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Abstract

This report describes several velocity-based moving mesh numer-
ical methods for multidimensional nonlinear time-dependent partial
differential equations (PDEs). It consists of a short historical review
followed by a detailed description of a recently developed multidimen-
sional moving mesh finite element method based on conservation.

Finite element algorithms are derived for both mass-conserving
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1 Introduction



initial time.



where t is time, x is the space variable, and L is a purely spatial operator,
nonlinear in general. Problems governed by the PDE (2) may be posed
on either fixed or moving domains with appropriate initial and boundary
conditions. The number and character of the boundary conditions relate





In one space dimension the self-similar solution (12) takes the form

u(t; x ) = t f (� ) (15)

where� = x=t� and f satis�es the ODE

f (� ) � ��f 0(� ) = t1�  L f t f (� )g : (16)

A particular property of self-similar solutions for mass-conserving prob-
lems (for which (14) holds) is the invariance of the integral (12) via

Z


( t)
u dx = t Z


( t)
f (� )dx t) moves with the self-similar velocity with components (11). T his

follows from substituting x t� �



[3, 141], where





where v is again any sufficiently smooth velocity field that is consistent with
the normal velocity of the boundary.

Now suppose that the points of R(t) move with the velocity v and that
the test function w is frozen in R(t), so that w is convected with the velocity
v in the sense that

wt + v · ∇w = 0 . (34)

Equation (33) then reduces to

d

dt

∫

R(t)

wudx =

∫

R(t)

w {ut + ∇ · (uv)} dx (35)

for all square-integrable functions w that are convected with the velocity v w



often use residual minimization, error estimates, or geometric considerations,
whereas physical approaches usually rely on Lagrangian fluid dynamics or
mechanical analogies. Mesh movement may also be induced entirely by the
normal velocities of the boundaries.

In this section a number of velocity-based methods are described, begin-
ning with schemes related to fluid dynamics (section 3.1) and continuing with
those relying on the so-called ALE (Arbitrary Lagrangian-Eulerian) formu-
lation. Many ALE schemes use velocities generated by mechanical analogies
and these are discussed in section 3.2.

Turning to mathematically motivated constructions we describe in sec-
tion 3.3 the Moving Finite Element Method, which was the first method to
determine the mesh and the solution simultaneously. Next the Deformation
Method, based on differential geometry, is described in section 3.4. Then



In more recent times, computational fluid dynamics (CFD) has sought
to describe the motion of fluids numerically by both approaches. The most
common approach has been through discretizations of the Eulerian descrip-
tion where the equations of motion are discretized on a fixed mesh. Use of
the Lagrangian description has been rarer and largely confined to problems
where surfaces and interfaces are of primary importance, e.g. [107, 117, 146].
The natural discretization in the Lagrangian approach is to follow the ve-
locities of the fluid particles using a moving mesh but compromises have
usually had to be made, the main difficulty being the tendency of the mesh
to tangle and lose its character. For example, Harlen et al. [2, 69] apply a



Another popular technique for imposing a mesh velocity, used for fluid-
structure interaction problems in [70], and for free-surface problems in [60,
94], for example, is based upon Scriven’s method of spines [81, 120]. Here
the mesh movement is constrained by a number of parameters (one for each
spine used), thus reducing the computational overhead in exchange for re-
stricting the generality of the approach. More general ALE forms have also
been widely used for free-surface problems, based upon maintaining mesh
quality [114, 115], Laplacian smoothing [128] or pseudo-solid deformation
[32, 143]. Other applications which have benefited from successful ALE al-
gorithms include phase-change problems [122], viscous sintering [83, 93, 150]
and the interaction of free surfaces with solid boundaries [4, 132, 144].

Note that not all ALE methods need to be applied to, or driven by, fluid
flow problems. Indeed, the latter part of this paper is devoted to a more
general family of methods. Before introducing this approach, however, we
discuss some other recent techniques that have been used for generating mesh
velocities.

