## Early Warning with Calibrated and Sharper Probabilistic Forecasts

## **≜** a. t → L<sup>†</sup>

†Department of Mathematics and Statistics, University of Reading, United Kingdom r.l.machete@reading.ac.uk

Abstract

Given a nonlinear deterministic model, a density forecast i

a brat on gGn t nF  $\neq a$ brat on of s t n t n on tur, t at w n a subs t o t s m of o a brat on of s t n t pr t v, str but ons ar at f ast as spr a out as t, aor asts w on tur t t m a s  $arpn \not ss$   $pr nc p \not =$  t m s  $arpn \not ss$ s m s to av b n on b Bross s an t s  $a^{m}$  asur o ow on ntrat probab st or asts ar an a prop rt o o boF a] brat on

to t s attrbut sw. r m ato of s n u m o so a braton as ss, ar probab st an m arf na us, to asur s arpn ss i braton w t t m p as s, t at ntrop s ou b n w probab t on t at a, r ss s G n t n f  $\neq a$  s on tur fos xp an t n fs r as Bro r m t s s rt s to not n u n f a n un tons n t nst st at ntrop s ou b t at a n t n r as n tar an o t pr, tv, str but on  $\vartheta$  par, to t raw ns b w m onstrat t att us o var ar to asur s appn ss ou b m s a n s pap r s orfan s, as power s nt s to so n fru in par u ar a,  $\vartheta$  pos g t on o t s s or n fru s pr s nt s to a str s arpn ss pr n f on tur, b G nt n f  $\neq ag$  s, s uss, an a r vant propost on pr s nt, n s t or asts obtam, vat of a r m s or n fru w t p sp t to a non n ar i too r u t a s us, m s or n fru w t p sp t to a non n ar i too on fv s or fru s us, an a r vant propost on pr s nt, n s t or asts obtam, vat of a r m s or n fru w t p sp t to a non n ar i too r u t a s us, m s or n fru w t p sp n s pr n f on tur, b con the on fv s or n fru s pr n fru s or a str s or n fru w t p sp n s pr n f an app n s A an B onta n t proo s or t r s o t propost on s r n fru s arpn ss pr n f an app n x C

## 2 Probabilistic-Forecast Quality

o two Gauss ans w i av jow r ntrop ana s nF Gauss an, str but on o t u mor a strbut on o a Frvar an an av a jowr ntrop t an **y**ar an t atto jow r tar an arpn ss as a so b n quant ; b pn ; n ntrva s -a tr aCon, n in trvas s ar a smar a kin ss to var an Gn t**n**F ≉a s nsg t at a bmo a strut on t at s a r on ntrag on twomo's an av arFronnntrvastan a unmodel<math>strbut on ttsarspradoutAlsoFv n two non smmtrstrbut ons wotmsarsradoutAlsoon w. at t. on , n |v| s 2.3 Calibration brat oneo , nst or asts s a we tro, n sub t u o t [ t ratur st bratomo inst or asts s a wig tro, in sub to a or t sp st stan t at a brat, or ast nf s st $\mathbf{m}$  stant ount to a orr t sp Corra vanson prov, a  $\mathbf{v}$  pr ns v surv p of a stat s n qu s or ass senf a braton o ns t or asts to, t  $\mathbf{m}$  n t un r s corr t sp pv, nF a a braton rate wor t at a proof of n t nF  $\mathbf{z}$  a str s a s or own a braton nto t r pog s a o w oul p ass ss, s parat or a stat st a t un r nf s or b own a braton nto t r to or s a o w out p ass ss, s parat uppos a probabilit opr ast nFs stressus print v stribut ons  $t \neq t$ , ata F n ret ni pro ss ssu s n' t o w n a o s p a brat pn t **t**  $\mathbf{x}$   $\mathbf{x}$   $\mathbf{x}$   $\mathbf{x}$   $\mathbf{x}$   $\mathbf{x}$   $\mathbf{x}$   $\mathbf{x}$   $\mathbf{x}$   $\mathbf{x}$ s qu n  $t \{ \begin{bmatrix} -1 \\ t \end{bmatrix} p \}$ p $\mathbf{t}_{t=1}$  s  $\mathbf{z}_{t=1}$  and  $\mathbf{z}_{t}$  brat  $\mathbf{z}_{t}$  r at v t  $\mathbf{t}_{t}$   $\mathbf{t}_{t}$   $\mathbf{t}_{t=1}$ s qu n <u>^</u>`  $\int_{\mathbf{T}} \frac{1}{\mathbf{T}} \{ \mathbf{T} \mathbf{x} \} \mathbf{x}$ X or ast i s ar na y ca brat 🖈  $\mathbf{m} \mathbf{r} \stackrel{\mathsf{T}}{=} \sum_{t=1}^{\mathsf{T}} \mathbf{t} \mathbf{x} \quad \mathbf{m} \stackrel{\mathsf{T}}{=} \sum_{t=1}^{\mathsf{T}}$ I w

