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in Section 4 we introduce an increment to our balanced variable and re-derive
the balanced equations in terms of a small increment. We then have to consider
the ellipticity condition for linear pdes, which is also presented in Section 4, and
show an interesting result linking the linear pdes’ ellipticity condition to that
of the non-linear’s pdes’ conditions.

In Section 5 we perform a scale analysis for both the ellipticity condition
and the terms in the linear pdes to explore the impact of the flow dependency
with different Rossby-Haurwitz waves (Williamson et al., 1992) which are pa-
rameterised by the Burger number. The values come from the Met Office’s
2D shallow water equations model in a non-inertial framework on the sphere
(Malcolm 1996).

2 Balance and Decompositions into Balanced and
Unbalanced Variables

The aim of this section is to give an overview firstly of the current method
for decomposing the horizontal wind fields into two new uncorrelated variables,
Section 2.1, and secondly to provide an outline of the theory which enables
us to define an alternative form for the balanced variable and the associated
decomposition, Section 2.2, which comes from MR96 and MR02. The final
subsection, Section 2.3, gives a brief outline of the alternative balanced wind
field and the non-linear decomposition in coordinate free vector form.

2.1 A Decomposition Based on the Kinematics of Vortic-
ity and Divergence

The current method in use at the Met Office is outlined in Lorenc et al. (2000).
There they describe how the ‘control variables’ (that is, the variables used in
the assimilation scheme as opposed to the variables used in the NWP model)
are defined in terms of a Helmholtz decomposition of the horizontal momentum
together with a linear balance condition. Their basic strategy is to define a
(projective) transformation (u; v; p; �) 7→ ( ; �;Ap), where the variables on the
left are the two horizontal components of the wind field, the pressure, and the
density, and the three variables on the right are a stream function, a velocity
potential and an ‘unbalanced’ pressure. Then the horizontal wind field, u, is
decomposed into a balanced and an ‘unbalanced’ variable through the pair of
Poisson equations

� ≡ k · ∇ × u = ∇2 ; (1a)

� ≡ ∇ · u = ∇2�; (1b)

where k is the local unit vertical vector, � is the relative vorticity, � is the
divergence and ∇ is the gradient operator in the horizontal.
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3.2 Higher order balance equations

The two components of the geostrophic wind are thus

ug = − g

af

@h

@�
; and vg =

g

af cos �

@h

@�
: (13)

Recalling the definition for ub,

ub ≡ ug − �

f
(ug · ∇) (k × ug) ;

and expanding using the operators defined earlier gives

ub ≡ ug − �

f
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where the terms involving tan � occur as a result of the metric terms, (12).
We now expand the geostrophic wind components in (14) and (15) using

(13), to give
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; (17)

where

� ≡ df

d�
: (18)

The final step to arrive at the non-linear pdes depends on which variable
we choose for the balanced component. If we use the RV then we obtain the
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following Monge-Ampère equation for h
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An important feature of (19) is that all higher order derivatives of h



where

� =
@2h

@�2
; � =

@2h

@�2
; � =

@2h

@�@�
: (22)

The coefficients A, B, C, D and E in (21) are given functions of (�; �; h; p; q),
where p = @h=@�; q = @h=@�.

The classification of (19) and (20) is determined by transforming the pde



condition is that for a Poisson equation, which is always satisfied since 1 > 0,
and therefore (20) with � = 0 is robustly elliptic.

For the PV balance equation, (20), the coefficients are similar to those for
(19), with a small modification to A. As a consequence of the additional terms
in A, the ellipticity condition for (20) becomes

(1 + 2�) f

2
+

�2

fa2

(
v2
g + u2

g

)
− 3��
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��2 tan �
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v2
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)
:

Due to the �f terms being present on both sides of the equation we therefore
have the same condition for the PV as we had for the RV approach.

We also require boundary conditions to ensure that the elliptic equations
have a solution. For these problems on the sphere we have periodicity of h in
the � direction, whilst in the � direction there is a choice of conditions. The
first is that because the � direction is not defined at the poles, we cannot have
any change in h in the direction of �, that is, @h=@� = 0. An alternative is to
assume periodicity of h with respect to �





resulting linear pde for the balanced height increment h′ is
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4.2 Ellipticity Theory: Part II



5 Scale Analysis

Given the result indicated in the last section we now perform a scale analysis
on the new balance equations to identify for which types of flows these balance
equations give us extra information. We also consider the terms in (30) and
(31) to see if all the terms are significant.

The values we use to assess the effects the flow dependency has on the
ellipticity conditions and on the coefficients come from three different runs of
the Met Office’s 2-D shallow water equations model, initialised by different
Rossby-Haurwitz waves (Williamson et al., 1992). The Met Office’s shallow
water model runs on an Arakawa C-grid and more details of the model can be
found in Malcolm (1996).

The initial conditions for a Rossby-Haurwitz wave are defined by

h =
1

g

(
gh0 + a2A (�) + a2B (�) cosR�

+ a2C (�) cos 2R�
)
;

u = a! cos � + aK cosR−1 �
(
R sin2 � − cos2 �

)
× cosR�;

v = −aKR cosR−1 � sin � sinR�;

� = 2! sin � −K sin � cosR �
(
R2 + 3R+ 2

)
× cosR�;

where h0 is the height at the poles and A (�) ; B (�) and C (�) are given by

A (�) =
!