3.3 Moving finite elements

Where there is no specific physical motivation for assigning a velocity to
each node of the finite element mesh, (unlike Lagrangian-based methods for
equations of fluid flow, for example), some other mechanism for determining



then seeks to minimize the L2 norm of the residual (42), but this time with

respect to the velocity of each node of the mesh, dX̂i/dt = Vi say, as well as

dÛi/dt at that node. The term dÛ
dt

is obtained by differentiating (43) by the
chain rule to obtain

dÛ

dt
=

∑ dÛj

dt
Wj(x̂(t)) +

∑
Ûj(t)

dWj(x̂(t))

dtt -1 0 TdΩ[TfΩ20.457 -3.27578 TdΩ[(d)-0.11436]TJΩ/R47 11.9551 TfΩ7.68581 T11.983 TdΩ(b)TjΩ/R38 11.9551 TfΩ-1.60195 -3.02383 TdΩ[(U)0.265478]TJΩ/R19 7.97011 TfΩ7.94688 -1.79102 TdΩ[(j)-0.54525]TJΩETΩQΩ2308.68 6267.38 mΩ2492.91 6267.38 lΩSΩqΩ10 0 0 10 0 0 cm BTΩ/R38 11.9551 TfΩ1 0 0 1 234.927 615.551 TmΩ[(d)-0.11436(t)-0.23893]TJΩ15.552dWj(x̂(t)) +
∑ ̂





or more space dimensions, where the very high computational expense sug-
gest that it will not generally be cost-effective to solve for the mesh and
the solution in this fully coupled manner. It is for this reason that the Arbi-
trary Lagrangian Eulerian (ALE) and similar approaches are frequently more
efficient.

3.4 The Deformation method

This method derives from analytic results of Moser [106] and Dacorogna and
Moser [48] concerning the existence of a particular class of diffeomorphism
between two domains in ℜn. In particular, [48] is concerned with the exis-
tence of diffeomorphisms φ : Ω → Ω such that

det ∇φ(x) = f(x) x ∈ Ω

φ(x) = x x ∈ ∂Ω , (48)

where f has mean value one over Ω and, along with Ω, satisfies certain
regularity assumptions.

The significance of this work stems from the fact that the existence
proofs in [48] are constructive in nature, thus motivating associated numer-
ical methods such as [85, 87, 88], discussed below. Specifically, Dacorogna
and Moser linearize (48) by expanding φ as a perturbation from the identity:
φ(x) = x + ν(x). Neglecting higher order terms in v then leads to

∇ · ν(x) = f(x) − 1 x ∈ Ω

ν(x) = 0 x ∈ ∂Ω . (49)

The existence of a solution to (49) is proved constructively by setting ν(x) =
∇w(x) and finding w(x) from

∇2w(x) = f(x) − 1 x ∈ Ω

∇w(x) · n̂ = 0 x ∈ ∂Ω . (50)

The final stage of the proof is to demonstrate that the required mapping φ is
given by φ(x) = ϕ(x, 1) where ϕ satisfies the ordinary differential equation

d

dt
ϕ(x, t) =

ν(ϕ(x, t))

t + (1 − t)f(ϕ(x, t))

ϕ(x, 0) = x . (51)

This is proved by introducing the function

h(x, t) = det ∇ϕ[t + (1 − t)f(ϕ(x, t))] (52)
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and showing that ∂h
∂t

= 0, from which it follows that h(1, x) = h(0, x), as
required.

As indicated above, these concepts from [48] have been used to develop
an algorithm for mesh transformation by Liao and co-workers [85, 87, 88],
who noted that f(x) could be chosen to provide a transformation which





in which J is the determinant of the Jacobian of the transformation between
the fixed reference domain and the physical domain. The GCL has been
widely used as a constraint to be satisfied by numerical schemes applied in a
moving frame of reference, and in particular influences the implementation
of the conservative ALE schemes described in section 3.2.

The desire to satisfy a GCL favours the finite volume framework [5





purpose of discretization, this method uses the conservative (integral) form
to find the discrete velocities directly.

