Department of Mathematics

Preprint MPS_2010-20

4 May 2010

Flow-Dependent Balance Conditions for Incremental Data Assimilation: Elliptic Operators

by

S.J. Fletcher, N.K. Nichols and I. Roulstone

b (L op. cit

$$r \quad r^2 ; \qquad (1)$$

$$r \quad \mathbf{j}^2 r^2 ; \tag{1b}$$

 $r = r^{2};$ $r = r^{2};$

$$u_g \sim \frac{g}{af} \frac{@h}{@}; \qquad v_g \sim \frac{g}{af} \frac{@h}{@}: \qquad (1)$$

h fi k k b

$$\overset{b}{\mathbf{v}} \quad \mathbf{v} \quad \overline{f} \begin{pmatrix} \mathbf{v} & r \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ \mathbf{v} \end{pmatrix};$$

p, p_{fi}, w

$$u^{b} \quad u_{g} \quad \frac{1}{f} \left(\frac{u_{g}}{a} \frac{\mathscr{Q}_{v_{g}}}{\mathscr{Q}} + \frac{v_{g}}{a} \frac{\mathscr{Q}_{v_{g}}}{\mathscr{Q}} + \frac{u_{g}}{a} u_{g}^{2} \right); \quad (1)$$

$$v^{b} \quad v_{g} + \frac{1}{f} \left(\frac{u_{g}}{a} \frac{\mathscr{Q}u_{g}}{\mathscr{Q}} + \frac{v_{g}}{a} \frac{\mathscr{Q}u_{g}}{\mathscr{Q}} - \frac{u_{g}}{a} u_{g} v_{g} \right); \tag{1}$$

$$\rho \quad v \quad v \quad \rho \quad \rho \quad \rho \quad v \quad (12).$$

(1), w

$$u^{b} \sim \frac{g}{af} \frac{@h}{@} \frac{g^{2}}{a^{3}f^{3}} \left(\frac{@h}{@} \frac{@^{2}h}{@@} \frac{@h}{@} \frac{@^{2}h}{@} \right)^{2} + \left(\left(\frac{@h}{@} \right)^{2} + \frac{2}{f} \left(\frac{@h}{@} \right)^{2} \right) - \frac{1}{f} \left(\frac{@h}{@} \right)^{2} \right); \qquad (1)$$

$$v^{b} \sim \frac{g}{af} \frac{@h}{@} + \frac{g^{2}}{a^{3}f^{3}} \left(\frac{@h}{@}\frac{@^{2}h}{@@}\right)$$
$$\frac{@h}{@}\frac{@^{2}h}{@^{2}} + \frac{@h}{@}\frac{@h}{@} + \frac{@h}{f}\frac{@h}{@}\frac{@h}{@}\right); \qquad (1)$$

r, _ , r h

$$b \sim \frac{g}{f}r^{2}h + \frac{g}{f^{2}a^{2}}\frac{@h}{@} + \frac{2g^{2}}{f^{3}a^{4}-2} \left(\left(\frac{@^{2}h}{@@}\right)^{2}\right)^{2}$$

$$= \frac{@^{2}h}{@^{2}}\frac{@^{2}h}{@^{2}} + 2 \qquad \frac{@h}{@}\frac{@^{2}h}{@@@} + 2 \qquad \left(\frac{@h}{@}\right)^{2}$$

$$+ \gamma \qquad \frac{@h}{@}\frac{@^{2}h}{@^{2}} + 2 \qquad \left(\frac{@h}{@}\right)^{2}\right)^{2}$$

$$+ \frac{1}{2}\left(\left(\frac{@h}{@}\right)^{2} + 2 \qquad \left(\frac{@h}{@}\right)^{2}\right)^{2}\right)$$

$$+ \frac{1}{f}\left(2\frac{@h}{@}\frac{@^{2}h}{@^{2}} & 2\frac{@h}{@}\frac{@^{2}h}{@@} & 2 \qquad \left(\frac{@h}{@}\right)^{2}\right)$$

$$+ 2\frac{1}{f}\left(\frac{@h}{@}\right)^{2} \qquad \frac{1}{2}\gamma \qquad \left(\frac{@h}{@}\right)^{2}\right)$$

$$= \frac{1}{2f}\frac{@}{@}\left(\frac{@h}{@}\right)^{2}\right): \qquad (1)$$

h f f h h h

$$-\frac{\mathscr{Q}^{2}h}{\mathscr{Q}^{2};} - \frac{\mathscr{Q}^{2}h}{\mathscr{Q}^{2};} - \frac{\mathscr{Q}^{2}h}{\mathscr{Q}^{2};}$$
(22)
ffi , A, B, C, D E, (21) w f , f (;;h;p;q),
 $p^{-}\mathscr{Q}h=\mathscr{Q}; q^{-}\mathscr{Q}h=\mathscr{Q}.$
 f_{1} , f (1) (20) , b f , p^{-}

