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INTEGRAL OPERATORS IN ACOUSTICS AND THEIR BOUNDARY

ELEMENT DISCRETISATION
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LINDNER‖∗∗

Abstract. We consider the classical coupled, combined-fleld integral equation formulations for
time-harmonic acoustic scattering by a sound soft bounded obstacle. In recent work, we have proved
lower and upper bounds on the L2 condition numbers for these formulations, and also on the norms
of the classical acoustic single- and double-layer potential operators. These bounds to some extent
make explicit the dependence of condition numbers on the wave number k, the geometry of the
scatterer, and the coupling parameter. For example, with the usual choice of coupling parameter
they show that, while the condition number grows like k1=3 as k ! 1, when the scatterer is a
circle or sphere, it can grow as fast as k7=5 for a class of ‘trapping’ obstacles. In this paper we
prove further bounds, sharpening and extending our previous results. In particular we show that
there exist trapping obstacles for which the condition numbers grow as fast as exp(°k), for some
° > 0, as k ! 1 through some sequence. This result depends on exponential localisation bounds
on Laplace eigenfunctions in an ellipse that we prove in the appendix. We also clarify the correct
choice of coupling parameter in 2D for low k. In the second part of the paper we focus on the
boundary element discretisation of these operators. We discuss the extent to which the bounds
on the continuous operators are also satisfled by their discrete counterparts and, via numerical
experiments, we provide supporting evidence for some of the theoretical results, both quantitative
and asymptotic, indicating further which of the upper and lower bounds may be sharper.

1. Introduction. Consider scattering of a time-harmonic (e¡i!t time depen-
dence) acoustic wave ui by a bounded, sound soft obstacle occupying a compact set
› ‰ Rd (d = 2 or 3) with Lipschitz boundary ¡, which is such that the complement
set ›e := Rd n › is connected. The medium of propagation, occupying ›e, is assumed
to be homogeneous, isotropic and at rest. Under the assumption that ui is an entire
solution of the Helmholtz (or reduced wave) equation with wavenumber k = !=c > 0
(where c > 0 denotes the speed of sound), we seek the resulting time-harmonic acous-
tic pressure fleld u, satisfying the Helmholtz equation

¢u + k2u = 0 in ›e : (1.1)

This is to be solved subject to the sound soft boundary condition

u = 0 on ¡ = @›e; (1.2)

and the Sommerfeld radiation condition, which requires that
@us

@r
¡ ikus = o(r¡(d¡1)=2) (1.3)
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(Throughout the paper k ¢ k denotes the L2



detailed k¡explicit numerical analysis of hp boundary integral methods for general
Helmholtz scattering problems in [24]. There it is shown (for example in [24, Corol-
lary 3.18]) that, provided kA¡1

k;kk • Ckfl with C and fl independent of k, then an
hp reflnement strategy in which p grows logarithmically in k and h decreases like
k¡1 log k



For the case d = 3, when ¡ is a sphere of unit radius, it is further shown in [15]
that, for all su–ciently large k, (2.1) holds (see also [17]) and that, for every C 0 > 1,

kA¡1
k;kk • C 0; (2.4)

for all su–ciently large k. A more reflned and °exible upper bound on Ak;· than (2.1)
in the 3D case was recently derived in [5], where it was shown that, for all su–ciently
large k,

kDkk • C; kSkk • Ck¡2=3; (2.5)

for some constant C independent of k, and hence

kAk;·k = kI + Dk ¡ i·Skk • 1 + C
‡

1 + j·jk¡2=3
·

: (2.6)

The choice j·j = k yields the same estimate as (2.1), whereas the choice j·j = k2=3

yields a k¡independent bound for kAk;·k.

2.2. The case of a starlike obstacle. Consider the case when › is connected,
piecewise smooth and starlike, with ¡ Lipschitz and C2 in a neighbourhood of almost
every x 2 ¡, and

–¡ := ess inf
x2¡

x ¢ ”(x) > 0



to minimise the condition number of Ak;· (and see [3, 4] for some further evidence sup-



R0 > 0 (later we will choose R0 to be some characteristic length scale of ¡). It is



for all k ‚ k0 and all · 2 R.
In fact, under the conditions of Theorem 2.3, assuming further that f (N+1)(0) 6= 0,

we have quantitative lower bounds on kSkk and kAk;·k:

kSkk ‚ CN (0) k¡(N+1)=(2N+1) (1 + o(1)); as k ! 1; (2.20)

and

kAk;·k ‚
(

j·j CN (0) k¡(N+1)=(2N+1) (1 + o(1)); if j·jk¡(N+1)=(2N+1) ! 1;
j·j CN (0) k¡(N+1)=(2N+1) ¡ N

2
p

2
+ o(1); if j·j … k(N+1)=(2N+1);

(2.21)
as k ! 1, where

CN (0) =

r
1

8…

µr
…

2
N !

jf (N+1)(0)j
¶1=(2N+1)

:

Noting that f 00(0) is the curvature at x⁄, we have the following corollary by
applying these equations with N = 1.

