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THE UNSTEADY FLOW OF A WEAKLY COMPRESSIBLE FLUID
IN A THIN POROUS LAYER

II: THREE-DIMENSIONAL THEORY

D. J. NEEDHAM∗, S. LANGDON† , B. A. SAMSON‡ , AND J. P. GILCHRIST‡

Abstract. We consider the problem of determining the pressure and velocity �elds for a weakly
compressible uid owing in a three-dimensional layer, composed of an inhomogeneous, anisotropic
porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of
vertical wells injecting and/or extracting uid. Numerical solution of this three-dimensional evolution
problem may be expensive, particularly in the case that the depth scale of the layer h is small
compared to the horizontal length scale l, a situation which occurs frequently in the application to
oil reservoir recovery and which leads to signi�cant sti�ness in the numerical problem. Under the
assumption that ε ∝ h/l� 1, we show that, to leading order in ε



studies. Such schemes have thus received considerable attention in the literature over
the years, both for well testing applications [11, 6, 17, 2, 10] and also for full �eld
simulation problems, for porous media with homogeneous and anisotropic permeabil-



reduces to a linear, inhomogeneous, strongly elliptic two-dimensional boundary value
problem [BVP], on the layer cross-sectional projection, that must in general be solved
numerically. This can be achieved via standard �nite or boundary element methods,
and a detailed consideration of the numerical solution of [BVP] is described in [12].
In the inner regions, determination of the leading order terms reduces to the solution
of a strongly elliptic problem whose solution can be written analytically in terms of
the eigenvalues and corresponding eigenfunctions of a regular Sturm-Liouville eigen-
value problem, identical to that considered in [13]. The asymptotic solution of [EVP]
in x4 reduces to a regular two-dimensional strongly elliptic problem, whose numerical
solution can also be achieved via standard �nite element methods in a very similar
manner to the solution of [BVP], and this is also considered in [12]. Finally in x5 we
draw some conclusions.

We remark further that full implementation details for an e�cient numerical
scheme for the computation of the dynamic uid pressure and the uid velocity �eld
throughout the layer are provided in [12], where we also apply the theory to some
simple model examples, demonstrating the exceptional computational e�ciency of our
approach via matched asymptotic expansions.

2. Equations of motion. As in Needham et. al [13] we again consider the ow of
a weakly compressible uid in the presence of sources and sinks, in a reservoir of porous
medium with variable upper and lower boundary. The reservoir has permeability
which is both inhomogeneous and anisotropic. Whilst in [13] we restricted attention
to two-dimensional ow in a two-dimensional reservoir, we now extend the theory
to fully three-dimensional ow in a three-dimensional reservoir. We adopt the same
notation and the same physical model as in [13], and so omit a detailed description of
the modelling here. Thus, following [13], the equations of motion of the uid in the
porous reservoir may be written as,

ct ��
�x
l
;
y

l
;
z

h

� @p
@t

+r:q =
NX
i=1

si

� z
h

� 1
l2
�

�
x� xi
l

�
�

�
y � yi
l

�
;(2.1)

q = �D
�x
l
;
y

l
;
z

h

�
(rp+ �0gk);(2.2)

for all (x; y; z) 2 M , t 2 (0;1). Here (x; y; z) are rectangular cartesian coordinates
with z pointing vertically upwards. The interior of the porous reservoir is denoted
by M � R3 and its impermeable boundary by @M � R3, with �M = M [ @M . The
region �M is taken as a �nite section of a generalized cylinder which has its axis aligned
with the z-axis and its cross section bounded by the simple closed piecewise smooth
curve @
l � R2, which has interior 
l � R2, with �
l = 
l [ @
l. Here l > 0 is the
horizontal length scale associated with �
l. The upper and lower boundary surfaces
of the reservoir are described by

z = hz+(x=l; y=l)
z = hz�(x=l; y=l)