The method can be summarized as follows. The PDE is used in conjunc-
tion with an Eulerian form of a conservation equation to generate a velocity,
which is then used to move the mesh in a Lagrangian manner. In simple
cases the solution of the PDE can be recovered a posteriori from the La-
grangian form of the same conservation law. As can be seen in the following
sections, this strategy forms a good basis for algorithmic development. The
fundamentals of the method and the details of the multidimensional finite
element implementation are set out in the following three sections. Section 4
deals with nonlinear PDE problems which conserve mass, section 5 extends
the idea to non mass-conserving problems, and section 6 contains a number
of further extensions and generalizations.

4 The conservation method for mass-conserving

problems

We now describe in detail the conservation method of the previous subsection
for constructing velocities, developed from [20, 21] and [33], which is based
on local or distributed mass conservation, and which exploits the equivalence
between the Eulerian and Lagrangian conservation laws described in section
3.1. In the remainder of this section we shall consider the consequences of
local conservation in the case of mass-conserving problems, and then use
the idea to motivate a moving-mesh finite element method driven by this
property.

4.1 A local conservation principle

Let u > 0 be a solution of the PDE (2) in the interior of a moving domain
R(t) and suppose that the boundary conditions are such that total mass,

θ =

∫

R(t)

udx, (65)

is conserved, i.e. independent of time. The PME of subsection 2.2.1 with a
zero Dirichlet boundary condition falls into this category.



for an arbitrary moving subregion Ω(t) of R(t). (Assuming that the subre-
gions Ω(t) form a non-overlapping covering of R(t



and equation (70) can be written

−∇ ·



with either φ or u∂φ/∂n prescribed on the boundary. The velocity v is then
found from (71) and used to move the points of the domain by (1). Finally,
the solution u is recovered a posteriori from the Lagrangian conservation law
(66) in the form (76).

The method is scale-invariant when the original problem is scale-invariant



Since u > 0 in the interior of R



(provided that u



self-similar solution for all time. Although the velocity generated is only
approximately the similarity velocity this is an interesting property.

From (95) and (36), assuming that Lu exists and is square-integrable, the
velocity v satisfies

∫

R(t)

wi {Lu + ∇ · (uv)} dx = 0 (98)

(cf. (70)), since the wi move with velocity v. Furthermore, if wi ∈ H1{R(t)}
then after using Green’s Theorem on (98) we obtain the weak form

∫

R(t)

u∇wi · vdx =

∫

R(t)

wiLudx +

∮

∂R(t)

wiuv · n̂dΓ (99)

of (69).
There is no unique solution of equation (98) or (99) for v in general but if

there exists a square-integrable velocity q and velocity potential φ such that

∫

R(t)

u∇wi · vdx =

∫

R(t)

u∇wi · (q + ∇φ)dx



for ṽ





Since U > 0, equation (113) has a unique solution for Φ ∈ S1{R(t)} provided
that WiUV · n̂ is giveS6.165413]TJΩ/R11 11.9355254.763(f)0.31651.9359-0.311426(a)0.2450577(t)-0.1437d



4.3.2 Solving for the velocity

A continuous piecewise linear velocity V



where k+



linear system ((95) or (106)). We focus on the discrete ALE equation (107)
in the form

µ̇i =
d

dt

∫

R(t)

WiUdx =

∫

R(t)



number of interior nodes adjacent to the boundary node j. Details can be
found in [74].