Corollary 2.4. [10, Corollary 4.5] Suppose (in the 2D case) that ¡ is locally
C2 in a neighbourhood of some point x⁄ on the boundary and let R be the radius of
curvature at x⁄. If R < 1, then,

kSkk ‚ 1
2

µ
R

…

¶1=3

(2k)¡2=3(1 + o(1)); as k ! 1; (2.22)

and

kAk;·k ‚
( j·j

2

¡
R
…

¢1=3
(2k)¡2=3(1 + o(1)); if j·jk¡2=3 ! 1·j2R …

¢1=3
2(·)]TJ/F14 9.96 Tf 5.3 0 TD[(j)]TJ/F13 9.96 Tf 2.77 0 TD[(k)]TJ/F11 6.97 Tf 5.5 3.D[(¢)]TJ/F4 64D[(R)]TJ ET at



Then there exist C > 0 and k0 > 0 such that

kDkk ‚ CkN=(4N+4)

for all k > k0.

2.5. Lower bounds on kA¡1
k;·k for trapping obstacles. In [10] it is shown

that if › is a certain type of trapping obstacle then kA¡1
k;·k can be unbounded as

k ! 1. The type of trapping obstacle considered in [10] is an obstacle for which
there exists points P and Q on the boundary ¡ such that:

(i) ¡ is C1 in neighbourhoods of P and Q;
(ii) the line segment joining P and Q lies in ›e and;
(iii) this line segment is normal to ¡ at P and Q.

The line segment PQ is an example of a periodic orbit, by which we mean that it is
the possible locus of a point billiard particle moving in the exterior region ›e in a
straight line at unit speed as on an ideal billiard table, interacting with the boundary
¡ according to the usual law of specular re°ection (angle of re°ection equals angle of
incidence).





for m



where 'km
denotes the fundamental solution ' of the Helmholtz equation in 2D

in the case k = km. Then we can view vm 2 C2(„›e) as the total fleld for the
problem of scattering by the obstacle › in the case when vi

m is the incident fleld. For
deflning vs

m := vm ¡ vi
m it holds that ¢vs

m + k2
mvs

m = 0 in ›e, that vs
m satisfles the

Sommerfeld radiation condition (since vi
m does and vm is compactly supported), and

that vs
m = ¡vi

m on ¡. It follows, arguing as in the proof of [10, Theorem 5.1], that

A0
km;·

@vm

@”
= fm

(cf. (1.9)), where

fm(x) := 2
@vi

m

@”
(x) ¡ 2i·vi

m(x); x 2 ¡: (2.32)

Since kA¡1
km;·k = k(A0

km;·)¡1k, our proof of (2.25) will be completed if we can show
that, for some constant ° > 0,

°°°°
@vm

@”

°°°°
L2(¡)

‚ Ce°km

µ
1 +

j·j
km

¶¡1

kfmkL2(¡); (2.33)

for m = 0; 1; ::: and · 2 R n f0g.
To see that (2.30) implies (2.33), we use (2.31), and we also apply Green’s repre-

sentation theorem [13] to vm to give that

vm(x) =
Z

›e

'km(x; y)gm(y) dy +
Z

¡

'km(x; y)
@vm

@”
(y) ds(y); x 2 ›e: (2.34)

Using the bound (e.g. [10]) that jH(1)
0 (t)j •

p
2=(…t), for t > 0, which implies that

j'k
(ye4 0 TD[())]TJ/F13 9.96 Tf 5.54 0 TD[(dy)]TJ/F10 9.96 Tf 196 T75l 3.87 0 TD[(y)]TJ/F10 sD[(p)]TJ/F9g84 TD[(()]TJ/F138)



and (cf. x2.3) '0(x; y) := (1=2…) log(1=jx ¡ yj) is the standard fundamental solution
of the Laplace equation. Now, from standard mapping properties of Newtonian po-
tentials, it holds that w

(0)
m 2 H1(E), with kw

(0)
m kH



as k ! 0 in the 3D case, and that the flrst of these results holds also in the 2D case.
In the 2D case the limiting behaviour of Sk is more subtle. We see from (2.16) that

°°°°Sk ¡ S0 +
1

2…
log(kR0) T

°°°° ! 0 (2.41)

as k ! 0 where T is the flnite-rank integral operator deflned by

T`(x) =
Z

¡

`(y)ds(y); x 2 ¡:

The following limiting behaviour of Ak;· is clear from (2.40) and (2.41).
Lemma 2.9. As k ! 0,

Ak;· = I + D0 ¡ i·S0(1 + o(1)) (2.42)

in 3D, while

Ak;· = I + D0 + i·
1

2…
log(kR0) T ¡ i·S0(1 + o(1)) (2.43)

in 2D. Thus, unless

· =
‰

O(1); d = 3;
O((log k)¡1); d = 2;

as k ! 0; (2.44)

it holds that kAk;·k ! 1 as k ! 0. On the other hand, if, for some c0 2 R,

· ! c0 as k ! 0; (2.45)