�
(x; y) 2 �
l;

respectively, with h(> 0) being the vertical length scale associated with the reservoir,
and z+; z� : �
1 7! R being such that

z+; z� 2 C1(�
1);(2.3)

and

z+(x; y) > z�(x; y) for all (x; y) 2 �
1:(2.4)
3



The normal �elds on the upper and lower surfaces are then given by

n+(x; y) =
�
�hl z+x(x; y);�hl z+y(x; y); 1

�
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�
h
l z�x(x; y); hl z�y(x; y);�1

�
for all (x; y) 2 �
1, with the normals directed out of �M . The situation is illustrated
in Figure 2.1. The N(2 N) vertical line sources/sinks embedded within �M , which

Fig. 2.1. Porous layer M ⊂ R3, with impermeable boundary ∂M

extend from the lower surface to the upper surface of �M , are located at
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for each (r; t) 2 �M � [0;1). The permeability tensor D(x=l; y=l; z=h) has the form

D
�



Here @MH � @M is that part of @M representing the side walls of the boundary,
whilst @M+; @M� � @M represent the upper and lower surfaces of @M respectively,
with @M+ [ @M� [ @MH = @M . In addition, n̂l(x; y) for (x; y) 2 @
l represents the
outward unit normal �eld to @
l. Finally we have the initial condition,

p(r; 0) = p0f
�x
l
;
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;
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�
� �0gz; for all (x; y; z) 2 �M;

with f : �M 7! R the prescribed initial pressure variation, with

f 2 PC1( �M) \ C( �M);

where PC1( �M) represents the class of piecewise continuously di�erentiable functions
on �M . We now set

Q =
NX
i=1

jQij (> 0):

The natural scales for the problem are then x; y � l and z C

X



with closure �M 0 and boundary @M 0. The line source/sink locations are at (xi; yi) 2

1, i = 1; : : : ; N . The volume ux conditions (2.5) become,

�i =
Z z+(xi;yi)

z−(xi;yi)

si(�) d�; i = 1; : : : ; N;

where

�i =
Qi
Q
; i = 1; : : : ; N;

so that

j�ij =
jQij
Q
� 1; for i = 1; : : : ; N; and

NX
i=1

j�ij = 1:

The boundary conditions (2.11) become, in dimensionless form,

(u(r; t); v(r; t); w(r; t)):n̂1 = 0; for all (r; t) 2 @M 0H � (0;1);(2.18)
w(r; t)�fz+x(x; y)u(r; t)+z+y(x; y)v(r; t)g=0; for all (r; t) 2 @M 0+ � (0;1);(2.19)

w(r; t)�fz�x(x; y)u(r; t)+z�y(x; y)v(r; t)g=0; for all (r; t) 2 @M 0� � (0;1):(2.20)

Finally we have the initial condition,

�p(r; 0) = �p0f(r); for all r 2 �M 0;(2.21)

and �p0 = p0hD
H
0 =Q. The full problem for consideration is now given by (2.13){(2.16),
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û = �Dx(x; y; z)p̂x
v̂ = �Dy(x; y; z)p̂y
�2ŵ = �Dz(x; y; z)p̂z

9=; (x; y; z) 2M 0;(2.23)

(û(r); v̂(r); ŵ(r)):n̂1 = 0; for all r 2 @M 0H ;(2.24)
ŵ(r)� fz+x(x; y)û(r) + z+y(x; y)v̂(r)g = 0; for all r 2 @M 0+;(2.25)

ŵ(r)� fz�x(x; y)û(r) + z�y(x; y)v̂(r)g = 0; for all r 2 @M 0�;(2.26)

which we will refer to as [PSSP]. Corresponding to (i){(iii) a solution to [PSSP] has
the following regularity:

(Pi) p̂ 2 C1( �M 0n �d) \ C2(M 0nd);
(Pii) limRi!0[Rij ~Drp̂j] exists uniformly for z 2 [z�(xi; yi)