The potential Φ and velocity V are obtained exactly as before, using the
standard Wi test functions, but now the solution Ũ (which satisfies the strong
Dirichlet conditions) is found from a modified form of equation (131),

M̃Ũ = µ̃, (133)

with the strong boundary conditions imposed, where the modified (un



4. Recover Ui at the new time-step, either from (131) with µi given by
(129) and (128) (in the case of weak implementation of Dirichlet bound-
ary conditions on U), or from (133) with µ̃i given by integ





method of section 3.3. For an odd number of nodes the system (142)



From the point of view of equalizing the error between the initial function
and its discrete representation on a given mesh, a discrete form of u0(x) may
be obtained by minimizing the L2 error between the two. Supposing that
U(x) is the L2 projection of u0(x) into the span{Wi} the normal equations
are ∫ b

a

Wi(U(x) − u0(x))dx = 0 (145)

which lead, via the expansion U(x) =
∑

j UjWj, to the matrix form

MU = f
0
, (146)

where M is the standard mass matrix, U is a vector of coefficients Uj, and

the components of the vector f
0

are
∫ b



4.7 Examples

We now illustrate the multidimensional finite element conservation method
for mass-conserving problems on a number of test problems using the algo-



in which N is the number of mesh nodes, NB is the number of boundary
nodes, u and r are the analytic solution and domain radius and Ri is the
distance of boundary node i from the origin. The solutions differ qualitatively
for different values of n since from (151) for n ≤ 1 the similarity solution has
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Figure 2: Accuracy of the approximate solutions to the two-dimensional
porous medium equation (n = 1 and n = 2) on a sequence of meshes at
T = 0.01 obtained using the exactly conservative scheme but with weakly
imposed Dirichlet boundary conditions on u: solution error (left) and mesh
error (right) both in the L1 norm.

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

LOG(dx)

LO
G

(e
rr

or
)

Porous Medium Equation (2D): T=0.01 (solution error)

 

 

n = 1

n = 2

slope = 1

slope = 2

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

LOG(dx)

LO
G

(e
rr

or
)

Porous Medium Equation (2D): T=0.01 (mesh error)

 

 

n = 1

n = 2

slope = 1

slope = 2

Figure 3: Accuracy of the approximate solutions to the two-dimensional
porous medium equation (n = 1 and n = 2) on a sequence of meshes at
T = 0.01 obtained using the standard scheme but with a non-zero vorticity
added to the mesh velocity field: solution error (left) and mesh error (right)
both in the L1 norm.
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are given in figure 2 and a full comparison can be found in [74].
Figure 3 shows that the results remain very similar when a non-zero

vorticity is added to the mesh velocity field. In this case q is chosen to be
(−200 y r, 200 x r)T, where r is the usual radial coordinate, which is divergence-
free and provides a rotation which increases in magnitude with distance from
the origin. Figure 4 shows three snapshots of the evolution of the mesh and
the solution on this rotating mesh.

Figure 5 shows the same mesh convergence study carried out for the up-
wind weighted velocity update (125) from the potential with coefficients as
in (126). There is very little difference between these results and those ob-
tained using a standard Galerkin recovery, though they are typically slightly
less accurate.
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Figure 6: Accuracy of the approximate solutions to the two-dimensional
porous medium equation (n = 1 and n = 2) on a sequence of meshes at
T = 0.01 obtained with a best L2 fit to the initial data: solution error (left)
and mesh error (right) both in the L1 norm.
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it is slightly more robust than the Galerkin approach. A steep front evolves
in the interior of the domain and the mesh clusters behind this front because
this is where the “mass” is accumulating. This front then moves towards the
stationary boundary, which only starts to move once the front arrives (see
also [111]). The result also illustrates one of the issues with velocity-based
moving mesh methods: if the ring of narrow cells becomes too thin then the
mesh edges are bound to cross over if they remain straight lines. When the
mesh is constructed via a transformation this can be avoided [29].

Figure 11 shows results obtained while varying p for a fixed mesh reso-
lution, which shows that non-zero waiting times are only observed when the
theory indicates that they should be (for n = 3 there should be non-zero
waiting times for p > 2

3
), and also while varying the mesh size for a fixed

value of p, which demonstrates that the results are converging to a particular
value for the waiting time.
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5 The conservation method for non mass-conserving

problems

If the total mass in the problem varies with time then neither the local
or distributed conservation principles (66) and (95) are consistent with a
constant value of θ in (65) (which should then be written as θ(t) as in (162)
below). However, a consistent conservation principle may be constructed
by normalizing the integral (66) at the expense of carrying θ(t) as an extra
variable.