(2.45)(2.45)



is well known that A0 is not injective, having a non-trivial null space which is the
set of constant functions, see e.g. [22, Theorem 6.20], [31]. To show invertibility of
A0 for c0 6= 0 we note flrst that, by interpolation, it is enough to show invertibility
on Hs(¡) for s = 0 and 1 [26]. Further, since the difierence A0 ¡ Ak;· is a compact
operator on L2(¡) and on H1(¡) (see e.g. the proof of Theorem 2.7 in [9]) and since
Ak;· is invertible, it holds that A0 is Fredholm of index zero on L2(¡) and on H1(¡),
so that it is invertible if and only if it is injective. Moreover, since A0 is Fredholm
with the same index on H1(¡) and L2(¡), and L2(¡) is dense in H1(¡), it follows
from a standard result on Fredholm operators (see e.g. [28, x1]), that the null-space
of A0 is a subset of H1(¡) ¾ H1=2(¡). In the case that ¡ is C2 that there are no
non-trivial functions in the null-space of A0 in C(¡) is shown in [22, Theorem 6.24]
in the case d = 2 and in [12, Theorem 3.33] in the case d = 3. In the case when ¡
is Lipschitz the same arguments can be used to prove injectivity of A0 in H1=2(¡),
replacing the mapping properties of layer potentials in classical function spaces in
[12, 22] with those in Sobolev spaces in [26] (cf. the proof of Theorem 2.5 in [9]).

2.7. Bounds on condition numbers and choice of ·. In this section we
bring together the results from the sections above and explore their implications for
the conditioning of Ak;·, and what this then implies regarding the choice of · to
minimise cond Ak;·. We have already noted in x2.2 and x2.6 recommendations made
in the literature regarding the choice of ·, mainly based on study of the case when ¡
is a circle or sphere. Overwhelmingly (see e.g. [20, 21, 3, 4, 17, 7, 8, 15]) the guidance
is to take · proportional to k for all but small values of k. The choice of · for small
k has been discussed already in x2.6. One choice of ·, recommended by Kress [20]
for the 3D case, that we have studied in x2.2, is · = max(1=(2R0); k). This choice,
by Lemma 2.9 above, is not suitable in the 2D case for low k, since with this choice
kAk;·k ! 1 as k ! 0. An alternative choice, which satisfles (2.46(lo)26(w96 Tf 11)]TJ/F14 9.96 wTJ/F12 6.97 T97.47 -1.59/F10 9.96 Tf7F13 9.9/F12;·





3. Discrete level. In this section we explore the relationship between kAk;·k
and kA¡1

k;·k and the norms of discrete versions of these operators, speciflcally the
norms of matrices arising from Galerkin discretisations.

Let XN ‰ L2(¡) be a flnite-dimensional subspace with PN : L2(¡) ! XN the
corresponding orthogonal projection. Let V be a bounded linear operator on L2(¡).
Then, given y 2 L2(¡), a Galerkin method for solving the equation

V x = y

for x 2 L2(¡), is to seek xN 2 XN such that

PN V xN = PN y: (3.1)

Let f`1; : : : ; `N g be an orthonormal basis of XN , deflne VN : XN ! XN by VN :=
PN V jXN

, and let TN : XN ! CN be deflned by

TN x = [(x; `1) ¢ ¢ ¢ (x; `N )]T :

Then TN is an isomorphism, indeed an isometric isomorphism if we give CN the
standard Euclidean norm k ¢ k2. Further (3.1) is equivalent to

V N TN xN = TN PN y;

where

V N := TN VN T ¡1
N

is the linear operator on CN whose matrix representation (that we denote also by
V N ) is the Galerkin matrix V N = [(V `j ; `i)]. Clearly

kVN k = kV N k (3.2)

(where we use k ¢ k on the right hand side to denote the matrix norm induced by the
vector norm k ¢ k2), since both TN and T ¡1

N are isometries. Also VN is invertible if
and only if V N is invertible and, if they are both invertible, then

kV ¡1
N k = k(V N )¡1k:

Now we need to determine the relationship between kVN k and kV k. We flrst require
the following result.

Lemma 3.1. If W is a bounded linear operator on L2(¡) and P1; P2; : : : is a
sequence of orthogonal projection operators with PN ` ! ` for all ` 2 L2(¡), then

kPN WPN k ! kW k;

as N ! 1.
Proof. Let ‚ = lim infN!1 kPN WPN k and choose a monotonic increasing se-

quence N1; N2; : : : of natural numbers with kPNkW PNk





4. Numerical results. In this section we compute kV N k for V = Sk; Dk; Ak;·,
and k(V N )¡1k for V = Ak;·, each for a variety of obstacles, and we compare the
computed values with the upper and lower bounds on the corresponding continuous
operators as described in x2. The aim is to provide supporting evidence for some of
the theoretical results described in x2, both quantitative and asymptotic, and to give
some indication of which of the upper and lower bounds may be sharper, particularly
when there is a signiflcant gap between them. We also seek an indication of the
extent to which the bounds on the continuous operators are satisfled by their discrete
counterparts.

