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1 Introduction

Capture-recapture studies, concerned with estimating the size of populations that

are hidden or difficult to enumerate, make use of some “capture” mechanism (e.g.

live trapping, register, surveillance system) capable of repeatedly identifying ob-

servational units in time, or in clusters (Bunge and Fitzpatrick 1993; Chao et al.

2001). Capture–recapture methods are now widely used in a variety of application

areas, including public health and epidemiology, clinical medicine, bioinformatics

(estimating biodiversity), criminology and terroristic research, systems engineer-

ing (estimating the number of unknown errors in a software) as well as investi-

gating forms of deviating behavior in social sciences, in addition to the traditional

field of wildlife biology/ecology. As a consequence, the statistical community has

developed a major interest in the use of capture–recapture methods.

For studies based on repeated sampling in time there is an observational period

in which each member (unit) of the target population can be potentially detected

on several occasions. An example of sampling in time taken from Chao and Hug-

gins (2005) is reproduced in Table 1. Here, the number of detections of female

grizzly bears with cubs-of-the-year for three different observational periods were
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recorded in a study of the bear population in Yellowstone from 1996 to 1998. For

instance, in 1996 a total of 15 female bears were observed exactly once, 10 exactly

twice and so on, leading to a total of 45 detections of 28 bears.

Table 1: Female Grizzly Bears in the Yellowstone ecosystem

Frequency of detection Number of Number of
observed bears detections

Year f1 f2 f3 f4 f5 f6 f7 n S
1996 15 10 2 1 0 0 0

Year

15 10

15 10 2 157.8398 501.5754 cm
q
[]0 d
0 JT
1 0 0 162.1732.1992 1731 cm
q3[]0 d
05]
0.3985 w
0.1912 0 m
0.1992 1424458 l
S
Q
1 0 0 1 -329.2957.8398 5011 cm
BT
/F41 11.9552 Tf 175.3686 491.0648 Td[(15)-1000(10)-118
0.1992 0 m57.8398 501.5754 cm
q
[]0 d
0  -169.191862.1732.199233T4458 l
S
Q
1 0 0 1 -412.957.8398 5011 cm
BT
/F41 11.9552 Tf 175.3686 491.0648 Td[(15)-1000(10)-1181 476.5269m57.8398 501.5754 cm
q
[]0 d
0 438.70992862.1732.199275.4458 l
S
Q
1 0 0 1 -343.957.8398 5011 cm
BT
/F41 11.9552 Tf 175.3686 491.0648 Td[(15)-1000(10)-118
 1 -0.1992 -14.4458 cm
q
[]0 d
0 J
0.3985 w
0.1992 0 m
0.1992 14.4458 l
S
Q
1 0 0 22.6713.322
[]18 5010 g1 0G00(10)-118910.854.19148 T895 501.5754 cm
q
[]0 d
0 J10.854.1404.2381992 1Forastudyofapopulationofsize7



p0 = exp(−λ) and consequently N̂ = n/[1 − exp(−λ̂)] where λ̂ is an estimate

of λ. In the well-known Turing or Good-Turing estimator N̂ = n/(1 − f1/S)

(Good 1953), the estimate of p0 is p̂0 = f1/S where S = f1 + 2f2 + ... + mfm.

Another approach uses the maximum likelihood estimate of λ. It should be em-

phasized that both these estimates of population size are only appropriate under

the homogeneous Poisson model.

The above notation can also be used for studies based on multiple detections

within a cluster (e.g. herd, village, household). Here N is the total number of

clusters, Xi is the number of units detected in cluster i, i = 1, 2, . . . , N and fx is

the frequency of clusters with exactly x units detected, x = 0, . . . , m. An exam-

ple of repeated identifications in clusters (herds) is provided by Bx. An exam-

ple of repeated identificati861n(n=)].891-279.1603Del36039331



The probability of the inclusion of an individual or unit in a capture-recapture

study frequently depends on measured covariates such as age, gender and size,

as well as on unobserved factors. This heterogeneity often invalidates the as-

sumption that the Xi’s are identically distributed. If this heterogeneity is ignored

the estimators of population size can be severely negatively biased (Böhning and

Schön 2005, van der Heijden et al. 2003). Heterogeneity is closely connected to

the occurrence of over-dispersion. Recently (Baksh et al. 2011) a distribution-

free test procedure to detect over-dispersion has been suggested which modifies

a previously developed over-dispersion test for zero-truncated data. A method to

account for heterogeneity in the estimation of population size (Chao 1987) models

the Poisson parameter as a random variable with a latent heterogeneity distribution

