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Abstract

Given a nonlinear deterministic model, a density forecast i



marginal calibration, which need not all hold at the same time. Density forecasts are
said to be probabilistically calibrated if and only if the PITs are uniformly distributed.
Marginal calibration refers to the case when the time average of all density forecasts
is equal to that of ideal forecasts. There is no empirical way of assessing exceedance
calibration.

Gneiting et al. [2007] then conjectured that when a subset of these modes of cali-
bration holds, then the predictive distributions are at least as spread out as the ideal
forecasts, which conjecture they termed a sharpness principle. The term sharpness
seems to have been coined by Bross [1953], and it is a measure of how concentrated



to these attributes when climatology is included. The modes of calibration assessed are
probabilistic and marginal calibration, while it is emphasised that entropy should be
used to measure sharpness. The new proposition that addresses Gneiting et al. [2007]’s
conjecture helps explain the findings. Whereas Broecker & Smith [2008]’s criticism to
not including affine functions in the density estimation was its guaranteed increase in
variance of the predictive distribution compared to the raw ensemble, we demonstrate
that the use of variance to measure sharpness could be misleading.

This paper is organised as follows: The next section discusses forecast qualities that
are cumulatively measured by the logarithmic scoring rule. In particular, a decomposi-
tion of this scoring rule is presented. The sharpness principle conjectured by Gneiting
et al. [2007] is discussed and a relevant proposition presented in § 3. In § 4, the method-
ology employed to produce density forecasts is outlined. Results concerning density
forecasts obtained via the logarithmic scoring rule with respect to a nonlinear electronic
circuit are discussed in § 5. Section 6 gives concluding remarks. Appendices A and B
contain the proof of the proposition concerning the sharpness principle and appendix C
contains proofs for the rest of the propositions.

2 Probabilistic-Forecast Quality

Model misspecification places limitations on the value of probabilistic forecasts. On
the other hand, consumers of forecasts may demand predictive distributions that are
both calibrated and sharp. If such forecasts are issued at long time horizons, then early
warning is afforded. We suggest that these qualities can be cumulatively quantified by
the logarithmic scoring rule proposed by Good [1952]. There are other scoring rules
available for selection (see Gneiting & Raftery [2007]). For instance, there is the Brier
score (Brier [1950]). This, however, decomposes into many terms (Murphy [1993]), some
of which are not relevant to our discussion and it is suitable for categorical events. A
generalisation of the Brier score to density forecasts is the





of two Gaussians will have lower entropy than a single Gaussian distribution of the same
variance. Much more, a distribution of a higher variance can have a lower entropy than
that of lower variance.

Sharpness has also been quantified by confidence intervals (Raftery et al. [2005],
Gneiting et al. [2007]). Confidence intervals share a similar weakness to variance in the
sense that a bimodal distribution that is fairly concentrated on the two modes can have
larger confidence intervals than a unimodal distribution that is fairly spread out. Also,
given two non-symmetric distributions, which of them is deemed sharper could depend
on what the confidence level is.

2.3 Calibration

The calibration of density forecasts is a well trodden subject. Much of the literature
takes the stand that a calibrated forecasting system is tantamount to a correctly specified
model. Corradi & Swanson [2006] provide a comprehensive survey of formal statistical
techniques for assessing calibration of density forecasts to determine if the underlying
model is correctly specified. The work of Gneiting et al. [2007] strikes a discord by
providing a calibration framework that accommodates model misspecification. They
broke down calibration into three modes, each of which could be assessed separately.

Suppose a probability forecasting system issues predictive distributions {Ft(x)}T
t=1,

while the data-generating process issues ideal forecasts {Gt(x)}T
t=1. Gneiting et al. [2007]

then defined the following modes of calibration:

• The sequence {Ft(x)}T
t=1 is probabilistically calibrated relative to {Gt(x)}T

t=1 if

1

T

T
∑

t=1

Gt{F −1
t (p)} = p, p ∈ (0, 1). (2)

• The sequence {Ft(x)}T
t=1 is exceedance calibrated relative to {Gt(x)}T

t=1 if

1

T

T
∑

t=1

G−1
t {Ft(x)} = x, x ∈ ℜ.