Let u be a positive solution of (2) in the interior of the moving domain
Ω(t) and define the relative conservation principle,

1

θ(t)

∫

Ω(t)

u dx = c(Ω), independent of time, (161)

where the total (variable) mass

θ(t) =

∫

R(t)

u dx (162)

is the extra (normalizing) variable. Note that from (161) and (162) c(R) = 1.

5.1 Velocity and solution

The Reynolds Transport Theorem (24) is now applied to the function u/θ(t),
leading to the equation

∫

Ω(t)

utdx +

∮

∂Ω(t)

uv.n̂dΓ = c(Ω)θ̇ =
θ̇

mTJ
/R11 11.9551 Tf
91.7633 16.2719816 305 (e)07077.97011 Tf
6.64219 -27.0629 Td[(∂)-0.364521]TJ
t)

d



Substituting for ut from the PDE (2), equation (163) takes the purely
spatial integral form

∫

Ω(t)

Ludx +

∮

∂Ω(t)

uv · n̂dΓ = c(Ω)θ̇ =
θ̇

θ

∫

Ω(t)

udx (166)

while equation (165) becomes the differential equation

Lu + ∇ · (uv) =
θ̇

θ
u . (167)

Either equation (166) or (167) can be regarded as an equation for v and θ̇.
In some cases θ̇ can be obtained explicitly. Applying (166) to the whole

domain R(t) and using c(R) = 1,

∫

R(t)

Lu dx +

∮

∂R(t)

u v · n̂ dΓ = θ̇ , (168)

which gives θ̇ explicitly if either v · n̂ is given on the boundary ∂R(t) or if
u = 0 there. The discussion is restricted to these cases in the subsequent
argument.

Even if θ̇ is known there is no unique solution of equation (167) for v
but, as in section 4.1.1, if the vorticity curl v =



5.2 Distributed forms

In the distributed case, with wi belonging to a set of square-integrable test
functions, fixed in R(t) and forming a partition of unity, the relative conser-
vation principle (161) is modified to read

1

θ(t)

∫

R(t)

wiudx = ci, independent of time, (171)

where u is a positive solution of (96) in the interior and θ(t) is given by (162).
Since the wi form a partition of unity, by summing equations (171) over i we
still obtain

∑
ci = 1. (We note in passing that (171) reduces to (161) when

wi is the characteristic function in Ω(t).)
Then, applying the Reynolds Transport Theorem to the function wiu/θ(t),

and assuming that the points of R(t) and therefore the wi move with the
velocity v, the unknowns v and θ̇ satisfy

∫

R(t)

wi {ut + ∇ · (uv)} dx = ciθ̇ (172)

(cf. (98)), which leads via the weak form (96) of the PDE (2) to the spatial
equation ∫

R(t)

wi {Lu + ∇ · (uv)} dx = ciθ̇ . (173)

Further assuming that wi ∈ H1{R(t)} for all t, we apply Green’s Theorem
to (173), giving

∫

R(t)

u∇wi · vdx =

∫

R(t)

wiLudx +

∮

∂R(t)

wiuv · n̂dΓ − ciθ̇. (174)

Summing equations (173) over i and using
∑

ci = 1 leads to
∫

R(t)

Lu +

∮

∂R(t)

uv · n̂dΓ = θ̇ (175)

which yields θ̇ explicitly if either v · n̂ is given on the boundary ∂R(t) or if
u = 0 there. We shall that assume that this holds in the following argument.

There is no unique solution of equation (174) for v but if there exists a
velocity potential φ satisfying the weak form (100) then (174) can be written

∫

R(t)

u∇wi · ∇φdx

=

∫

R(t)

{wiLu − u∇wi · q} dx +

∮

∂R(t)

wiuv · n̂dΓ − ciθ̇ . (176)
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Since uv · n̂ is given on the boundary ∂R(t), so that the penultimate term in



so that, since it has been assumed that UV · n̂ is given on the boundary Θ̇
is known explicitly.