λ(t). This gives

px(λ) =

∫ ∞

0

exp(−t)tx

x!
λ(t)dt . (2)

Here, we exploit the above model for px to develop a graphical method for identi-

fying heterogeneity in capture-recapture data. In particular, we provide a tool for

assessing if the homogeneous Poisson model, with and without contaminations,

is appropriate, or whether or not there is structured heterogeneity in the observed

data. The contaminated Poisson model and structured heterogeneity will be dis-

cussed in the next section. In addition, we develop further a number of common
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This is an important result, making the ratio plot applicable to the capture-recapture

scenario (with zero-truncated count distributions). In practice the ratio rx is esti-

mated by

r̂x
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Figure 1: Ratio plot of observed Grizzly bears in the Yellowstone ecosystem for
the period 1996-1998

result which, in essence, says that under arbitrary mixing on the Poisson parameter

the ratio plot should show a monotone increasing pattern.

Theorem 1 Let px be given according to (2). Then, the following monotonicity

result holds:

p1

p0

≤ 2p2

p1

≤ 3p3

p2

≤ ... (3)

A proof of this theorem is provided in the appendix. Note the special case of
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Figure 2: Ratio plot of observed scrapie infected herds in Great Britain based upon
the Scrapie Notifications Database (SND) for the period 2002-2004

Poisson homogeneity is included as all inequalities become equalities. In the

remainder of this paper we examine specific departures from Poisson homogeneity

as well as specific forms of monotonicity. For example:

• is there a contamination of an underlying, but otherwise, homogeneous

Poisson model?

•



monotone structure such as a straight line with positive slope (structured

heterogeneity)?

• or, is there no recognizable form of monotone pattern (unstructured hetero-

geneity)?

The next two sections consider population size estimation for the first two of the

above departures from Poisson homogeneity.

3 The Robust Turing Estimator

For k = 1



chosen small. In the case where k = 1 we have λ̂1 = 2f2/f1 which is identical to

the Zelterman (1988) estimator of the Poisson parameter. Zelterman showed that

this estimator was more robust against mis-specification of the Poisson model than

the estimator based on the maximum likelihood estimate of λ. This is intuitively

clear since the estimator remains unchanged for distributional changes associated

with counts larger than 2. The corresponding estimator for the population size N̂1

becomes



In addition, for the Turing estimator we have

limN→∞E(N̂)/N = limN→∞E(
n

1 − f1/S
)/N =

(1 − p0)

1 − p1/E(X)

→ [1



αP o(x; µ) for x = 0, 1, 2, ..., α = 0.5 and λ = 0.5. The results with re-

spect to bias and mean squared error (MSE) are given in Figure 3 and Figure

4, respectively. Figure 3 shows the expected ordering of bias in the sense

10987654321
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Figure 3: Mean population size estimator in contamination model px = (1 −
α)P o(x; λ) + αP o(x; µ) for N = 100; N(̂k) denotes the robust Turing estimator
N̂k and ’Chao’ corresponds to N̂1

bias2(N̂1) ≤ bias2(N̂2) ≤ bias2(N̂3)



Figure 4: Mean squared error of population size estimator in contamination model
px = (1 − α)P o(x; λ) + αP o(x; µ) for N



bears data for 1997 we deduced that the ratio r4 is larger than expected under a

homogeneous Poisson model. We suggest that this is formally tested using the

following χ2 test based upon the truncated distribution

χ2(k) =
k+1∑
x=1

[fx − nkP o+(x; λ̂k)]2

nkP o+(x; λ̂k)
(6)

where λ̂k is given by equation (4), P o+(x;



Table 3: Robust Turing estimates of the number of Female Grizzly Bears in the
Yellowstone ecosystem for 1997

k χ2(k) p-value λ̂k N̂k

1 0.000 1.000 1.08 41.1
2 0.241 0.623 1.30 39.0
3 0.264 0.876 1.25 39.4
4 7.627 0.054 1.80 36.2
5 10.473 0.033 1.61 37.1

by a suitable electron-dense substance such as gold-conjugated antibodies which

adhere to the dystrophin. Not all units can be labelled and more than one anti-body

molecule may attach to a dystrophin unit. To achieve an unbiased estimate of the

dystrophin density, it is important to account for all labelled and unlabelled units.

