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1 Introduction

For integer N , we consider a sample of counts x1, x2, ..., xN ∈ {0, 1, 2, ..., }

arising from a count random variable X having a mixture probability density

function

px =
∫ ∞

0

p(x|λ)q(λ)dλ (1)

with unspecified mixing density q(λ) and a mixture kernel p(x|λ) which needs

to be specified. In this paper, a typical choice for the mixture kernel is the

Poisson p(x|λ) = P o(x|λ) = exp (−λ)λx/x! though other choices are possible

as well. Whenever xi = 0 unit i remains unobserved, so that only a zero-

truncated sample of size n =
∑m

j=1 fj is observed, where fj is the frequency of

counts with value x = j and m is the largest observed count. Hence, f0 and

consequently N are unknown. The purpose is to find an estimate of the size N .

Since frequently the count variable X represents repeated identifications of an

individual in an observational period, the problem at hand is a special form of

the capture-recapture problem (see Bunge and Fitzpatrick (1993) for a review

on the topic).

The sample of counts x1, x2, ..., xN can occur in several ways. A target

population which might be difficult to count consists out of N units. This

population might be a wildlife population, a population of homeless people,

drug addicts, software errors or animals with a specific disease. Furthermore,

let an identification device (a trap, a register, a screening test) be available that

identifies unit i at occasion t where t = 1, .., T . Let the binary result be xit

where xit = 1 means that unit i has been identified at occasion t and xit = 0

means that unit i has not been identified at occasion t. The indicators xit might

be observed or not, but it is assumed that xi =
∑T

t=1 xit is observed if at least

one xit > 0 for t = 1, ..., T . Only if xi1 = xi2 = ... = xiT = 0 and, consequently

xi = 0,



occurs by repeated identifications of the same unit.

In another setting, which is also the basis for this work, the clustering occurs

by means of a grouping variable such as herds, holdings, households, or villages.

In this case, xit denotes if the t−th element in cluster i is identified (xit = 1) or

not (xit = 0). In the example given in the next section the clusters are holdings

of sheep and xit informs about the disease status of the t−th animal in holding

i. Note that xi =
∑

t xit is observed only if it is positive. In other examples the

cluster corresponds to villages or households, one of the earliest applications of

this kind is the cholera-outbreak in a community in India studied by McKendrick

(1926) in which the cluster corresponds to households in a village. A more recent

example involves cholera occurrence in rural East Pakistan where the cluster

structure consists of villages (see also Mosley et al. (1972)).

The paper is organized as follows. The next section 2 introduces the data

on scrapie in Great Britain. In section 3 we review some of the existing ap-

proaches in the capture-recapture methodology for the setting of interest. Sec-

tion 4 describes the development of a new set of empirical Bayes estimators

which are then further evaluated by means of a simulation study. The appli-

cation of the empirical Bayes estimator to the spatial data on scrapie in Great

Britain, including the development of maps at county level of completeness and

observed–hidden ratio, ends the paper in section 5.

2 The data of scrapie in Great Britain

We now consider as a specific case study the spatial distribution of scrapie in

Great Britain. Classical scrapie, a neurological fatal disease of small ruminants

is endemic in Great Britain (see Del Rio Vilas et al. (2006) for more details).

There is ample evidence to support the occurrence of under-reporting affecting

the clinical notification of scrapie cases (Hoinville et al. (2000), Del Rio Vilas
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et al. (2005), Böhning et al. (2008)). Although not established to date, there

is reason to believe that, reflecting population and surveillance related hetero-

geneities, under–reporting presents an uneven distribution across Great Britain.

The spatial analysis presented in the following uses county-specific disease data

from the Scrapie Notifications Database (SND) (see Vilas et al. (2006) for more

details), more specifically the number of confirmed clinical cases. Table 1 shows

the frequency distribution fx of the count of confirmed clinical cases X for

x = 1, 2, 3, ... by county. Evidently, there is a considerable range in the number





(1988) arises. In the approach of Zelterman the homogeneous Poisson serves

only as a working model and it was suggested by Zelterman that the estimate

ˆ



of p and λ the factor can be considerably larger than 1. For example if q =

0.5 and λ ≤ 0.4 the factor is larger than 2, so that the Zelterman estimate

would overestimate severely. The question arises as to what is the source of

this overestimation bias. We approach this question in the next theorem which

states that the Zelterman estimator uses the wrong expected value in predicting

f0.