There is no unique solution of (179) for V in general but if there exists
a square-integrable velocity Q and velocity potential Φ satisfying the weak
form (112) then equation (179) can be written

∫

R(t)

U∇Wi · ∇Φdx

=

∫

R(t)

{WiLU − U∇Wi · Q} dx +

∮

∂R(t)

WiUV · n̂dΓ − CiΘ̇ . (181)

Since U > 0, equation (181) has a unique solution for Φ ∈ S1{R(t)} (since
UV · n̂ is known on the boundary) provided that Φ is given at at least one
point in R(t) (which is no restriction since only ∇Φ is required).

The matrix form for Φ is again (118) (one component having of Φ having
been specified) but with the f components given by

fi =

∫

R(t)

{Wi LU − U ∇Wi · Q} dx +

∮

∂R(t)

Wi U V · n̂ dΓ − CiΘ̇ . (182)

The velocity is derived as in subsection 4.2.1 and both X̂(t) and Θ(t) stepped
forward in time.

The solution U can be approximately recovered from the first of (178),



3. Find Ṽ from (119) via (121).

4. Advance X̂(t) and Θ in time using any convenient time-stepping scheme

applied to Ṽ and Θ̇.

5. Recover Ui at the new time-step by integrating the ALE equation (129)
in time to obtain the µ̇i of (128), advancing µi in time, and using (131).
(Strong Dirichlet boundary conditions can also be imposed as described
in section 4.3.4.)



therefore has a condition ux = 0 imposed at the symmetry boundary, where
v
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since V = 0 on ∂RF

k . Assuming that U > 0 in the interior of R(t), equation
(187) has a unique solution for Φ ∈ S1{R(t)} in terms of Θ̇k provided that
the interface integral is known and that Φ is given at at least one point. In
problems of this type a condition on V at the moving interface is typically
provided as part of the well-posed initial-boundary value problem. It is this
condition that supplies the coupling between the subregions and ensures that
the right-hand side of (179) may be evaluated.

Once the velocity potentials have been found in each of the subregions,
the mesh velocities can be recovered using (112), solving over the whole do-
main at once in order to produce a velocity field which is continuous across

the internal boundaries, and imposing V = 0 on ∂RF

k . This recovery step
has been shown to be significantly more accurate if the equations involving
the test functions associated with mesh nodes on the moving internal bound-
aries are replaced by a weak form of the condition on V which governs the
movement of the interface [10].

Finally, after the nodal positions and each Θk have been updated using a
standard timestepping scheme, the solution U is recovered separately in each
of the subregions. This can be done using (131) or (133), either directly with
fixed Ci and updated Θk on the right-hand side, or after the right-hand side
has been updated using the ALE approach, (129) or (136).

6.1.2 Example: A Two-Phase Stefan Problem

We illustrate the method using a two-phase Stefan problem. This problem,
described in detail in [46] for example, models changes of phase between liquid
and solid phases. The interfaces between these phases move as the conversion
between them takes place and can be followed using the technique described
above. The diffusion of heat within each phase is modelled by the equations
[25]

KS ut = ∇ · (kS ∇u) in solid regions

KL ut = ∇ · (kL ∇u) in liquid regions , (188)

in which u is the temperature and KS,L, kS,L represent, respectively, the
volumetric heat capacity and the thermal conductivity of the phase. From
now on any subscript k, used to index the subregions, can be associated with



where n̂ = n̂(t) is a unit normal to the moving interface, λ is the heat
of phase-change per unit volume, and v



the figure shows the smooth trajectories of the mesh nodes and the change of
direction of the phase-change interface as the gradient of the temperature of
the liquid phase at the interface drops below that of the solid phase. In the
absence of an exact solution to this problem, figure 16 illustrates the conver-
gence of the maximum value of the solution and the boundary position as
the mesh is refined.
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is an operator.
Unlike the previous cases studied a general monitor will not necessarily

have an associated scale-invariant monitor integral and therefore will not lead
to a scale-invariant numerical method. However by replacing the variables in
the monitor integral by the similarity variables (see (12)) we can ensure scale
invariance [9]. For example, the radially symmetric scale-invariant monitor
integral corresponding to (196) is

t−dβ

∫

R(t)