We present results for · = k for all geometries under consideration, and we also
present results for · = k2=3 for certain speciflc examples. As we have discussed in
x2.7, the choice · = k is widespread in the literature, e.g. [3, 4, 15, 17, 20], and this
choice is supported by our own preceding analysis. The interesting choice · = k2=3,
proposed in [5], is also supported by some of the above analysis; for example we have
seen in x2.7 that, for a circular scatterer, cond Ak;· increases at the same rate as
k ! 1 whether · is proportional to k or proportional to k2=3.

Although our main focus is on larger values of k, for two examples we also inves-
tigate the limit k ! 0, presenting results for · = k and for · given by (2.49).

In each example the boundary ¡ is piecewise C1, that is ¡ =
Sp

j=1 ¡(j) with ¡(j)

a C1 arc. We denote the length of ¡(j) by Lj , and divide each ¡(j) into Nj segments
¡(j)

i , i = 1; : : : ; N( ( j)



Fig. 4.1. Obstacles corresponding to numerical experiments.

where here and throughout this section o(1) denotes a term which vanishes in the
limit as k ! 1. Theorem 2.6, (2.3) and (2.12) imply that, for k > 0,

C1 • kDkk • C2k1=2 + C3;

whilst we know that the sharper upper bound (2.5) holds in the case of a sphere,
that kDkk • C. The numerical results in Table 4.1 for the corresponding boundary
element matrices suggest that this sharper result, proved for a sphere, appears to
be applicable for a circle as well; we observe for the discrete approximations that
kSkk » k¡2=3 and kDkk » k0 (» in this section indicates that the ratio of the left
hand side to the right hand side is approximately constant in the limit k ! 1). The
quantitative lower bound on k



k (32…)¡1=3k¡2=3 kSkk p kDkk
5 7.355£10¡2 5.240£10¡1 1.144

10 4.633£10¡2 3.152£10¡1 -0.73 1.114
20 2.919£10¡2 1.997£10¡1 -0.66 1.084
40 1.839£10¡2 1.246£10¡1 -0.68 1.079
80 1.158£10¡2 7.798£10¡2 -0.68 1.076

160 7.297£10¡3 4.884£10¡2 -0.68 1.075
320 4.597£10¡3 3.076£10¡2 -0.67 1.072
640 2.896£10¡3 1.935£10¡2 -0.67 1.071

Table 4.1
Circle. Norms of Galerkin BEM approximations to Sk and Dk, and p values given by (4.1).

from Lemma 2.1. The upper bound on kAk;k2=3k for the case of a sphere is, from (2.6),
kAk;k2=3k • C3. The numerical results in Table 4.2 suggest that this sharper result
also holds for a circle; the results suggest kAk;k2=3k » k0, and that kAk;kk » k1=3

as expected. The quantitative lower bound on kAk;kk from Corollary 2.4 is a lower
bound in Table 4.2, underestimating the true norm by a factor of about 7.

k
¡

k
32…

¢1=3 kAk;kk p kA¡1
k;kk kAk;k2=3k kA¡1

k;k2=3k p B0;k2=3

5 0.37 2.663 0.986 2.016 0.995 3.82
10 0.46 3.233 0.28 0.987 1.993 1.056 0.09 4.49
20 0.58 4.021 0.32 0.987 1.981 1.260 0.26 5.38
40 0.74 5.030 0.32 0.987 2.000 1.701 0.43 6.56
80 0.93 6.271 0.32 0.987 1.999 2.039 0.26 8.06

160 1.17 7.859 0.33 0.987 1.990 2.694 0.40 9.98
320 1.47 9.883 0.33 0.987 1.998 3.407 0.34 12.40
640 1.85 12.419 0.33 0.987 2.000 4.307 0.34 15.49

Table 4.2
Circle. Galerkin BEM approximations to kAk;·k and kA−1

k;·k.

By Lemma 2.1, kA¡1
k;kk ‚ 1, which combined with (2.2) implies that kA¡1

k;kk = 1
for all k su–ciently large, and the numerical results in Table 4.2 show this behaviour.
The bound for general starlike obstacles applied to the circle, i.e. (2.8), gives that

kA¡1
k;·k • 1

2
+

•
1 +

k2

·2
+

(1 + 2k)2

2·2

‚1=2

=: B0;·:

Note that B0;k ! 2:5 (in fact it holds that 2:5 • B0;k • 2:6 for the range of k in Table
4.2), and that B0;k2=3 » p

3 k1=3 as k ! 1. We see from Table 4.2 that B0;· appears
to be an upper bound for the discretisation of kA¡1

k;·k as predicted, overestimatimating
by a factor of about 2.5 for the larger values of k when · = k, by a factor of about
3.6 when · = k2=3.

We note from Table 4.2 that, for this example, the condition number cond Ak;· =
kAk;·k kA¡1

k;·k appears to be slightly numerically smaller for · = k2=3 than for · = k.
It appears that, for both choices of ·, cond Ak;· increases approximately in proportion
to k1=3, though this is less clear in the case · = k2=3.