[ ~D(r)r~p(r; t)]:(��2z�x(x; y);��2z�y(x; y); 1) = 0;(2.33)

for all (r; t) 2 @M 0� � (0;1);
~p(r; 0) = �p0f(r)� p̂(r) = ~p0(r); for all r 2 �M 0;(2.34)

with regularity

~p 2 C(( �M 0 � [0;1))n( �d� f0g)) \ C1( �M 0 � (0;1)) \ C2(M 0 � (0;1));(2.35)

after which

~u = �Dx(x; y; z)~px;
~v = �Dy(x; y; z)~py;
�2 ~w = �Dz(x; y; z)~pz;

9=; (r; t) 2M 0 � (0;1):

Here

~D(r) =

0@ �Dx(x; y; z) 0 0
0 �Dy(x; y; z) 0
0 0 �Dz(x; y; z)

1A ;(2.36)

for all r 2 �M 0. The strongly parabolic problem (2.30){(2.35) has a unique solution in
�M 0 � [0;1) (see for example [8, Chapter 3]), and we now construct this solution. To

this end we �rst consider the following self-adjoint eigenvalue problem in �M 0,

(Dx(x; y; z)�x)x + (Dy(x; y; z)�y)y +
�
��2Dz(x; y; z)�z

�
z

+ ���(x; y; z)� = 0;

for (x; y; z) 2M 0;
[ ~D(r)r�(r)]:n̂1 = 0; for all r 2 @M 0H ;

[ ~D(r)r�(r)]:(��2z+x(x; y);��2z+y(x; y); 1) = 0; for all r 2 @M 0+;

[ ~D(r)r�(r)]:(��2z�x(x; y);��2z�y(x; y); 1) = 0; for all r 2 @M 0�:



with a0(�) = 0, via (2.29), and

aj(�) =
Z Z Z

�M ′
~p0(u; v; w)��(u; v; w)�j(u; v; w; �) dudv dw(2.39)

for j = 1; 2; : : :. We observe immediately from (2.38), with (2.37), that

~p(r; t)! 0 as t!1;

uniformly for r 2 �M 0, and that, in addition,

~px(r; t); ~py(r; t); ~pz(r; t)! 0 as t!1;

uniformly for r 2 �M 0. In fact, we have established:
Theorem 2.2. For each � > 0, [IBVP] has a unique solution u; v; w; �p : �M 0 �

[0;1) 7! R given by

�p(r; t) = �̂T t+ p̂(r) + ~p(r; t);
u(r; t) = û(r)�Dx(r)~px(r; t);
v(r; t) = v̂(r)�Dy(r)~py(r; t);
w(r; t) = ŵ(r)� ��2Dz(r)~pz(r; t);

for all (r; t) 2 �M 0 � [0;1). Here ~p : �M 0 � [0;1) 7! R is given by (2.38), (2.39), and
û; v̂; ŵ; p̂ : �M 0 7! R is that solution to [PSSP] which satis�es the constraint (2.28).
Moreover

�p(r; t) = �̂T t+ p̂(r) +O(e��1(�)t);
u(r; t) = û(r) +O(e��1(�)t);
v(r; t) = v̂(r) +O(e��1(�)t);
w(r; t) = ŵ(r) +O(e��1(�)t);

as t!1, uniformly for r 2 �M 0.
To complete the solution to the problem [IBVP] we must determine �n(�) (> 0)

and its corresponding eigenfunction �n : �M 0 7! R for each n = 1; 2; : : :, together with
the pseudo-steady state p̂; û; v̂; ŵ : �M 0 7! R which satis�es the constraint (2.28). In
the next two sections we thus focus attention on the study of [PSSP] and [EVP] in
turn.

In particular, for a thin porous layer, the parameter �, which measures the aspect
ratio of the layer, is small, provided that

h

l
�
�
DL

0

DH
0

�1=2

;

which we will take to be the case. Thus 0 < � � 1, and in the next two sections we
will consider the structure of the solutions to [PSSP] and [EVP] in the asymptotic
limit �! 0, via the method of matched asymptotic expansions.