Theorem 2 i) Let log L(λ) = f1 log(p1) + f2 log(p2) with p1 = e−λλ/(e−λλ +

e−λλ2/2) = 2/(λ + 2) and p2 = e−λλ2/2/(e−λλ + e−λλ2/2) = λ/(λ + 2) being

the Poisson probabilities truncated to counts of ones and twos. Then log L(λ) is

maximized for

λ̂ = 2f2/f1.

ii)

E(f0|f1, f2; λ̂) = f2
1 /(2f2), for λ̂ = 2f2/f1.

Proof. For the first part, it is clear that f1 log(p1) + f2 log(p2) is maximal

for p̂1 = f1/(f1 + f2), which is attained for λ̂ = 2f2/f1. For the second part, we

see that with ex = E(fx|f1, f2; λ) = P o(x|λ)N :

ex = P o(x|λ)N = P o(x|λ)N = P o(x|λ)(e0 + f1 + f2 +
∞∑

j=3

ej)

so that

e0 + e+
3 = [1 − P o(1|λ) − P o(2|λ)](e0 + e+

3 ) + [1 − P o(1|λ) − P o(2|λ)](f1 + f2)

with e+
3 =

∑∞
j=3 ex. Hence

e0 + e+
3 =

1 − P o(1|λ) − P o(2|λ)
P o(1|λ) + P o(2|λ)

(f1 + f2)

and

e0 = P o(0|λ)(f1 + f2 + e0 + e+
3 ) = P o(0|λ)(f1 + f2) + P o(0|λ)

= 1−P o(1|λ)−P o(2|λ)
P o(1|λ)+P o(2|λ) (f1 + f2)
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=
P o(0|λ)

P o(1|λ) + P o(2|λ)
(f1 + f2) =

f1 + f2

λ + λ2/2
.

Plugging in the maximum likelihood estimate λ̂ = 2f2/f1 for λ yields the desired

result. 2

Theorem 2 establishes a close connection between the approach by Zelter-

man and Chao’s estimator. It shows that Zelterman’s estimator of the Poisson

parameter λ arises when all counts are truncated except counts of ones and twos

and when the resulting likelihood is maximized. If the correct prediction for f0

is used, namely the conditional expectation for the truncated Poisson model,

the Chao estimator arises. Hence the strong overestimation of the original Zel-

terman estimator stems from using a wrong conditional expectation.

3.3 Comparing some conventional estimators in a simula-
tion

Before we continue developing the generalized, adjusted version of the Zelter-

man estimator, we consider the performance of Chao and Zelterman estimators

in a small simulation study. In the case of a homogeneous Poisson the maxi-

mum likelihood estimate is found by maximizing the likelihood of zero-truncated

Poisson observations in λ:

m∏
j=1

(
pj



where Q is the discrete mixing distribution giving k weights q



4 A new empirical Bayes estimator of popula-
tion size

Although it is clear that 2f2/f1 estimates the Poisson parameter in the case

that px = P o(x|λ), it is not clear what it estimates when there is a mixing dis-

tribution present instead of Poisson homogeneity. Here, a Bayesian perspective

is helpful. We think of the mixing distribution q(λ) as a prior distribution on λ

so that

E(λ|x) =
∫ ∞

0

λ
P o(x|λ)q(λ)∫∞

0
P o(x|θ)q(θ)dθ

dλ (4)

is the posterior mean w.r.t the prior q(λ) and Poisson likelihood for observation

x. Note that (4) can be further simplified to

λx = E(λ|x) =

∫∞
0

λP o(x|λ)q(λ)dλ∫∞
0

P o(x|λ)q(λ)dλ

= (x + 1)

∫∞
0

P o(x + 1|λ)q(λ)dλ∫∞
0

P o(x|λ)q(λ)dλ
= (x + 1)

px+1

px
,

where px is the marginal density (1). Before we continue on the ways to estimate

the ratio of marginals we point out an important monotonicity property.

Theorem 3

λ1 ≤ λ2 ≤ · · · ≤ λm.