4.2. Ellipse. Next we consider the ellipse given by (2 cos t; 1
2 sin t), t 2 [0; 2…].

The more speciflc results of x2.1 do not apply in this case, and for upper bounds
21



on kSkk and kDkk we have only the results for general Lipschitz ¡ of x2.3. The
inequalities (2.22) and (2.11) imply that, for k ‚ 1,

(4…)¡1=3k¡2=3(1 + o(1)) • kSkk • Ck¡1=2;

the lower bound larger than for the case of the circle as the maximum radius of
curvature (R = 8) is larger. Theorem 2.6 and (2.12) with N = 0 imply that, for
k > 0,

C1 • kDkk • C2k1=2 + C3:

Inspecting the numerical results in Table 4.3, we see that the quantitative lower bound
on kSkk from (2.22) is clearly a lower bound for the norm of the discretised operator,
underestimating the true norm by a factor of about 6 at the highest wavenumbers (cf.
the results for the circle). The numerical results for kDkk suggest that kDkk » k0, i.e.
that the lower bound on kDkk is sharp, while it appears from the numerical results
that kSkk » kp, for p … ¡0:6.

k (4…)¡1=3k¡2=3 kSkk p kDkk p
5 1.471£10¡1 6.692£10¡1 1.458

10 9.267£10¡2 4.143£10¡1 -0.69 1.591 0.13
20 5.838£10¡2 2.730£10¡1 -0.60 1.671 0.07
40 3.678£10¡2 1.803£10¡1 -0.60 1.760 0.08
80 2.317£10¡2 1.209£10¡1 -0.58 1.819 0.05

160 1.459£10¡2 8.029£10¡2 -0.59 1.877 0.05
320 9.194£10¡3 5.269£10¡2 -0.61 1.919 0.03
640 5.792£10¡3 3.427£10¡2 -0.62 1.942 0.02

Table 4.3
Ellipse. Galerkin BEM approximations to kSkk and kDkk.



k
¡

k
4…

¢1=3 kAk;kk p kA¡1
k;kk kAk;k2=3k kA¡1

k;k2=3k p

5 0.736 3.507 0.987 2.417 0.996
10 0.927 4.267 0.28 0.987 2.473 1.024 0.04
20 1.168 5.589 0.39 0.987 2.554 1.300 0.34
40 1.471 7.317 0.39 0.987 2.599 1.662 0.35
80 1.853 9.751 0.41 0.987 2.580 1.986 0.26



x2 (see Figure 4.2), and recalling (2.12), we have, for k ‚ 1,

C1k1=6 • kDkk • C2k1=2:

The numerical results in Tables 4.5 and 4.6 provide some support for these estimates.
The lower bound on kSkk seems sharper than the upper bound, although in fact the
behaviour of kSkk appears to be rather similar to that for the ellipse. On the other
hand, the behaviour of k Tf 15.49 0 TD[(D)]TJ0ur ofk



The results in Table 4.7 clearly demonstrate that kSkk » k¡1=2 (cf. [32]), a slower rate
of decay than for the circle, ellipse or kite, and that the values of kSkk are bracketed
between the quantitative upper and lower bounds in (4.5), nearly coinciding with the
lower bound values.

k kSkk p
p

1=(…k) 2
p

1=(…k)
5 2.649£10¡1 2.523£10¡1 5.046£10¡1

10 1.817£10¡1 -0.54 1.784£10¡1 3.568£10¡1

20 1.266£10¡1 -0.52 1.262£10¡1 2.523£10¡1

40 8.960£10¡2 -0.50 8.921£10¡2 1.784£10¡1

80 6.326£10¡2 -0.52 6.308£10¡2 1.262£10¡1

160 4.472£10¡2 -0.50 4.460£10¡2 8.921£10¡2

320 3.162£10¡2 -0.50 3.154£10¡2 6.308£10¡2

640 2.236£10¡2 -0.50 2.230£10¡2 4.460£10¡2

Table 4.7
Crack. Galerkin BEM approximations for kSkk, and theoretical lower and upper bounds.

4.5. Square. Computed estimates for kSkk, kDkk, kAk;kk, kA¡1
k;kk, kAk;k2=3k

and kA¡1
k;k2=3k for the square of side length two are shown in Tables 4.8 and 4.9

below, for various k. The theoretical upper bounds from x2 that apply are identical
to those for the ellipse and kite examples above. In particular, since the square is
starlike satisfying the conditions of x2.2, the bounds (4.4) apply. However, as ¡ now
contains a straight line segment we have difierent lower bounds on kSkk, kAk;·k and
kDkk compared to the ellipse and the kite. Speciflcally, applying Theorem 2.2 and
recalling (2.11) and (2.13), it follows that, for k ‚ 1,

r
2

…k
+ O(k¡1) • kSkk • Ck¡1=2; (4.6)

r
2k

…
¡ 1 + O(1) • kAk;kk • Ck1=2; (4.7)

r
2
…

k1=6 ¡ 1 + O(k¡1=3) • kAk;k2=3k • Ck1=2: (4.8)

Applying Theorem 2.5 and recalling (2.12), we also have

C1k1=4 • kDkk • C2k1=2: (4.9)

It appears from Table 4.8 that kSkk » k¡1=2, as expected, and the quantitative lower
bound in (4.6) appears to be sharp, underestimating kSkk by only 3% at the highest
frequency. It also seems that kDkk » k1=4, indicating that the lower bound in (4.9)
is sharp in its dependence on k.