3. Asymptotic solution to the pseudo-steady state problem [PSSP] as
�! 0. In this section we develop the uniform asymptotic structure to the solution of
the pseudo-steady state problem [PSSP] (given by (2.22){(2.26)) in the limit � ! 0,
via the method of matched asymptotic expansions. We recall that existence and

10



uniqueness, for each � > 0, follows from Theorem 2.1, and, following Theorem 2.2, we
require that solution to [PSSP] which satis�es the constraintZ Z Z

�M ′
p̂(x; y; z)��(x; y; z) dxdy dz = I0;(3.1)

where the constant I0 is given by

I0 = �p0

Z Z Z
�M ′
f(x; y; z)��(x; y; z) dxdy dz:

Due to the initial scalings in the nondimensionalization (2.12), we anticipate that
p̂; û; v̂; ŵ : �M 0 7! R are such that

p̂; û; v̂; ŵ = O(1)(3.2)

as �! 0, uniformly for,

r 2 �M 0n
N[
i=1

��i = �N 0�;

where ��i is an O(�) neighbourhood of �di, for each i = 1; : : : ; N . Thus, following (3.2),
we introduce the outer region ( �N 0�) asymptotic expansions

p̂(r; �) = p̂0(r) + �p̂1(r) +O(�2);
û(r; �) = û0(r) + �û1(r) +O(�2);)� = uu (; � u0(�



with boundary condition (3.8) requiring

Dx(x; y; z)Ax(x; y)nx(x; y) +Dy(x; y; z)Ay(x; y)ny(x; y) = 0; r 2 @M 0H ;(3.13)

where we have written

n̂1(r) = (nx(x; y); ny(x; y); 0); r 2 @M 0H :

We next substitute from (3.12) into (3.4) which becomes

ŵ0z =
NX
i=1

si(z)�(x� xi)�(y � yi)� �̂T ��(x; y; z)

+[Dx(x; y; z)Ax(x; y)]x + [Dy(x; y; z)Ay(x; y)]y; (x; y; z) 2M 0:(3.14)

A direct integration of (3.14), together with an application

^

w

0 (x; y; z �a [8d [(=)]TJ/F10 6.9738 0 -8 7.22 123454 Td [(N)]TJ/F1 9.9626 Tf -3.666 -2.989 Td [(X)]TJ/F10 6.9738 Tf 03742 -21.219 Td [(i)]TJ/F7 6.9738 Tf 2.908 0 Td [(=1)]TJ/F11 9.9626 Tf 12.49 11.495 TdF51]

i(z)�(x� x

i)�(y � y

i )� �̂
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for some positive constant �̂m



(Bi) A 2 C1(�
n [Ni=1 r̂i) \ C2(
n [Ni=1 r̂i);
(Bii) limRi!0[RijD̂rAj] exists uniformly for � 2 [0; 2�); i = 1; : : : ; N ;
(Biii) limRi!0Ri

�R 2�

0
(D̂rA):R̂i d�

�
= ��i; i = 1; : : : ; N .

Here r̂i = (xi; yi) 2 
, i = 1; : : : ; N , and (Ri; �) and R̂i are as de�ned in x2 (and can
now be regarded as plane polar coordinates on 
 based at (x; y) = (xi; yi)).

Remark 3.1. It follows from classical theory for strongly elliptic boundary value
problems (see for example [8]) that [BVP] has a unique solution.