Proof. Consider

pj =
∫ ∞

0

exp(−λ)λj/j!q(λ)dλ

with unknown q(λ) for λ > 0. Then, by means of the Cauchy-Schwarz inequality

for random variables X and Y :

[E(XY )]2 ≤ E(X2)E(Y 2)

we have that ∫ ∞

0

X︷ ︸︸ ︷√
exp(−λ)λ(j−1)/2

Y︷ ︸︸ ︷√
exp(−λ)λ(j+1)/2 dλ


2
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≤
∫ ∞

0

X2︷ ︸︸ ︷
exp(−λ)λ(j−1) dλ

∫ ∞

0

Y 2︷ ︸︸ ︷
exp(−λ)λ(j+1) dλ

or,

(j! pj)2 ≤ (j − 1)! pj−1(j + 1)! pj+1,

or, finally jpj

pj−1
≤ (j+1)pj+1

pj
. 2

Theorem 3 has an important application. Since under heterogeneity we have

that λ1 ≤ λ2 ≤ ... ≤ λm, we expect that the graph x → λ̂x = (x + 1)fx+1/fx

shows a monotone increasing pattern if heterogeneity is present. Hence we



appropriately since
m∑

x=2

fx

1 − exp(−λx)
≥

m∑
x=2

fx.

We are now considering ways of doing so.

The marginal density px can be estimated by the relative, empirical fre-

quency fx/N so that

Ê(λ|x) = λ̂x = (x + 1)
fx+1

fx

provides an estimate of the posterior mean E(λ|x) = λx using the fact that the

unknown denominators N cancel out. Hence, the Zelterman estimate occurs as

a special case of the nonparametric, empirical Bayes estimator for observation

x (Robbins (1955), Carlin and Louis (1997)).

The understanding of Zelterman’s original estimator of λ as λ̂1 = 2f2/f1

as empirical Bayes estimator for observation x = 1 is useful, since it helps to

find ways to eliminate the overestimation bias. We need to define a Horvitz-

Thompson estimator that takes into account the different counts x = 1, 2, ..

separately. This can be accomplished by defining

N̂∗ =
f1

1 − exp(−λ̂1)
+

f2

1 − exp(−λ̂2)
+ ... +

fm

1 − exp(−λ̂m)
. (6)

The question arises as to which way the estimator λ̂x should be constructed. A

naive estimator would follow the Robbins-type estimation to arrive at

N̂R =
f1

1 − exp(−2f2/f1)
+

f2

1 − exp(−3f3/f2)
+...+

fm−1

1 − exp(−mfm/fm−1)
+fm,

(7)

where we define

fj

1 − exp(−(j + 1)fj+1/fj)
=

{
0, if fj = 0;
fj , if fj+1 = 0.

Although the estimator (7) is intuitively attractive, it has some considerable

difficulties. Not only is it unclear what to do with the largest count m (in (7) it

is not up-weighted), but also various counts could have frequencies zero which
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would leave some of the frequencies fx unweighted. More importantly, most of

the observed count data will lie on the lower counts resulting in highly unstable

estimates for larger counts.

It is more attractive to consider a smoothed version of the Bayes estima-

tor. This can be accomplished by constructing an estimate of the marginal

distribution px =
∫∞

0
p(x|λ)q(λ)dλ using a discrete, finite mixture

px =
k∑

j=1

P o(x|λj)qj ,

where λj > 0 and the non-negative weights qj sum up to 1. Estimates can

be constructed by means of the EM algorithm or using some gradient-type

algorithm. For details see Böhning and Kuhnert (2006). Some attention needs

to be given to the question of the number of components k. Two strategies will

be looked at:

• The number of components is determined by the nonparametric maximum

likelihood estimator (NPMLE).

• The mixture model is chosen on the basis of the Bayesian Information

Criterion (BIC) defined as − log L(Q) + (2k − 1) log(n).