The results in Table 4.9 suggest that kAk;kk » kp, with p … 1=2, as expected
from (4.7). It appears that kAk;k2=3k is increasing roughly like k1=5. The quantitative
lower bound in (4.8) is seen to be a lower bound for the Galerkin BEM discretisation
of kAk;k2=3k in Table 4.9, underestimating kAk;k2=3k by about a factor 3.5 at the
highest frequency. As in the cases of the circle, ellipse, and kite, kA¡1

k;kk … 1 for all k,
while kA¡1

k;k2=3k is increasing as k increases, though the rate of increase is somewhat
erratic (from (2.7), we recall that kA¡1

k;k2=3k • Ck1=3). However, it appears that
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k
q

2
…k kSkk p kDkk p

5 3.568£10¡1 5.784£10¡1 1.316
10 2.523£10¡1 3.353£10¡1 -0.79 1.488 0.18
20 1.784£10¡1 2.137£10¡1 -0.65 1.730 0.22
40 1.262£10¡1 1.428£10¡1 -0.58 2.018 0.22
80 8.921£10¡2 9.760£10¡2 -0.55 2.389 0.24

160 6.308£10¡2 6.723£10¡2 -0.54 2.825 0.24
320 4.460£10¡2 4.667£10¡2 -0.53 3.346 0.25
640 3.154£10¡2 3.259£10¡2 -0.52 3.972 0.25

Table 4.8
Square. Galerkin BEM approximations for kSkk and kDkk.

cond Ak;k2=3 » kp, with p … 0:6, a faster rate of growth than cond Ak;k » k1=2, and,
for the largest value of k, cond Ak;k … cond Ak;k2=3 .

Where R0 > 0 is some length scale of the scatterer, it follows from Theorem 2.11
that choosing

· = ·⁄ := 1=(R0(1 ¡ ln(kR0));

ensures kAk;·k and kA¡1
k;·k remain bounded as k ! 0. This is true for any Lipschitz ¡

and (rather arbitrarily) we choose this example to illustrate this numerically. Deflne
R0 as in x2.2, so R0 =

p
2 for this particular scatterer (taking the origin at the centre

of the square). With this choice of R0, we show in Table 4.10 norm computations
for small values of k. We see that, while kA¡1

k;kk seems to blow up for small values
of k, the values of kA¡1

k;·∗k remain essentially constant, and cond Ak;·∗ appears to
be approaching a limit of about 3.7 as k ! 0. ¡



k kAk;kk kA¡1
k;kk p kAk;·∗k kA¡1

k;·∗k
10¡5 1.608 3684.85 1.738 2.106
10¡4 1.608 465.66 -0.89 1.723 2.105
10¡3 1.608 61.63 -0.88 1.703 2.104
10¡2 1.608 9.04 -0.83 1.680 2.100
10¡1 1.612 2.11 -0.63 1.693 2.081

1 2.391 1.88 -0.05 2.534 1.871
Table 4.10

Square. Galerkin BEM approximations for kAk;kk, kA−1
k;kk, kAk;·∗k , and kA−1

k;·∗k.

Dk ¡ i·Sk and x§ 2 ¡ are adjacent points on opposite sides of a thin part of ¡, then
•(x+; y) … •(x¡; y), y 2 ¡, so that the integral operator should be badly conditioned.
To explore the extent to which this is a problem, and the extent to which the bound
(2.7) re°ects actual behaviour in this limit, we show estimates for kAk;kk and kA¡1

k;kk
for a rectangle with side lengths 2 and 0.02 in Table 4.11 below, for various small
values of k.

Using the notation of x2.2, for this example we have –⁄ = –+ = 2, –¡ = 0:02, and
R0 =

p
4:0004, and (2.7) tells us that

kA¡1
k;·k • B;

where B is as deflned in x2.2. However, we see from Table 4.11 that this bound is a
gross overestimate, at least provided we choose · carefully. For the deflnition of B
implies that, whatever the choice of · 2 R n f0g,

B >
1
2

+
•µ

–+

–¡
+

4–⁄2

–2¡

¶ µ
–+

–¡
+

–⁄2

–2¡

¶‚1=2

> 2
–⁄2

–2¡
= 2 £ 104

for this geometry. If we choose · = k for small k then, indeed, we see signiflcant
blowup as k ! 0, as for the case of the square (indeed the values of kA¡1

k;·k are
similar). But, if we choose · = ·⁄ := 1=R0(1 ¡ ln(kR0)), we know from Theorem
2.11 that kA¡1

k;·k must stay bounded as k ! 0. In fact we see some mild, logarithmic
growth in Table 4.11, but kA¡1

k;·∗k is never larger than 26 for the range of k shown.
For the computations in Table 4.11 we used 100 elements on each boundary

segment. Comparing the algebraic rates p associated with kA¡1
k;kk for the flrst three

wavenumbers k = 10¡5; 10¡4; 10¡3 it appears possible that the discretisation does not
fully resolve kA¡1

k;kk for k = 10¡5 and that the exact value may be higher. However,
due to convergence issues of the underlying singular value decomposition for the norm
computation no flner discretisation could be used here.

