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or geothermal heat below the surface.

In order for glaciers to form they first need enough snow over the winter

period to be able to survive through the summer, i.e. more accumulation of

snow than is lost through melting and evaporation. This needs to be repeated

over a number of succesive years, and as more snow builds up, the weight



is the idea of mass balance, and where on the glacier mass is gained or lost.

Generally, near the source of the glacier, the accumulation of snow is greater

than the ablation (melting/evaporation), so the mass increases. Further away

the ablation becomes greater than the accumulation, and the mass decreases.

However ice can build up in the lower zone due to ice flow coming from the

glacier’s upper zone. The front-most end of the glacier is known as the snout,

which rarely moves straight away; it waits until the velocity behind it is great

enough to push it down the mountain. It is this feature which is of special

interest.

2. Model Description

Consider a glacier on a flat bed occupying the region x ∈ [0, b(t)] as shown

in Fig.1. Let H(x, t) represent the thickness of the ice. At the ends of this

domain we have two boundary conditions, H = 0 at the moving bounary

x = b(t), and ∂H
∂x

= 0 at the fixed point x = 0.

We consider a simple PDE model for glaciers proposed by Oerlemans [3] in

1984.

2.1. Model Derivation

In one dimension the continuity equation for ice can be written as

∂H

∂t
= −

∂(Hu)

∂x
+ s(x), (1)

where H is the ice thickness, s(x) = sa(x)− sb(x), with sa the accumulation

rate of snow and sb the basal melting rate. Also u is defined as the mean
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;(2) with �dx



where c is a single positive constant parameter.



From (1), using Leibniz’s integral rule, and applying the boundary conditions

d

dt

∫ b(t)

0

H(x, t)dx =

∫ b(t)

0

∂H

∂t
dx + H(b(t), t)

db(t)

dt

= −

∫ b(t)

0

∂

∂x
[Hu]dx +

∫ b(t)

0

s(x)dx

= − [Hu]b(t)0 +

∫ b(t)

0

s(x)dx

=

∫ b(t)

0

s(x)dx, (8)

the physical equivalent of which states that any change in the integral of ice

thickness over the whole glacier, or equivalently any change in the ice volume,

is due only to the snow term, which represents the net accumulation/ablation

of snow over the whole glacier.

3. Snout Behaviour

From (5), with n = 3 we derive the useful form

u = −c(H4/3Hx)3 = −
27

343
c
[
(H7/3)x

]3
, (9)

with n = 3.

When expressing the velocity in this manner it is interesting to substitute an

expression for H that has the right general shape and satisfies the boundary

conditions, i.e.

H = (1 − x2)α (10)

where α > 0, for which

H
7

3 = (1 − x2)
7α
3

(H7/3)x = −2x.
7α

3
(1 − x2)

7α
3
−1. (11)
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4. Subdomain mass balance (SDMB)

Since the problem involves a moving boundary, a natural description is to

use a moving framework, for which we define a velocity v(x, t) at any arbitrary

point x̂ [1]. To define this velocity we assume that equation (8) holds in any

moving subdomain [0, x̂(t)] of [0, b(t)]. In physical terms this velocity v is such

that the ice volume changes only due to the local accumulation/ablation of

snow. In equation form we assume that

d

dt

∫ x̂(t)

0

H(x, t)dx =

∫ x̂(t)

0

s(x)dx (15)

for each subdomain (0, x̂(t)).

By Leibniz’s integral rule, making use of (6) and the boundary conditions

given in Section 2,

d

dt

∫ x̂(t)

0

H(x, t)dx =

∫ x̂(t)

0

∂H

∂t
dx + H(x̂(t), t)

dx̂(t)

dt

∣∣∣∣∣

x̂

0

= cH5H3
x|x̂ +

∫ x̂(t)

0

s(x)dx + H(x̂(t), t)
dx̂(t)

dt
. (16)

Therefore the assumption (15) is equivalent to

∫ x̂(t)

0

{
cH5H3

x + H(x̂(t), t)
dx̂(t)

dt

}
dx = 0

which, since x̂(t) is arbitrary, gives

cH5H3
x + H(x̂(t), t)

dx̂(t)

dt
= 0.

Hence the velocity v = dx̂/dt is driven only by the diffusion term and we

obtain

v =
dx̂(t)

dt
= −

cH5H3
x

H
= −cH4H3

x = −c2

[
(H7/3)x

]



where c2 = (3/7)3c. Note that this velocity is the same as taking v to be

the model velocity (5) at each of the nodes. Reversing the argument implies

that the assumption (15) and the velocity (5) are equivalent.

5. Numerical Method

Equation (6) is generally impossible to solve analytically, so we seek a

numerical approximation via a mesh. To do this we discretise (15) and (17).

The mesh positions are updated at every time step.

Computation is performed with initial conditions (10) with α set to 1.

The snow term is approximated for all time by the linear function (as in Van

Der Veen [8])

s(x) = e(1 − dx), (18)

where d and e are the snow parameters, set to be 0.5 and 0.05 respectively.

The model is run for a sufficient length of time for the boundary to wait,

then move. The initial mesh is chosen to be evenly spaced.

5.1. Explicit time-stepping

To advance the node positions x̂i from the velocity (17) we use an explicit

Euler scheme. Letting k denote the time discretisation level,

x̂k+1
i − x̂k

i

∆t
= −c2

[[
(H

7/3
i )x

]3
]k

,

(19)
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Therefore, dropping the hat notation for convenience, at each time step we

update each mesh point by:

xk+1
i = xk

i − c2∆t

[[
(H

7/3
i )x

]3
]k

(20)

Since we do not seek high levels of accuracy Euler time-stepping is sufficient,

provided the time step is suitably small to ensure stability.

