∆t = O

(

1
N2

)

, we might expect to seep, q ≈ 2, although since our meshes are generally non-
uniform and varying in time, this is only an approximate hypothesis. Convergence results are

Method N EN(α) p2N EN(x̃) q2N

A 10 2.034× 10−4 - 1.275× 10−5 -
20 8.346× 10−5 1.3 3.306× 10−6 1.9
40 3.547× 10−5 1.2 8.478× 10−7 2.0
80 1.471× 10−5 1.3 2.050× 10−7 2.0

B 10 2.299× 10−4 - 6.207× 10−4 -
20 9.293× 10−5 1.3 1.109× 10−4 2.5
40 3.891× 10−5 1.3 3.043× 10−5 1.9
80 1.600× 10−5 1.3 7.224× 10−6 2.1

C 10 1.448× 10−5 - 1.819× 10−5 -
20 3.645× 10−6 2.0 1.944× 10−6 3.2
40 8.807× 10−7 2.0 7.148× 10−7 1.5
80 2.090× 10−7 2.1 1.880× 10−7 1.9

Table 1: Relative errors forα and x̃ with rates of convergence using the explicit Euler time-stepping scheme.

shown in Table 1. We see thatEN(α) andEN(x̃) decrease asN increases for each of the moving
mesh methods. This strongly suggests that as the number of nodes increases, both the solutionα

and the position of the nodes ˜x j are converging. For Methods A and B, thep-values presented in
this table indicate superlinear convergence ofα, and theq-values suggest second-order conver-
gence of ˜x. For Method C, thep andq values suggest second-order convergence of bothα andx̃.

Having established convergence of our moving mesh schemes we now compare the numeri-
cal results from the methods of§4 with those of the method described in§3.

We generate results using the parameters detailed in (34) and (35). All three methods were
investigated withN = 80,∆t = 7.5× 10−3, and final timet = 75, i.e. 10,000 time-steps. Each of
Methods A and C produce very similar results, so only the results from Method C and Method B
are plotted below. Figures 9–11 are due to Method C and display the same travelling wave char-
acteristics as the results in [1] for the same parameters (closely resembling Figures 1–3). The
value ofα near the free boundary remains fairly constant, andα at the centre of the tumour de-
creases at a steady rate as time increases. The velocity peaks near the boundary, but the velocity
at the boundary appears to stay constant with respect to timefor t ≥ 37.5. This coincides with
the tumour radius growing steadily, Figure 11. The minima are subtly different to that of [1];
the troughs in Figure 2, which resemble those in [1], are slightly less rounded than those shown
in Figure 10. Interestingly, Method A (a locally conservative version of the method in§3) also
presented rounder minima, identical to those in Figure 10.

Figures 12–14 show that Method B appears to behave like Method A and C (and [1]) at early
times. However, after approximatelyt = 45, α appears to grow at the boundary, and no longer
decreases at a regular rate at the centre of the tumour. Furthermore, the velocity at the boundary
decreases considerably, with the tumour radius nearly reaching a steady state att = 75. This
behaviour is not apparent in [1], nor from Methods A and C. Theplots from Method B are less
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Figure 18: Cell volume fractionα(x, t) using Method B and parameter set (34) and (36).
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6. Conclusions

We have numerically solved the non-dimensionalised form ofan avascular tumour growth
model given in [1] using three different moving mesh methods. Working with the original non-
dimensionalised form of the model, we have replicated the results of [1] and presented three
different velocity-based approaches to move the mesh. The different approaches to define the



[10] Roose, T., Chapman, S. J. and Maini, P. K. (2007). Mathematical models of avascular tumour growth.SIAM Rev.,
49, 179–208.

[11] Ward, J. P. and King, J. R (1997). Mathematical modelling of avascular tumour growth.IMA J. Math. Appl. Med.
Biol., 14, 39–69.

[12] Please, C. P., Pettet, G. J. and McElwain, D. L. S. (1998). A new approach to modelling the formation of necrotic
regions in tumours.Appl. Math. Lett., 11, 89–94.

[13] Please, C. P., Pettet, G. J. and McElwain, D. L. S (1999).Avascular tumour dynamics and necrosis.Math. Models
Methods Appl. Sci, 9, 569–579.

[14] Tindall, M. J. and Please, C. P. (2007). Modelling the Cell Cycle and Cell Movement in Multicellular Tumour
Spheroids.Bull. Math. Biol., 69, 1147–1165.

[15] Byrne, H. M., King, J. R., McElwain, D. L. S and Preziosi,L. (2003). A two-phase model of solid tumour growth.
App. Math. Lett., 16, 567–573.

22


	Cover_11_03
	TamsinELee_rev