4.7. Rectangular cavity. In the last two numerical examples we explore trap-
ping domains, as studied theoretically in x2.5. The rectangular cavity in Figure 4.1
is deflned by the polygon with the following coordinates: p0 = 0, p1 = (¡c; 0),
p2 = (¡c; ¡‘), p3 = (‘; ¡‘), p4 = (‘; 2c ¡ ‘), p5 = (¡c; 2c ¡ ‘), p6 = (¡c; 2a),
p7 = (0; 2a). Here, a = …=10, c = 1, and ‘ = c ¡ a. The width of the cavity is
2a = …=5. Hence we expect resonance values in the negative half of the complex
plane close to k = 5m, n 2 N (see [6, Figure 5.12] for numerical computations of exte-
rior resonances for this cavity). Since for k = 5m the width of the cavity is an integer
multiple of half a wavelength, Theorem 2.7 applies and implies that, for k = 5m and
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k kAk;kk kA¡1
k;kk p kAk;·∗k kA¡1

k;·∗k p

10¡5 1.978 3087.76 1.978 25.165
10¡4 1.978 924.25 -0.53 1.978 21.533 -0.07
10¡3 1.978 128.19 -0.86 1.978 17.581 -0.09
10¡2 1.978 45.28 -0.45 1.978 14.078 -0.10
10¡1 1.978 14.43 -0.50 1.978 10.384 -0.13

1 2.050 4.53 -0.50 3.310 3.570 -0.46
Table 4.11

Rectangle of side lengths 2 and 0.02. Galerkin BEM approximations to kAk;kk, kA−1
k;kk,
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k
1,0

=9.9771201566136298 k
4,0

=28.807002784875433

k
9,0

=60.218097688523919 k
14,0

=91.632551202864647

Fig. 4.3. Some exponentially localised modes of the ellipse associated with zeros of the radial
Mathieu function of order 0. In the notation of the appendix, the modes plotted are um;0 for
m = 1; 4; 9; and 14, corresponding to the wavenumbers km;0, m = 1; 4; 9; 14.

Estimates for kAk;kk and kA¡1
k;kk for the four wavenumbers from Figure 4.3 are

shown in Table 4.13. We expect, from Theorems 2.8 and 2.13, exponential growth
of kA¡1

k;kk and cond Ak;k



5. Conclusions. In this paper we have, in x2, summarised what is known re-
garding upper and lower bounds on the norms of the acoustic single- and double-layer
potential operators, Sk and Dk, and the combined layer potential operator Ak;·, with
an emphasis on how these bounds behave as a function of frequency, and the in°u-
ence of the shape of the boundary. We have also proved sharper upper bounds on
kSkk and kAk;·k for low k, have summarised what upper and lower bounds on kA¡1

k;·k
are known, and have shown that exponential growth of kA¡1

k;·k is possible as k ! 1
through some sequence of wave numbers, in the case of a certain class of 2D trapping
obstacles. Finally, we have discussed the condition number cond Ak;·, proving that it
remains bounded as k ! 0 with appropriate choices of the coupling parameter ·, and
showing that, while it increases as k ! 1 only as fast as k1=3 for a circle or sphere,
and at the rate k1=2 for a starlike polygon, it grows exponentially, as k increases
through some sequence, for certain trapping obstacles.

In x3 we have explored the implications of these results for Galerkin BEM dis-
cretisations of these operators, showing that the norms of the Galerkin BEM matrices
converge to the norms of the operators that they discretise, as the mesh is reflned,
and provided an orthonormal basis is used. Convergence to kA¡1

k;·k of the norm of the
inverse of the matrix corresponding to Ak;· has also been proved in the case that ¡
is C1. Thus we expect that the norm bounds at the continuous level in x2 will apply
also at the discrete level if the mesh is su–ciently reflned.

This has been conflrmed in x4 where we have explored a range of numerical
examples, includes shapes that are convex (both smooth and non-smooth), non-convex
but starlike, and non-starlike trapping obstacles. The quantitative upper and lower
bounds stated in x2 are found to be upper and lower bounds also at the discrete level,





for some k > 0.
Let a =

p
a2

1 ¡ a2
2 = a1", where " =

p
1 ¡ a2

2=a2
1 is the eccentricity of the ellipse,

and introduce elliptical coordinates („; ”), deflned by

x1 = a cosh „ cos ” and x2 = a sinh „ sin ”;

in terms of which

E = f(a cosh „ cos ”; a sinh „ sin ”) : 0 • „ • „0; 0 • ” < 2…g;

where „0 := tanh¡1(a2=a1). It is well known (see e.g. [35]) that the Laplace operator
separates in elliptical coordinates, and that in this coordinate system the Helmholtz
equation can be written as

µ
@2

@„2
+

@2

@”2
+ k2a2(sinh2 „ + sin2 ”)

¶
u = 0: (A.2)

Seeking separation of variables solutions in the form u(x) = M(„)N(”), we see that
(A.2) implies that N satisfles the circumferential (or standard) Mathieu equation