Table 4 shows the observed count of the number of antibody molecules on each

dystrophin unit within the muscle fibres of biopsy specimens taken from normal

patients. Interest is in f0, the number of unobserved (unlabelled) dystrophin units.

Table 4: Distribution of antibody counts attached to dystrophin units

f0 f1 f2 f3 f4 f5 n
- 122 50 18 4 4 198

Figure 5 shows the ratio plot (on log-scale) for the dystrophin data. Also shown

are 95% confidence limits using log(r̂x)±1.96∗
√

Var[log(r̂x)] where Var[log(r̂x)] =

1/fx+1 + 1/fx (Böhning 2008). Although there is progressively less reliability in
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Figure 5: Ratio plot (on log-scale) for the dystrophin data (bullets) with approxi-
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the estimated ratios, nonetheless there is evidence that frequency f5 is contami-

nated. This assertion is supported by the χ2-test (see Table 5). It is interesting to



the episode (contact with treatment center) count per drug user in the year 1989,

and the ratio plot is in Figure 6. The most interesting feature of this plot is the

apparent linear trend with positive slope. As suggested earlier, this is evidence in

support of violation of Poisson homogeneity. Furthermore, as shown below, this

is indicative of structured heterogeneity due to a latent Gamma distribution of the

mean parameter.

Definition 1 The ratio plot exhibits structured heterogeneity if

rx = α + βx

with β > 0. The case β = 0
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Figure 6: Ratio plot of episode count per drug user in Los Angeles in 1989

consequently rx = (x + κ)(1 − π). It follows that the ratio plot is expected to be

a straight line with slope 1 − π and intercept κ(1 − π). Hence, structured hetero-

geneity in the ratio plot relates to a prominent class of mixing distributions, the

Gamma-distribution or in its marginal form, the negative-binomial. These forms

of structured heterogeneity arise frequently in capture-recapture data (Dorazio and



4.2 The Generalised Turing Estimator

Furthermore, since p0 = πκ, p1 = κπκ(1 − π), E(X) = κ(1 − π)/π, we have that

π1/E(X) = πk+1 and p0 = [πκ+1]κ/(κ+1) = [p1/E(X)]κ/(κ+1). This leads to the

generalised Turing estimator

N̂GT =
n

1 − (f1

S
)κ/(κ+1)

. (7)

Theorem 3 Let px = Γ(κ+x1



example, to Chao’s estimator n + f 2
1 /(2f2) which uses only the frequencies of

counts equal to one and two. Clearly, to make the generalised Turing estimator

work practically, we need to have an estimate for κ. This can be accomplished

by utilizing the ratio plot and constructing a weighted regression estimator for the

regression coefficients in rx = α + βx with a diagonal weight matrix containing

the inverse variances of r̂x = (x + 1)fx+1/fx as entries (Böhning 2008). An

estimate for κ can then be given as α̂/β̂.

We demonstrate the application of these methods with a further case study, again

from illicit drug user research. Hay and Smit (2003) collated data on individuals

who have visited a Scottish needle exchange during 1997. Hay and Smit (2003)

preferred not to explicitly state the needle exchange from which they obtained

these data. The authors stated however, that “the data were collated during a

programme of drug misuse prevalence research in Scotland and was the only one

operating in that area at that time. The needle exchange assigns a unique identi-

fier number to each individual accessing the service, thus enabling it to produce

statistics on the number of people who had contacted the service over a given pe-

riod.” We show these data in Table 7. For these data (as it is the case also with

many other data sets) it should be noted that the ratio plot shows strong indication

of exponential mixing. That is the ratio plot is consistent with a (truncated) geo-
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Figure 7: Ratio plot of episode count per participant in for 1989 with fitted regres-
sion line

5 Residual Heterogeneity

Let us now assume that a Poisson-Gamma mixture

px(π, κ) =

∫ ∞

0

exp(−t)tx

x!
λ(t)dt =

Γ(κ + x)

Γ(x + 1)Γ(κ)
πκ(1 − π)x (8)

has been successfully identified. Clearly, (8) incorporates all available struc-

tured heterogeneity. The question arises whether there is any remaining resid-

ual, unstructured heterogeneity in the data. Note that, conditional upon κ, the

negative binomial density is part of the power series family px = axtxµ(t) with
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ax = Γ(κ+x)
Γ(x+1)Γ(κ)

and µ(t) = (1 − t)κ. Hence, we can consider mixing the negative

binomial Γ(κ+x)
Γ(x+1)Γ(κ)

πκ(1 − π)x together with some arbitrary mixing density λ(t):

gx(λ|κ) =

∫ 1

0

Γ(κ + x)

Γ(x + 1)Γ(κ)
(1 − t)κtx λ(t)dt =

∫ 1

0

axµ(t)tx λ(t)dt, (9)

and we can apply the general monotonicity result of the appendix, showing that

the generalised ratio plot rx = gx+1/ax+1

gx/ax
vs. x should show a monotone increas-

ing pattern if heterogeneity is still present. If there is residual homogeneity the

generalised ratio plot reduces to a horizontal line.