I w av at m s so obs rvations at t n t  $x_t$  sa probab y nt  $z_t$  trans or I Corra wanson D poi  $z_t$  n of t o t I s sou va nt to propab st a brat on Gn t nF  $z_t$  on of A v sua nsp t on g o I stofrar s voi r v a obv ons, partir s rou un of t in f  $z_t$  of  $x_t$  of  $x_t$ 

uppos w av  $x \notin m$  srso, nst or asts  $\{t, x, t\}_{t=1}$  n, n, n, t or astrs m atolof as  $T x \qquad -\sum_{t=1}^{T} t x$ ", n a or ast rw. o ssu s  $t x \xrightarrow{T} x \xrightarrow{T} t x$ TTTFor apra t apurpos sse n t an w av no a ss to tt x s H nt su't to assss n tm arF nag abrat on ITr gmtrtn w an tato barFnouF to valuatm arF naj abrat on ot snwan us tHn F r, stan $\phi$ aran w puth т с 🧖

## Gndddd.

w an off inst or ast stimats of to off

(t) 
$$x \qquad \stackrel{\frown}{\frown} \sum_{i=1}^{N} \left\{ \left( x - X_{i}^{(t)} - \right) \right\}$$

w r an ar r sp tv ban w t an o s t par t r s os n a or nF to past r r m an an s t rn un t or nst or ast n rs r t tra t onal ar n c s st at s b t o s t par t r It s m ar to t Ba s an o Av rate prop s b at r  $\neq a$  w a un of b as orr t on an qua w F ts H r tr nsm b rs ar x an F ab an o not r pr s nt st n t o s p at on t r f a s no s not a ount or

o a ount or  $\mathbf{M}$  o  $\mathbf{g}$   $\mathbf{M}$  ssp at on  $\mathbf{f}$  t us rst, not a r or  $\mathbf{p}$  past  $\mathbf{f}$  s. r s an arr spon  $\mathbf{n}$   $\mathbf{f}$   $\mathbf{n}$  sm  $\mathbf{b}$  or asts  $\mathbf{b}$   $\mathbf{V}_{\mathsf{T}}$  is transformed at  $\mathbf{f}$  and  $\mathbf{f}$  t us rst, not a r or  $\mathbf{p}$  past  $\mathbf{f}$  s. r s an arr spon  $\mathbf{n}$   $\mathbf{f}$   $\mathbf{n}$  sm  $\mathbf{b}$  or asts  $\mathbf{b}$   $\mathbf{V}_{\mathsf{T}}$  is transformed at  $\mathbf{f}$  is transformed at

$$\mathbf{m} = \mathbf{n} = \sum_{t=1}^{T} \mathbf{p} \mathbf{r}^{(t)} \mathbf{v}_{T}$$