2
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1

4
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(
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)
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]
;
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)
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2
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]
;

C (�) =
K2

4
cos2R �

[
(R+ 1) cos2 � − (R+ 2)

]
;

and !, K and R are three parameters that determine the characteristics of
the Rossby-Haurwitz wave along with the initial height at the poles, h0. The
parameter R is the wavenumber and, for the results that are shown here, is
taken to be 4 as this is the highest stable wave number for this type of wave
in the shallow water model (Hoskins, 1973). The parameter h0, determines the
shortest height for the wave, ! determines the underlying zonal flow from West
to East and K controls the amplitude of the wave.

We consider three sets of values for the parameters that generate flows with
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different Burger numbers, Bu. This number is given by

Bu ≡
√
gh

fL
=
LR

L
; (37)

where L is the horizontal length scale and LR is the Rossby radius of deforma-
tion.

The three test cases generate different values for Bu at different latitudes. A
more detailed study of the change in the Burger number for each of the following
three test cases can be found in Wlasak (2002).

The first test case, TC1 hereafter, has the parameters h0 = 50m and ! =
K = 7







Table 4: Scale Analysis 4: Scale Analysis of the Coefficients in B2 for the PV
Method.

Coefficients
(
s−6
)

TC1 TC2 TC3

16g2

(
@ūg
@�

)2

h̄2 2:53 × 10−14 6:31 × 10−16 9:73 × 10−18

−
32g2 sin �

@ūg
@�

v̄g

ah̄2 −2:28 × 10−14 −6:42 × 10−16 −7:42 × 1018

16g2 sin2 �v̄2
g

a2h̄2 5:13 × 10−15 1:63 × 10−16 1:42 × 10−18

B2 7:63 × 10−15 1:52 × 10−16 3:73 × 10−18

this, we see that for TC1 and TC3 this term is a factor of 102 larger than all
of the other coefficients in the 4AC term. However, for TC2 this term is only
a factor of 10 larger than the others. We can therefore tentatively say that for
TC2 the Laplacian term is affected by the extra terms.

If we now consider the approximat2



Table 5: Scale Analysis 5: Scale Analysis of the Coefficients in 4AC for the PV
Method

Coefficients
(
s−6
)

TC1 TC2 TC3

4g2f2 cos2 �
h̄2 7:45 × 10−11 2:47 × 10−14 3:11 × 10−14

8g2f cos �
@ūg
@�

h̄2u
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�h11 3
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Table 6: Scale Analysis 6: Scale Analysis of the Coefficients in the Differential
Equation for the RV Method.

Coefficient
(
ms−3

)
Term TC1 TC2 TC3

gf hλλ 1:01 × 10−3 1:01 × 10−3 1:01 × 10−3

sin � cos �fg hθ 5:06 × 10−4 5:06 × 10−4 5:06 × 10−4

cos2 �fg hθθ 5:06 × 10−4 5:06 × 10−4 5:06 × 10−4

2g
@ūg
@�

hθλ 2:62 × 10−5 2:29 × 10−4 2:53 × 10−5

2g cos �
@v̄g







Monge-Ampère equation that determines a balanced height field if we consider
the non-linear version of ub, or a linear elliptic pde for a balanced height incre-
ment if we consider the linearised version of the balanced wind field, ub′. We
showed that the ellipticity conditions for both types of pdes had a physical sig-
nificance . However, for the linearised equation we still required the base state
height, h̄, to satisfy the nonlinear ellipticity condition for a solution to exist.

In the last section we performed a scale analysis of the ellipticity condition
using three different Rossby-Haurwitz waves with the Met Office’s 2D shallow
water equations model on the sphere. At the beginning of Section 5 we posed
three questions about the ellipticity condition and the linear pdes. We now
present conclusions to these questions.

The first question was: for what types of flows may the ellipticity conditions
fail? The main answer to this question is the same for both the RV and PV
method. Flows much faster than TC2, but also flows which are rapidly changing
over small distances, could cause the B2 term to grow, which we require to
be smaller than the 4AC term. If not, then the ellipticity condition would be
violated. We must also recall that these derivatives are in the 4AC term, besides
the Laplacian coefficients, and could counteract the effect in the B2 term.

Question two was: when, if at all, are the extra terms significant with respect
to the Laplacian? We answer this separately for the RV and PV method. For the
RV method the results for TC2, Table 6, show that we should use all the extra
terms for flows of this type, flows that are not dominated by the geostrophic
flow, as these are comparable with the Laplacian. This is not the case for
TC3 where we have geostrophic flow dominating and the extra terms are quite
small compared to the Laplacian. For TC1 we see that some of the terms are
comparable to the Laplacian and so suggests including all the terms.



proach as the extra factor from the linearisation of the potential vorticity is
significantly larger than the Laplacian term.

The third test case, high Burger number, high height but slow wave, shows
signs that the extra terms may not be that significant when considering the RV
method but are slightly more significant if considering the PV approach. The
Laplacian could, however, be sufficient for this type of near geostrophic flow.

In summary in this paper we have presented a hierachy of balance equations
in both non-linear and linearised form which have come from a Hamiltonian
framework derived in McIntyre and Roulstone (1996) and (2002). The advantage
of these balance relationships is that they are flow dependent and are compatible
for certain flow patterns with a data assimilation framework.

The non-linear balance relationships are in the form of Monge-Ampère equa-
tions which have an associated ellipticity condition which guarantees a solution
if this conidtion is not violated. The ellipticity condition has enabled us to in-
vestigate when the flow dependency of the associated balanced decomposition
may fail. The non-linear balance equations are second order approximations to
geostrophy on the sphere and we have been able to test these conditions with
idealised data to see the scale of the second order terms and when they may
have an influence on the balance equations.

It should be noted that the ellipticity condition for the non-linear balance
equations is similar in form to those shown in Knox (1997), but here we have
not ignored the metric terms referred to in Knox (1997) as we have shown these
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