In particular, with A : �
 7! R being the solution to [BVP], we have

A(x; y) =
��i

4�( �Di
x

�Di
y)

1
2

log

"
(x� xi)2

�Di
x

+
(y � yi)2

�Di
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#
+Ai0+O

�
([x� xi]2 + [y � yi]2)

1
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�
;

(3.18)
as (x; y) ! (xi; yi), with Ai0 2 R being a globally determined constant, and i =
1; : : : ; N



We now proceed to O(�). The problem for p̂1; û1; v̂1; ŵ1 : �M 0 7! R is similar to
the leading order problem and is not repeated here. We obtain

p̂1(x; y; z) = B(x; y); (x; y; z) 2 �M 0;
û1(x; y; z) = �Dx(x; y; z)Bx(x; y); (x; y; z) 2 �M 0;
v̂1(x; y; z) = �Dy(x; y; z)By(x; y); (x; y; z) 2 �M 0;

ŵ1(x; y; z) =
R z
z−(x;y)

f(Dx(x; y; �)Bx(x; y))x + (Dy(x; y; �)By(x; y))yg d�
�z�x(x; y)Dx(x; y; z�(x; y))Bx(x; y)� z�y(x; y)Dy(x; y; z�(x; y))By(x; y);

for (x; y; z) 2 �M 0;
(3.22)
where B : �
 7! R is the solution to the strongly elliptic boundary value problem,

r̂:(D̂(r̂)r̂B) = 0; r̂ 2 
;
(D̂(r̂)r̂B):n̂(r̂) = 0; r̂ 2 @
;Z Z

�


�̂(r̂)B(r̂) dxdy = 0:

The unique solution B 2 C1(�
) \ C2(
) is given by

B(x; y) = 0; (x; y) 2 �
;

and so

p̂1(x; y; z) = û1(x; y; z) = v̂1(x; y; z) = ŵ1(x; y; z) = 0; (x; y; z) 2 �M 0;

via (3.22). The outer region asymptotic expansions are now complete to O(�2), and
we have

p̂(r; �) = A(x; y) +O(�2);
û(r; �) = �Dx(x; y; z)Ax(x; y) +O(�2);
v̂(r; �) = �Dy(x; y; z)Ay(x; y) +O(�2);

ŵ(r; �) =
R z
z−(x;y



as �! 0. Thus, in the inner region we write,

(x; y) = (xi; yi) + �(X;Y );(3.24)

with (X;Y ) 2 R2 such that X;Y = O(1) as �! 0, together with

p̂ =
��i

2�( �Di
x

�Di
y)1=2

log �+ P; û = ��1U; v̂ = ��1V; ŵ = ��2W;(3.25)

where P;U; V;W : R2 � [z�(xi; yi); z+(xi; yi)] 7! R are such that P;U; V;W = O(1)
as �! 0. We now introduce inner region asymptotic expansions as

P (X;Y; z; �) = P0(X;Y; z) +O(�);
U(X;Y; z; �) = U0(X;Y; z) +O(�);
V (X;Y; z; �) = V0(X;Y; z) +O(�);
W (X;Y; z; �) = W0(X;Y; z) +O(�);

(3.26)

as � ! 0, (X;Y; z) 2 R2 � [z�(xi; yi); z+(xi; yi)]. We substitute from (3.24){(3.26)
into the full problem [PSSP], to obtain the leading order problem as

U0X + V0Y +W0z = si(z)�(X)�(Y );(3.27)

U0 = � ~Dx(z)P0X ;

V0 = � ~Dy(z)P0Y ;

W0 = � ~Dz(z)P0z;

(X;Y; z) 2 D;(3.28)

W0(X;Y; zi+) = 0; W0(X;Y; zi�) = 0; (X;Y ) 2 R2:(3.29)

Here zi� = z�(xi; yi), D = R2 � (zi�; z
i
+) and ~D�(z) = D�(xi; yi; z), for z 2 [



for all z 2 [zi�; z
i
+].

