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Abstract

Implementations of incremental variational data assimilation require

the iterative minimization of a series of linear cost functions. The accuracy

and speed with which these linear minimization problems can be solved

is determined by the condition number of the Hessian of the problem. In

this study we examine how different components of the assimilation sys-

tem influence this condition number. Theoretical bounds on the condition

number for a single parameter system are presented and used to predict

how the condition number is affected by the observation distribution and

accuracy and by the specified lengthscales in the background error co-

variance matrix. The theoretical results are verified in the Met Office

variational data assimilation system, using both pseudo-observations and

real data.

1 Introduction

An important component of numerical weather prediction (NWP) systems is
the determination of an appropriate set of initial conditions from observations
by means of techniques of data assimilation. In general observations of the at-
mosphere are only indirectly related to model variables and are many fewer in
number than the number of model states that need to be initialized. Data assim-
ilation techniques aim to combine these measurements with a previous forecast,



Variational data assimilation is the method of choice for many current NWP



fice assimilation scheme. In particular we show, using both theory and the
operational system, that the conditioning of variational data assimilation is de-



In the case of incremental 4DVar the linearized minimization problem takes
the form

J̃(δx0) =
1

2
[δx0 − (xb

0 − x0)]
T B−1[δx0 − (xb

0 − x0)]

+
1

2

n
∑

i=0

(Hiδxi − di)
T R−1

i (Hiδxi − di), (3)

subject to i



For example, the rate of convergence of the conjugate gradient method can be
bounded in terms of the condition number of the Hessian (Golub and Van Loan,
1996, Theorem 10.2.6).

For the preconditioned variational cost function (5) the Hessian is given by
the expression

S = I +

n
∑

i=0

B1/2M(ti, t0)
T HT

i R−1
i HiM(ti, t0)B

1/2, (6)

where M(ti, t0) = M(ti, ti−1)M(ti−1, ti−2) . . .M(t1, t0). In general we have
fewer observations than variables we are trying to estimate and so the second
term in the expression (6) is not full rank. In this case the smallest eigenvalue
of S is one and the condition number is equal to the largest eigenvalue. We now
investigate the different factors that affect the conditioning of the preconditioned
Hessian. We first present the conditioning theory using a simple system.

3 Conditioning for a single parameter system

3.1 Theory

We consider the case of 3DVar applied to a single parameter system on a one-
dimensional periodic domain, discretized using N grid points ξi, i = 1, . . . , N .
For this case the preconditioned Hessian (6) reduces to

S = IN + B1/2HT R−1HB1/2. (7)

We assume we have a set of p < N direct observations of the parameter at grid
points, so that HT H is a diagonal matrix, where the diagonal element is equal to
one if that component of the state is observed and zero otherwise. We further
assume the observation errors are uncorrelated with error variance σ2

o , which
implies that the observation error covariance matrix R = σ2

oIp. We write the
background covariance matrix in the form B = σ2

bC where C is the background
error correlation matrix with components ci,j and σ2

b denotes the background
error variance. We assume that the correlation structures are homogeneous and
isotropic, so that the coefficients ci,j depend only on the distance between points
ξi and ξj . Then, under the assumptions given we can show that the condition
number of the matrix (7) satisfies

1 +
σ2

b

σ2
o

β ≤ κ(IN + B1/2HT R−1HB1/2)

≤ 1 +
σ2

b

σ2
o

||HCHT ||∞

= 1 +
σ2

b

σ2
o



max
i∈J

∑

j∈J

|ci,j |



 , (8)

5



where β = 1
p

∑

i,j∈J ci,j , and J is the set of indices
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condition number,

1 +
1

(n + 1)p

σ2
b

σ2
o

(n+1)p
∑

i,j=1

(ĤCĤT )i,j

≤ κ(S) ≤ 1 +
σ2

b

σ2
o

||ĤCĤT ||∞. (13)

A comparison of this expression with (8) shows that the bounds on the condition
number of the 4DVar Hessian for this system are very similar to those of the
3DVar Hessian, with the matrix Ĥ taking the place of the linear observation
operator H. Hence many of the qualitative conclusions discussed in section 3.1



Condition number
Error Variance 3DVar 4DVar

1 152422 180781
10 15243 18078
25 6098 7232
50 3050 3618
75 2033 2412
100 1525 1809

Table 2: Change of condition number with observation error variance in the
Met Office 3DVar and 4DVar systems using pseudo-observations.

The largest eigenvalues of the Hessian are calculated using the Lanczos method
and, since the Hessian is of the form (6), the condition number is simply equal
to the largest eigenvalue. We begin by verifying the theory developed above
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Figure 5: Conditioning of the Met Office 3DVar scheme using only selected





Experiment Condition number
Scheme Observations No Thinning Thinned Data
3DVar Only Surface 3395 501



5 Conclusions

The conditioning of the variational data assimilation problem plays an impor-
tant role in determining how accurately the current state of the atmosphere can
be determined in operational NWP. In most operational assimilation systems an
initial preconditioning is performed by means of a variable transformation. In
this work we have considered the conditioning of this preconditioned problem.
Theoretical results have illustrated that the condition number of the problem
is likely to increase when the observations are accurate and dense or when the
background error correlation lengthscales are large. These results have been
confirmed in a simple scalar example and illustrated using the variational data
assimilation system of the Met Office.

With advances in observing technology and the move to higher resolution
systems, it is clear that many more dense and accurate observations will be used
in future variational data assimilation schemes of NWP centres. The results
presented here imply that this will worsen the conditioning of the minimization
problem. We have shown that thinning of the data can help to improve the
conditioning, but a balance must be sought between the loss of accuracy due to
solving an ill-conditioned problem and the loss of accuracy caused by removing
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