In both cases we arrive at some estimate of the marginal distribution

p̂x =
k∑

j=1

P o(x|λ̂j)q̂j (8)

leading to smoothed estimates of the population size

(̂



We will also consider two further ways of estimating the mixing distribution

q(λ) in
∫∞

0
P o(x|λ)q(λ)dλ. The first estimator is based upon the idea of using

the empirical distribution itself as an estimator of the mixing distribution. To

accomplish this task we have to consider the appropriate transformation of

the observed frequencies. Let q̃i = fi/n denote the relative frequencies of the

observed, zero-truncated sample. According to Böhning and Kuhnert [1] the

associated relative proportions of the zero-truncated mixture are given as

q̂i =
q̃i/[1 − P o(0|xi)]∑n

`=1 q̃i/[1 − P o(0|x`)]
,

so that p̂x =
∑m

j=1 P o(x|xj)q̂j and

N̂EDF =
m∑

`=1

f`

1 − exp(−(` + 1) p̂`+1)

p̂`
)
,

where the index EDF associates with the empirical distribution function. The

benefit of this approach is that the estimate of the mixing distribution is readily

available without any computational effort. The second additional estimator is

building upon the Γ-distribution for q(λ) in px =
∫∞

0
P o(x|λ)q(λ)dλ, nam9 9.4-1.937a3Tf 163.9992 0 Td[(q)]T7)



counts X1, ...XN were drawn from a two-component mixture of Poisson densi-

ties: X ∼ 0.5P o(1)+0.5P o(λ), evidently with equal weights q1 = q2 = 0.5. The

population size was set to N = 100 and 1, 000 replications used. Here, we will

concentrate on the main findings. More details are available in the supplemen-

tary material Böhning et al. (2010). We see from Table 2 that both empirical

Bayes estimators perform better with respect to their standard error and root

mean square error than the other estimators adjusting for heterogeneity. If we

compare the two empirical Bayes estimators it appears that the one based upon

the nonparametric mixture model as smaller variance which is reflected also in

a better mean squared error.

5 Application to spatial analysis of scrapie in
Great Britain

Following the results of the previous section we will concentrate on using the



5.1 Determining the NPMLE for the SND data

We have seen in section 4 using the ratio plot that there is strong evidence

for heterogeneity captured by a mixing distribution. We consider the marginal

distribution over all counties as available from Table 1: f1 = 298, f2 = 89, f3 =

42,..., f29 = 2. We are using this (truncated) count distribution to determine the

maximum likelihood estimators for the various possible mixture models. The

results are provided in Table 3. For each number of components k, starting with

the homogeneous case k = 1, the estimated mixture model Q̂ is provided, the

Poisson parameters λ̂j and associated component weights q̂j . This is followed by

the log-likelihood log L(Q̂) and the BIC-value −2 log L(Q̂)+(2k−1) log(n). Note

that there are two estimates of the population size of scrapie-affected holdings

given. One is based upon the direct computation using the mixture model

estimated as provided in (3), the other is the empirical Bayes estimate using the

estimated mixture as prior distribution (10). It is evident from columns 6 and

and 7 in Table 3, that the empirical Bayes estimate of the population size is less

sensitive to the choice of the number of components. Furthermore, the empirical

Bayes estimates is not prone to spurious estimates as is the conventional mixture

model based estimator. We have already mentioned that Figure 1 supports that

there is considerable evidence for a monotone increasing pattern. In addition,

the estimate of the posterior mean based upon the estimated mixture model with

4 components (this is what the BIC suggests) shows that this monotone pattern

is met. Note that columns 6 and and 7 in Table 3 contain also (in brackets) an

estimate of the standard error of the repsective population size estimate. This

was achieved by applying the nonparametric bootstrap as adapted to capture–

recapture situations by van der Heijden et al. (2003) and Böhning (2008). It is

evident from columns 7 in Table 3 that the conventional mixture model based

estimator is prone to extreme variance inflation when the number of components
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become large.

5.2 Estimating the number of hidden scrapie-affected hold-
ings per county

We now apply these results to the individual counties using (11). Note that

we are using the same mixture distribution in (11) estimated from the entire

SND data. This is necessary since the county specific case distributions are

frequently very sparse. Take for example county 1 in Table 1: we find f1,1 = 2,

f2,1 = 1, f3,1 = 1, so n1 = 4. It is clear that a reliable estimation of a mixing

distribution is not possible from this count distribution. Hence we use the

mixing distribution estimated from the entire data set and assume that the

heterogeneity found for the entire data set is also valid in each county. Then

we compute the predicted number of scrapie-affected holdings by applying the

weight (1 − exp[−(` + 1) p̂`+1)

p̂`
])−1 to the frequency f`,i of count ` in the i−th

county and summing up over all observed frequencies f`,i leading to

N̂i =
m∑

`=1

f`,i

1 − exp(−(` + 1) p̂`+1)

p̂`
)
.