vn r ta n assumptions o nF t m n sat on n s

an, t par Artrs can, c

| w. n                                                                                   | Desp t t     | sr,"uto   |            | ar or ast                                                         | a st∫      | b ss s arp                                              | t.       |
|----------------------------------------------------------------------------------------|--------------|-----------|------------|-------------------------------------------------------------------|------------|---------------------------------------------------------|----------|
| ato of                                                                                 | nt sns       | o ntrop   | A stra E   | t orwar,<br>lat ons                                               | app at of  | not Ku                                                  | ba       |
| ь в гац                                                                                | JISISI       | qua t s   | ąstot, r   | at ons                                                            |            |                                                         |          |
| $\mathbf{A} \left\{ \left  \begin{pmatrix} \mathbf{t} \end{pmatrix} \right\} \right\}$ | م = م        | c {       | (t) }      | $\left\{ \begin{array}{c} (t) \end{array} \right\}$               | • -  ••• { | $\left  \begin{array}{c} (t) \\ c \end{array} \right  $ |          |
|                                                                                        |              |           | - م        | •••••                                                             | (t) }      | — 🔍 c                                                   |          |
|                                                                                        | ſ            |           | 1<br>1     |                                                                   |            |                                                         |          |
| w, r                                                                                   | $-\int x$    | OF  x     | an k       |                                                                   | x  of  x   | x  ar  t n                                              | tro      |
| $\begin{bmatrix} 1055\\ (t) \end{bmatrix}$                                             |              | artat     |            | $\begin{cases} 11 & \text{ssar} \\ (t) & \text{ssar} \end{cases}$ | n su       | $\begin{bmatrix} 111 \\ 011 \\ (t) \end{bmatrix} $      | is<br>sn |
|                                                                                        | nvrt.        | matolo    | ssarprt    | ant, m                                                            | xtur or    | ast ts ou                                               | 1        |
| ssu] as t                                                                              | or ast n     | ta o t    | matur      |                                                                   |            |                                                         | ĺ        |
| It snot                                                                                | obv ous wyat | t,        | o t maxtur | s on a l                                                          | orat on y  | ptt at n                                                | ų        |
| mato of                                                                                | m prov s t   | KI, star  | k rø►t.    | a or as                                                           | sts v rt   | ss t m                                                  | хt       |
| par <b>a</b> r t r t                                                                   | atm nm s     | s t. ]oFa | rt.m s or  | , st.                                                             | quat on    |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              | 4         |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            | ' ' '                                                   |          |
|                                                                                        |              |           |            |                                                                   | ,          |                                                         | 1        |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              | ľ         |            |                                                                   | I          |                                                         |          |
|                                                                                        |              | '         |            |                                                                   |            |                                                         |          |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
|                                                                                        |              | '         |            |                                                                   |            |                                                         | !        |
|                                                                                        |              |           |            |                                                                   |            |                                                         |          |
| 1 1                                                                                    |              | -         |            |                                                                   |            |                                                         |          |





F Fur Graph of the climatology of the circuit estimated from data. Its entropy is 2.15, which is greater than the entropies shown in figure 1.















annon CE  $\frac{1}{2}$  tor p = Co un cat on  $n t_p = pr = nc = 0$  no s = vo

$$t x = t^{-1} + t x$$
 It t n of ows t at  

$$-\sum_{t=1}^{T} t \left[ t \left\{ -\frac{1}{s} x_{s} \right\} \right]$$

 $\begin{array}{c} \bigstar \\ t \\ t \\ \end{array} \begin{array}{c} \mathbf{r} \\ \mathbf{m} \\ \mathbf{n} \\ \mathbf{n} \end{array} \begin{array}{c} \bigstar \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{array} \begin{array}{c} \bigstar \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{array} \begin{array}{c} \bigstar \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{array} \begin{array}{c} \bigstar \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{array} \begin{array}{c} \bigstar \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{array} \begin{array}{c} \bigstar \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{array} \begin{array}{c} \bigstar \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \end{array}$