N 00(”) + (fi ¡ 2q cos 2”)N(”) = 0; (A.3)

while M satisfles the radial (or modifled) Mathieu equation

M 00(„) ¡ (fi ¡ 2q cosh 2„)M(„) = 0: (A.4)

In these equations

q =
1
4

(ka)2 =
1
4

(ka1)2(1 ¡ (a2=a1)2)

and fi



and only if M 2 C2(R) is an even function that satisfles (A.4). This uniquely specifles
M to within multiplication by a constant. The standard notation for this (real-valued)
solution is M(„) = Mc(1)

n („; q); see [14, x28.20(iv)] for the standard normalization.
Thus we see that u(x) = M(„)N(”) = Mc(1)

n („; q)cen(”; q) satisfles the full eigenvalue
problem (A.1) if and only if

Mc(1)
n („0; q) = 0: (A.6)

The complication in computing eigenmodes of the ellipse (for methods see [35, 29])
is that it is a multi-parameter spectral problem: to satisfy (A.6) we have to flnd a
pair (fi; q) such that, simultaneously, (A.3) has a periodic solution and (A.4) has a
solution which is even if N is even and which vanishes at „0. Neves [29] gives a proof
based on multi-parameter spectral theory that for each pair (m; n) 2 f0; 1; :::g2 there
exists a unique qm;n > 0 such that (A.6) holds with Mc(1)

n (¢; qm;n) having m zeros in
(0; „0). The function

u(x) = um;n(x) := Mc(1)
n („; qm;n)cen(”; qm;n) (A.7)

is then an eigenfunction of (A.1) for k = km;n :=
p

4qm;n=a. It is well known (e.g. [12])
that the eigenvalues of the Laplace operator have inflnity as the only accumulation
point, so that km;n ! 1 as m + n ! 1.

For some ”0 2 (0; …=2) let

E”0 := f(a cosh „ cos ”; a sinh „ sin ”) : 0 • „ < „0; j”j < ”0 or j… ¡ ”j < ”0g
¾ f(x1; x2) 2 E : jx1j > a1 cos ”0g:

Let

‰”0(m; n) :=

(R
E”

(um;n)2 dxR
E

(um;n)2 dx

)1=2

:

Our particular interest in this appendix is in families of eigenfunctions that are ex-
ponentially localised around the periodic orbit f(0; x2) : jx2j • a2g. In particular we
will show below that the family um;0, m = 0; 1; ::: is so localised; precisely, we will
show that, for all ”0 2 (0; …=2), there exists fl > 0 such that ‰”0(m; 0) = O(e¡flkm) as
m ! 1.

Noting (A.5), we see that
Z

E”

(um;n)2 dx = 4a2

Z ”0

0

Z „0

0

(sinh2 „ + sin2 ”)
‡

Mc(1)
n („; qm;n)cen(”; qm;n)

·2

d„d”:

Thus, deflning

Mj :=
Z „0

0

(sinh „)2j
‡

Mc(1)
n („; qm;n)

·2

d„; Is(m; n) :=
Z s

0

(cen(”; qm;n))2
d”;

it holds that

(‰”0(m; n))2 • (M1 + M0 sin2 ”0)I”0(m; n)
M1I…=2(m; n) + M0 sin2 ”0(I…=2(m; n) ¡ I”0(m; n))

• I”0(m; n)
I…=2(m; n) ¡ I”0(m; n)

: (A.8)
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It is su–cient for the needs of this paper to estimate the asymptotics as m ! 1
of ‰”0(m; n) for n = 0, and so we will restrict our attention to this case. For this
purpose, and abbreviating qm;0 as qm and km;0 as km, recall that ce0(”; qm) satisfles
(A.3) with q = qm and with fi = a0(qm). Now the asymptotics of the eigenvalue a0(q)
as q ! 1 are known. From [14] we have that

a0(q) = ¡2q + q1=2 + O(1) (A.9)

as q ! 1. Thus we see that, for



Since w0=w, w00=w 2 BC(R), the bilinear form a is bounded. For ` 2 H1(R),

a(`; `) =
Z 1

¡1

ˆ
(`0)2 +

w0

w
(`2)0 ¡

ˆ
p + 2

µ
w0

w

¶2

¡ w00

w

!
`2

!
ds

=
Z 1

¡1

ˆ
(`0)2 ¡

ˆ
p +

µ
w0

w

¶2
!

`2

!
ds;

where the last step follows by integration by parts, on noting that (w0=w)0 = w00=w ¡
(w0=w)2. Since ¡p ¡ (w0=w)2 ‚ c2 ¡ fl2, a is coercive if fl < c, with

a(`; `) ‚ k`k2
1; where k`k1 :=

µZ 1

¡1

¡
(`0)2 +

¡
c2 ¡ fl2

¢
`2

¢
ds

¶1=2

:

Applying the Lax-Milgram lemma, it follows from (A.11) that

p
c2 ¡ fl2kv265

k



and choosing fl = c2(”c ¡ ”0)=(1 +
p

1 + (”c ¡ ”0)2c2
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