 h^{θ} $\underbrace{\frac{g}{f}}_{F} r^{2} h^{\theta} + \frac{g}{f^{2} a^{2}} \frac{e h^{\theta}}{e} + \frac{2g^{2}}{a^{4} f^{3} 2} \left(2 \frac{e^{2} \bar{h}}{e} \frac{e^{2} h^{\theta}}{e} - 2 h^{2} h^{\theta} \right)$ $+2 \qquad \frac{e^{2}\bar{h}}{e^{2}}\frac{e^{2}h^{0}}{e^{2}}\frac{e^{2}\bar{h}}{e^{2}}\frac{e^{2}h^{0}}{e^{2}} + 2 \qquad \frac{e^{2}\bar{h}}{e^{2}}\frac{e^{2}h^{0}}{e^{2}} + 2 \qquad \frac{e^{2}\bar{h}}{e^{2}}\frac{e^{2}\bar{h}}{e^{2}} + 2 \qquad \frac{e^{2}\bar{h}}{$

@h @ 4.2

5 A

wiff

$$B_{u} = \frac{p_{\overline{gh}}}{fL} - \frac{L_{R}}{L};$$
()

$$L_{v} = \frac{p_{\overline{gh}}}{fL} - \frac{p_{\overline{gh}}}{fL$$

fi , 1 , $h_0 - 0m$! - K^-

b fit B^2 fit B^2

ffi • (s ⁶)		1		2		
$\frac{1 g^2 \left(\frac{\mathscr{Q}\overline{u}_g}{\mathscr{Q}}\right)^2}{h^2}$	2:	10 ¹⁴	: 1	10 ¹⁶	:	10 18
$\frac{2g^2 \cdot \frac{\partial ug}{\partial p} \bar{v}_g}{2\bar{b}^2}$	2:2	10 14	: 2	10 ¹⁶	: 2	10 ¹⁸
$\frac{1 g^2 \overset{an}{} \bar{v}_g^2}{\bar{v}_g^2}$	<i>:</i> 1	10 15	1:	10 16	1:2	10 18
B^2	:	10^{-15}	1:2	10 16	:	10 18
·, r	1	1	ا THE		▲ 10 ²	
* 10 th	1	AC .	. F v	, '	2 1 1V	ì
2 L ^o v	۰ff	b				

b - b - b ffib b bff b

ffi > (ms^{-3})			1		2				
gf fg $2g\frac{e^{\bar{u}g}}{e^{\bar{v}g}}$ $gg\frac{e^{\bar{u}g}}{e^{\bar{v}g}}$ $gg\frac{e^{\bar{v}g}}{e^{\bar{v}g}}$	$\begin{array}{l} \boldsymbol{h}_{\lambda\lambda} \\ \boldsymbol{h} \\ \boldsymbol{h}_{\theta\theta} \\ \boldsymbol{h}_{\theta\lambda5} \\ 10 \end{array}$	1:01 :0 :0 $2: 2_2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1:01 :0 :0	10 ³ 10 ⁴ 10 ⁴	1:01 :0 :0 10 ⁵ 7	10 3 10 4 10 4 74 7io.P ₅ d[(71 10)]TJ /F15 6.974 Tf 6.23 0 Td	[(5)]TJ

(

۰ (۱ م

 >
 .
 1
 2. Methods of Mathematical Physics, Vol 2.

.L. F.F.-. b WW FFF • . J. Atmos. Sci., 59, 1 0-1 .

, . 200 . ⊯r → → → ı, ıv ı ۰.

• • , . . 1 . Partial Di erential Equations. \mathcal{F} \mathcal{F} , . . 1 . by \mathcal{F} b - \mathcal{F} y . Q. J. R. Meteorol. Soc. 99 2 . .

P h • J. Atmos. Sci., 25, 2-2.

, . .1 . ۲ F ък к b. к. • J. Atmos. Sci., 54, - .

. . . Q. J. R. Meteorol. Soc. 129, 1 - .

L , . ., , . ., , . ., , .L. ., **b**, . ., v··· . Q. J. R. Meteorol. Soc. **126**, 2 1-012.

, . . 1 . ' v р р ١fi ب ^بfi 1/96, ^ب ۴, ٧V , . . ffi ,

١fi **41**.

L v··· _10.1002/ j. 2

b, . . 1 0. fl $\overset{\rho}{\longrightarrow}$. Q. J. R. Meteorol. Soc. 66, 121. 12,

, <u>,</u> k k, , .1 1. , . J. Atmos. Sci. **) 48** 21 . 21 .

1 2.	,.L, K p	 F	., * * .		11 00	þ	
, ^۲ م ,	· 2002.	r		np. Pny. 102 2	ي 11. 22 . او الع بر ب	, fl	- F