This process is very similar to indirect standardization used in epidemiologic

methodology (see Waller and Gotway (2004, p. 17). The results are provided in

Table 4. In addition, two further measures are computed. The observed–hidden

ratio defined as ni/(N̂i − ni) and the completeness measure defined as ni/N̂i,

provided as columns 4 and 5 in Table 4. The completeness ranges betwe8re5u.r8 1.448%

and 99%re5u. Figure 2 shows a scatterplot of the completeness against the observed

count (on log-scale) of scrapie-affected holdings. There is no evidence for a

specific pattern, though the variation of completeness seems to decrease with

increasing observed count of scrapie-affected holdings. Median observed–hidden

ratio is 1.29 with 95% nonparametric CI (1.11, 1.43) and completeness is 56.36

with 95% nonparametric CI (52.62%, 58.83%).
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Figure 3 shows the geographical distribution of county–specific completeness

and observed–hidden ratios. Completeness is fairly stable with most counties in

the 50-59% category and fewer counties in the upper completeness categories.

Note that as well as providing completeness and observed/hidden ratios, we can

also estimate adjusted measures of disease occurrence for each county. However,

for our particular case, this would not have a clear biological interpretation as

annual data was pooled to increase the power of our analyses.

6 Discussion

As described in section four and five, providing theoretical evidence and empiri-

cal support respectively, N̂i = N̂BIC,i represents a lower bound of the population

size in each county i. Hence, the estimated completeness ni/N̂i in county i will

be an upper bound for ni/Ni, so that the estimated values for completeness will

be too large on average. Consequently, since the observed values already have

an upper limit of almost 100%, it is expected that only the observed minimum

for completeness of 48% will be in fact a bit lower. Similarly, we expect that

the observed-hidden ratios are overestimated. Typically, we have seen in the

simulation study that N is underestimated by 5 – 10%, never more than 20%.

The maps are based upon an estimated size of the scrapie population in

county i, given as

N̂i =
m∑

`=1

f`,i

1 − exp(−(` + 1) p̂`+1)

p̂`
)

=
m∑

`=1

ŵ`f`,i,

where p̂` is found from (10) with an estimated BIC-selected nonparametric mix-

ing distribution. Since the estimated weights ŵ` = 1/[1 − exp(−(` + 1) p̂`+1)

p̂`
)]

do not depend on the county index i we have that

∑
N̂i =

∑
i

m∑
`=1

ŵ`f`,i =
m∑

`=1

ŵ`

∑
i

f̂`,i =
m∑

`=1

ŵ`f` = N̂ ,
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where f` =
∑

i f`,i, so that the margin (over counties) of the county-specific

estimates of the size of the scrapie population and the estimate of the size of

the scrapie population, unstratified by county, coincide.
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Figure 1: Ratio plot for SND data 2002-2006, unstratified by county, for Rob-
bins estimate of posterior mean as well as the discrete mixture (4 components)
based empirical Bayes estimate of the posterior mean
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Figure 2: Scatterplot of completeness of surveillance stream per county against
observed count of scrapie affected holdings per county
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Figure 3: Map of estimated completeness on county level for SND data 2002-
2006
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Table 1: Distribution of confirmed scrapie–affected holdings from the SND
database 2002–2006 by county