• The forecaster is marginally calibrated if

lim
T →∞

1

T

T
∑

t=1

Ft(x) = lim
T →∞

1

T

T
∑

t=1

Gt(x).

If we have a time series of observations xt, then zt = Ft(xt) is a probability integral trans-
form (PIT) (Corradi & Swanson [2006], Diebold et al. [1998]). Uniformity of the PITs
is equivalent to probabilistic calibration (Gneiting et al. [2007]). A visual inspection
of PIT histograms would reveal obvious departures from uniformity. The underlying
model is correctly specified if and only if zt ∼ iid U [0, 1].
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Suppose we have a time series of density forecasts, {ft(x)}t≥1. Then define the
forecaster’s climatology as

ρ̃T (x) =
1

T

T
∑

t=1

ft(x).

We define a forecaster who issues

Ft(x) = GT (x) =
1

T

T
∑

t=1

Gt(x)

for all t ∈ {1 . . . , T} to be the finite climatological forecaster. If Ft(x) = limT →∞ GT (x),
then we have the climatological forecaster. A forecaster is finite marginally calibrated if
ρ̃T (x) = G

′

T (x).
For all practical purposes, T is finite and we have no access to the Gt(x)’s. Hence

it is difficult to assess finite marginal calibration. If d(ρ̃T , ρ̃2T ) ≈ 0, where d is some
metric, then we can take T to be large enough to evaluate marginal calibration. To this
end, we can use the Hellinger distance (Pollard [2002]) and compute

h(ρ̃T , ρc) =
1





we can form density forecast estimates of the form:

ρ(t)(x) =
1

σN

N
∑

i=1

K
{(

x − X
(t)
i − µ

)

/σ
}

, (4)

where σ and µ are respective bandwidth and offset parameters chosen according to
past performance and K(·) is the kernel function. The density forecast in (4) differs
from the traditional Parzen [1962] estimates by the offset parameter. It is similar to
the Bayesian Model Average proposed by Raftery et al. [2005] with a uniform bias
correction, µ and equal weights. Here, the ensemble members are exchangeable and do
not represent distinct models. Selecting σ using Silverman [1986] does not account for
model misspecification.

To account for model misspecification, let us first denote a record of past time se-
ries and corresponding ensemble forecasts by VT = {( st, X

(t))}T
t=1. Then the density

forecasts whose parameters, µ and σ, are selected by taking into account past perfor-
mance may be denoted by ρ(t)(x|VT ). While ρ(t)(x|VT ) has the same form as in (4), its
parameters are selected by doing the minimisation

min
σ>0,µ

{

− 1

T

T
∑

t=1

log ρ(t)(st|VT )

}

. (5)



and the parameters σc and µc



when N = 1. Despite this reduction, some mixture forecasts may still be less sharp than
climatology in the sense of entropy. A straight forward application of the Kullback-
Leibler and Jensen’s inequalities leads to the relations

αH
{

ρ(t)
}

+ (1 − α)H(ρc) ≤ H
{

f (t)
}

≤ α2H
{

ρ(t)
}

+ α(1 − α)H
{

ρ(t), ρc

}

+ . . .

(1 − α)αH
{

ρc, ρ(t)
}

+ (1 − α)2H(ρc),

where H(f) = −
∫

f(x) log f(x)dx and H(f, g) = −
∫

f(x) log g(x)dx are the entropy
and cross entropy respectively. Therefore, the necessary and sufficient conditions for
H

{

f (t)
}

≥ H(ρc) to hold are that H(ρc) < H
{

ρ(t), ρc

}

and H(ρc) < H
{

ρ(t)
}

respec-
tively. Whenever the climatology is sharper than the mixture forecast, it should be
issued as the forecast instead of the mixture.

It is not obvious what the effect of the mixture is on calibration, except that including
climatology improves the KL distance from the ideal forecasts. Nevertheless, the mixture
parameter that minimises the logarithmic score yields the equation

1

T
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Figure 2: Graph of the climatology of the circuit estimated from data. Its entropy is 2.15,
which is greater than the entropies shown in figure 1.
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ht(x) = F −1
t [F1{h1(x)}]. It then follows that

1

T

T
∑

t=1

Gt

[

ht

{

h−1
s (xs)

}]

=



there may be at least another p 6= r and p > q such that G
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