To determine the updated ice thickness we use the same time-stepping scheme

on equation (15). Note that the limits have been chosen to give an incremental

form. [∫ xj+1

xj−1
Hdx

]k+1

−
[∫ xj+1

xj−1
Hdx

]k

∆t
=

∫ xj+1

xj−1

sdx.

Using the midpoint rule we obtain the approximation

(xk+1
j+1 − xk+1

j−1)Hk+1
j − (xk

j+1 − xk
j−1)H

k
j = ∆t(xk

j+1 − xk
j−1)s

k
j ,

giving

Hk+1
j =

(xk
j+1 − xk

j−1)

(xk+1
j+1 − xk+1

j−1)
(Hk

j + ∆tsk
j ). (21)

5.2. Results

The model is run with 51 mesh points (∆x = 0.02), with a time step

∆t = 0.005.

Varying the parameter α in the initial conditions shows the snout profile

behaviour of Section 3. In Fig. 2(a) we see that when α = 3/7 the gradient

is effectively infinite at the boundary, while a comparison case of α > 3/7

shows a finite gradient. Similarly, looking at the initial velocities for each of

the two cases we see in Fig. 2(b) that the boundary does not move when

α > 3/7, while in the comparison case it does. Also of note is that the peak
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discontinuity forms. Since the velocity must remain continuous for physical

reasons, the limit α = 3/7 cannot be attained and the snout must move.

We now consider the transition in time of v(x, t) to α = 3/7 from above

for small (b0 − x) under the subdomain mass balance assumption (15). To

leading order in (b0 − x) the time-varying form of (23) is

H(x, t) = (b0 − x̂)αg(x, t) (26)

where x̂ = x(t), while that of (24) is

v(x, t) = cα3(b0 − x̂)7α−3 {G(x̂, t)}3 . (27)

We consider the evolution of the velocity under the subdomain mass

balance assumption (15) applied to the interval (x, b0), where (b0 − x̂) is

small. Let θ(t) be the positive mass in the triangle consisting of points

(x̂, H(x, t)), (x̂, 0) and the fixed point (b0, 0). To leading order in (b0 − x̂),

therefore,

θ(t) =
1

2
(b0 − x̂)H(x, t). (28)

Hence, from (26), to leading order in (b0 − x̂),

1

2
(b0 − x̂)α+1g(x̂, t) = θ(t)

so that on the trajectory given by (28) from (27) the velocity at time t can

be written

v(t) = cα3(b0 − x̂)7α−3

(
2θ(t)

(b0 − x)α+1

)7

= cα3(2θ(t))7(b0 − x̂)−10 (29)

and thus on the trajectory given by (28)

α3 =
1

c

1

(2θ(t))7
(b0 − x̂)10v(t)
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and finally rearranged in the form of a Burgers-like equation with additional

source terms,

vt + 11vvx = 3cH5H2
xvxx − 3cH4H2

xsx − 4cH3H3
xs. (34)

Hence
dv

t= 3cH

5

H

2
x
vxx − 3cH

4

H

2
x

s x − 4cH

3

H

3
xH(34)



7. Discussion

We have seen that a moving mesh method based on local mass balance

works well for a simple one-dimensional glacier. We also analysed the conditions

required for the snout to move, which required an infinite slope condition to

be met asymptotically at the boundary in order for the velocity at this point

to be non-zero. For an initial condition in the form of the quadratic function

(10) with α > 3/7, we were able to simulate the qualitative waiting time

behaviour of the glacier as the power of α evolved to 3/7.

The model (6) works well for glaciers that are advancing, but since the

velocity is proportional to the negative slope at the snout the glacier cannot

retreat.

However, it is observed that glaciers also break-up, where large sections of



top and bottom of the glacier to be moving quicker than the middle section,

and the impact of basal sliding could then be analysed more effectively.

Alternatively we could keep the depth averaged vertically and consider the

domain in the (x, y) plane, as opposed to a cross-section in the x-plane as

is modelled currently. This will require additional boundary conditions at

the sides of the glacier, the type depending on whether the boundary is a

solid wall (no flux condition) or whether the glacier just curves to the ground

(H = 0). The model itself then takes the form

Ht(x, y, t) = ∇.
[
H(x, y, t)5∇H(x, y, t)3

]
+ s(x, y). (37)

A viable 2D numerical model using the same moving mesh approach is

possible using finite element approximation.

Steering away from H = 0 at the snout, Payne et. al. [5] consider the

different boundary conditions which occur when a glacier reaches the edge

of a cliff or enters the ocean, as well as different representations of u. For

cases where the glacier mostly sits on the water (ice shelf) there is the added

problem of buoyancy. Payne et. al. propose a maritime boundary condition

of the form
∂v

∂x

∣∣∣∣
shelffront

= A

[
1

4
ρig

(
1 −

ρi

ρw

)]n

hn, (38)

where ρw is an additional variable introduced for the density of the water.

A further objective in this ongoing work is to introduce the concepts

of Data Assimilation. Here the aim is to set up an inverse problem to

predict internal variables and model forcing using observations (mostly taken

remotely) to further improve the model accuracy.

17



References


	Cover_10_27
	ICFD paper (2)