county f1 f2 f3 f4 f5 f6 f7 f8 f9 f10+ n
1 2 1 1 0 0 0 0 0 0 0 4
2 1 1 1 0 1 0 0 0 0 0 4
3 1 0 0 0 0 0 0 0 0 0 1
4 1 0 0 0 0 0 0 0 0 0 1
5 2 0 0 0 1 0 0 1 0 3 7
6 4 1 0 1 0 1 0 1 0 3 11
7 12 1 0 2 3 0 0 0 0 1 19
8 7 2 2 0 0 0 0 0 0 0 11
9 25 8 5 1 1 1 2 0 0 2 45
10 4 1 0 0 0 0 0 0 0 0 5
11 1 0 0 0 0 0 0 0 0 0 1
12 0 0 1 0 0 0 0 0 0 0 1
13 2 0 0 1 0 0 0 0 0 0 3
14 1 2 0 0 0 0 0 0 0 0 3
15 0 1 0 0 0 0 0 0 0 0 1
16 5 2 1 1 0 0 0 1 0 0 10
17 1 0 0 0 0 0 0 0 0 0 1
18 5 0 0 0 0 0 0 0 0 0 5
19 1 1 0 0 0 0 0 0 0 0 2
20 1 0 0 0 0 0 0 0 0 0 1
21 2 1 1 0 0 0 0 0 0 0 4
22 3 3 0 0 1 0 1 0 1 0 9
23 5 0 1 0 0 0 0 0 0 1 7
24 2 0 0 0 0 0 0 0 0 0 2
25 1 1 0 0 0 0 0 0 1 0 3
26 6 2 0 0 0 0 0 0 0 0 8
27 5 1 0 0 1 0 0 0 0 0 7
28 1 0 0 0 0 0 0 0 0 2 3
29 2 0 1 0 1 0 0 0 0 0 4
30 1 0 0 0 0 0 0 0 0 0 1
31 2 1 0 0 0 0 0 0 0 0 3
32 1 0 0 0 0 0 0 0 0 0 1
33 1 0 1 0 0 0 0 0 0 0 2
34 14 10 3 1 3 0 2 1 0 3 37
35 2 0 0 0 0 0 0 0 0 0 2

... continued on next page ...
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Table 2: Simulation using X ∼ 0.5P o(1) + 0.5P o(λ) and N = 100; provided
are estimates of E(N̂), V ar(N̂)1/2 and [E(N̂ −N)2]1/2 as mean, SD and RMSE

λ estimator mean SD RMSE
1 MLE-hom 102 13 13

NPMLE 484 12,098 20,028
Chao 104 19 19

Zelterman 105 21 22
EB-NPMLE 105 15 15
EB-Robbins 108 21 22

2 MLE-hom 94 7 9
NPMLE 4599 35 21,328

Chao 99 12 12
Zelterman 101 16 16

EB-NPMLE 98 8 9
EB-Robbins 102 12 12

3 MLE-hom 88 5 13
NPMLE 12,517 52,425 23,955

Chao 97 10 11
Zelterman 102 15 16

EB-NPMLE 93 7 10
EB-Robbins 96 9 10

4 MLE-hom 85 4 16
NPMLE 11,715 54,501 23,114

Chao 97 10 10
Zelterman 108 20 20



Table 3: Estimated mixture models for 1, 2, 3 , 4 and 5 (NPMLE) num-
ber of components with associated estimator of the size of the scrapie–affected
population of holding from the unstratified SND database 2002–2006

discrete mixture model based
k λ̂j q̂j log L(Q̂) BIC N̂NPMLE (10), N̂NPMLE (3),

(SE) (SE)

1 2.33 1.00 -1,279.0 2,561.4 572 (9.4) 572 (9.4)

2 0.97 0.88 -865.4 1,740.8 776 (32.4) 793 (34.6)
9.80 0.12

3 0.67 0.80 -807.8 1,632.4 869 (44.8) 946 (65.8)
5.46 0.17
19.10 0.03

4 0.56 0.75 -802.3 1,628.2 896 (48.0) 1,036 (60,102)
4.03 0.19
10.35 0.05
23.58 0.01

5 0.01 0.27 -801.2 1,632.7 916 (25.5) 528,694 (419,663)
1.08 0.54
5.13 0.14
11.76 0.03
23.98 0.01
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Table 4: Observed and hidden scrapie-affected counts of holdings by county,
observed–hidden ratio and completeness of surveillance stream

county n N̂ o/h completeness
1 4 7 1.4 59
2 4 6 2.3 70
3 1 2 0.9 48
4 1 2 0.9 48
5 7 9 3.1 76
6 11 16 2.2 69
7 19 33



county n N̂ o/h completeness
... continued from previous page ...
37 75 137 1.2 55
38 11 19 1.3 57
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