We can now eliminate U0, V0 and W0 via (3.28), and obtain the following strongly
elliptic problem for P0, namely,



for j; k = 0; 1; 2; : : :. The constants Br, r = 1; 2; : : : are given by

Br =
1

2�

Z zi
+

zi
−

si(s) r(s) ds; r = 1; 2; : : : :(3.36)

The functions U0, V0 and W0 are now obtained directly from (3.28) via (3.35) and
(3.36). The only remaining question is how to actually compute the eigenvalues and
corresponding eigenfunctions of [SL]. This is straightforward and is addressed in [13].
The solution to the leading order problem is now complete. The asymptotic expansion
for p̂ in the inner region is thus,

p̂( ~Ri; z; �) =
��i

2� �Di
h

log �+ Fi( ~Ri; z) +O(�)

as � ! 0, with ( ~Ri; z) 2 (0;1) � [zi�; z
i
+], and Fi( ~Ri; z) given by (3.35). To obtain

an approximation to p̂ close to the i





with Fk(�; �) as de�ned in (3.35) and F 0k(�; �) obtained from Fk(�; �) by replacing �k
with �k+1 and sk(�) with sk+1(�), whilst

~Rk = (X2 + Y 2)1=2; ~R0k = ((X � l1)2 + (Y � l2)2)1=2:

The asymptotic solution to [PSSP] as � ! 0 uniformly for (x; y; z) 2 �M 0 is now
complete. We next turn our attention to the eigenvalue problem [EVP].

4. Asymptotic solution to the eigenvalue problem [EVP] as �! 0. In
this section we develop the asymptotic solution to the eigenvalue problem [EVP] as
� ! 0. As in [13], we �rst employ the theory developed by Ramm [18] to establish
that the set of eigenvalues to [EVP], (2.37), with � > 0, splits into two disjoint subsets
as �! 0+, which we denote by

S+ =
�
�+

1 (�); �+
2 (�); : : :

	
; S� =

�
��0 �



with ~A : �
1 7! R such that ~A 2 C1(�
1) \ C2(
1). Boundary condition (4.5) then
requires, after an integration,�

D̂(r̂)r̂ ~A
�
:n̂1(r̂) = 0; r̂ 2 @
1;

where r̂ = (x; y) 2 @
1 and D̂(r̂) is de�ned in (3.17), whilst r̂ = ( @
@x ;

@
@y ). AtO(�2) we

obtain an inhomogeneous version of (4.4){(4.7). As in [13], the solvability requirement
on this inhomogeneous boundary value problem provides a strongly elliptic partial
di�erential equation which must be satis�ed by ~A(r̂), r̂ 2 
1, namely

r̂:
�
D̂(r̂)r̂ ~A

�
+ ~��̂(r̂) ~A = 0; r̂ 2 
1:

Thus ~A : �
 7! R and ~� 2 R satisfy the regular self-adjoint eigenvalue problem,

r̂:
�
D̂(r̂)r̂ ~A

�
+ ~��̂(r̂) ~A = 0; r̂ 2 
;�

D̂(r̂)r̂ ~A
�
:n̂(r̂) = 0; r̂ 2 @
;

where the subscripts on 
1, @
1, n̂1(r̂) have been dropped for convenience, and we
recall that �̂ : �
 7! R is given by �̂(x; y) =

R z+(x;y)

z−(x;y)
��(x; y; �) d�, for all (x; y) 2 �
.

We refer to this eigenvalue problem as [EVP]0. Now, established theory (see for
example [19]) determines that the set of eigenvalues of [EVP]0 is given by ~� = ~�2





to time t as t ! 1. Generalisations to cases where a line source or sink is near a
boundary wall, or where line sources and sinks are not well spaced, have also been
considered, in x3.1 and x3.2 respectively.

For a full description of the entire computational procedure required to obtain
numerical approximations to the pressure and ow �elds throughout the layer, and
examples demonstrating the application of the theory to some simple situations, we
refer to [12]. We �nally remark that since the initial-boundary value problem is solved
for a general C1 initial condition, the e�ect of time dependent transient e�ects due
to temporal changes in the well discharge rates can easily be accounted for.
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