This property of the Poisson, namely mixing a Poisson with a Gamma resulting

in a negative binomial which, if again, mixed with an arbitrary mixing distribu-

tion resulting in a monotone ratio, allows the construction of a generalized Chao

estimator which might provide an additional correction for unstructured, residual

heterogeneity. Since

g1/a1

g0/a0

≤ g2/a2

g1/a1

,

we can write the generalized Chao estimator as

N̂GC = n +
(f1/a1)2

f2/a2

= n +
κ + 1

κ

f 2
1

2f2

.

To illustrate these findings, we use the Scottish needle exchange data. In section

4, we have found evidence for a geometric density (κ = 1). However, the question

arises whether there is any residual heterogeneity in this data set. The ratio plot
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associated with a geometric is

rx =
gx+1/ax+1

gx/ax

= gx+1/gx,

which can be simply estimated as r̂x = fx+1/fx. Figure 8 shows the empirical

generalized ratio plot, from which there appears to be little evidence for residual

heterogeneity. The generalized Chao estimator is N̂GC = n + κ+1
κ

f 2
1 /(2f2) =

n + f 2
1 /f2 = 1007 (since κ = 1) supporting the impression of little evidence for

residual heterogeneity.



6 Concluding Remarks

The occurrence of Poisson homogeneity is rare in practice. This results in the need

for identifying and allowing for heterogeneity (Böhning and Kuhnert 2006). How-

ever, a general approach allowing for arbitrary mixing distributions is problematic

because of the identifiability problem (Link 2003; Holzmann et al. 2006; Link

2006) and the boundary problem (Wang & Lindsay 2005, 2008). The latter report

an overestimation bias for the nonparametric mixture model for zero-truncated

Poisson distributions. In practice this leads to the occurrence of spurious pop-

ulation size estimates as illustrated in Kuhnert et al. (2008). Consequently, to

achieve identifiability and avoid spurious solutions it is reasonable to constrain

the feasible class of mixing distributions to parametric mixing distributions with

a small number of parameters or to rely on lower bounds (Chao 1987; Mao 2006;

Mao 2007; Mao and Lindsay 2007).

To help avoid the aforementioned difficulties we have suggested utilizing a graph-

ical device, the ratio plot, to identify structured heterogeneity, characterized by

a parametric mixing distribution. An appropriately modified Chao-lower bound

may be used to correct for potential residual heterogeneity. We also note that

the methodology evolving from the ratio plot can also be used with kernels other

than the Poisson. In particular, the binomial distribution where the size parameter
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might correspond to the number of trapping occasions, if this is known, in the

capture–recapture study.

Appendix: Monotonicity of the Ratio Plot for Mix-
tures of Power Series Densities

Let us consider the mixed power series family

px(λ) =

∫ ∞

0

axtxµ(t) λ(t)dt , (10)

where ax are known non-negative coefficients and µ(t) is the normalizing function

in the power series satisfying 1/µ(t) =
∑∞

x=0 axtx. Note that the Power Series

includes the Poisson (ax = 1/x!, µ(t) = exp(−t)), the binomial, the geometric

or, more generally, the negative binomial with known shape parameter κ.

We will prove the monotonicity result (11) in Theorem 4 for which we use the

following version of the Cauchy-Schwarz inequality.

Lemma 1 For any random variable Z with density f(z) let g1(z) and g2(z) be

arbitrary functions with existing first and second moments. Then

[E(



result holds:

g1/a1

g0/a0

≤ g2/a2

g1/a1

≤ g3/a3

g2/a2

≤ ... (11)

Proof.

We show

[∫ ∞

0

txµ(t) λ(t)dt

]2

≤
∫ ∞

0

tx−1µ(t) λ(t)dt

∫ ∞

0

tx+1µ(t) λ(t)dt.

But this follows from Lemma 1 by choosing T = Z, g1(T ) =
√

T x−1µ(T ) and

g2(T ) =
√

T x+1µ(T ).
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