√
(1 + t−2(γ−β)|∇u|2)dx , (198)

which is constructed from the area function in the space of similarity vari-
ables. Results obtained using this monitor are shown in Figure 17 for the
two-dimensional porous medium equation. Second order accuracy is gener-
ally achieved except, in this case, for the solution error when n = 2.
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It follows from (200) and (199) that c(R) = 1.
By differentiating (200) with respect to time, in a similar way as in section

5 the velocity v satisfies

∫

R(t)

m∇wi · vdx =

∫

R(t)

wi
dm

du
utdx +

∮

∂R(t)

wimv · n̂dΓ − ciθ̇ (201)

where we have used

mt =
dm

du
ut, (202)

dm/du being the formal derivative of m with respect to u (see e.g. (197)). We
cannot use the weak form (96) to substitute directly for ut in (201) since the
test function (dm/du)wi does not lie in the span{wi} in general. However, we
may project Lu, into the span{(dm/du)wi} giving an approximation



(cf. (68)), where v = dx̂/dt.
Equation (205) can be solved for v at any point x̂(t) provided that v is

given at x = a(t). The Lagrangian coordinate x̂(t) can then be found by
time integration of

dx̂

dt
= v (206)

(cf . (1)).



(which from section 4.1.3 has the exact solution v = −∇p for the velocity). .
In the moving mesh finite element method the finite element approximation
P ≈ p is recovered from Q ≈ q and Q is in turn recovered from U by a finite
element projection, as in section 4.7.2. Some results of the application of the
moving mesh finite element conservation method to the sixth order problem
can be found in [19].

Another application involving nonlinear diffusion is the mode



7 Summary



approach is that it respects many of the physical properties of the PDEs
that are being solved, including local and global mass conservation, scale-
invariance and self-similarity when they are present. Furthermore the tech-
nique has been applied extensively to model problems in both one and two
space dimensions.

It should be noted that the techniques discussed in this review are still far
from mature and considerable further research is likely to be fruitful. In par-
ticular, implicit time-stepping strategies should increase significantly the size



of (66) for all Ω(t) ∈ R(t),

3. the velocity v(t, x) induced by (212) be irrotational,

4. u(t0, x





is mass-conserving
∑

βν + γ = 0, and that the points of R(t) coincide with
those of R(t0) to order O(∆t)2 under the above substitution.

Since at t = t0

u(t0, x) = t0
γf

(
x1

tβ1

0

,
x2

tβ2

0

, ...,
xd

tβd

0

)
(224)

and Ω(t0) is arbitrary, it follows from (223) that

u(t, x) − tγf
( x1

tβ1
,

x2

tβ2
, ...,

xd

tβd

)
= O(∆t)2 (225)

for all t such that t0 < t ≤ t1 + ∆t. Thus at t = t1 = t0 + ∆t

u(t1, x) − tγ
1f

(
x1

tβ1

1

,
x2

tβ2

1

, ...,
xd

tβd

1

)
= O(∆t)2, (226)

so that u(t1, x) is the self-similar solution uss(t1, x) at time t1 = t0 + ∆t
to order O(∆t)2. Repeating the whole argument at time t = t1



Theorem B:

Let

1. u(t, x) be a positive solution of a mass-conserving scale-invariant prob-
lem governed by the PDE (2),

2. U(t, x) satisfy the conservation principle (110),

3. the velocity be the self-similar velocity (11) for all t,

4. U(t0, x) coincide with the L2 projection of the self-similar solution (12)
at time t = t0.

Then U(t, x) remains the L2 projection of the self-similar solution for all
t > t0.

Proof:

This proof is much simpler than that in Appendix A because we have
assumed that the velocity is the self-similar velocity (11) for all t. By as-
sumption ∫
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