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phenomena often impact on very localised regions and models are required
to have high spatial resolution to maximise the chances of skillful forecasts.
At high resolutions orography can be resolved much better, which allows the



[9]. An ensemble could be used to investigate the relationships between
model variables to estimate the initial covariance matrix for convective flow
in variational systems. It is also important to study the performance of
the ensemble method itself at convective scales, for example, the EnSRF
performance in cases where the parameterized cloud growth is a strongly non-
linear function of the state variables. Of particular interest, is to investigate
the ensemble response to a regime switch from linear to highly-nonlinear (i.e.
a switch from linear advection of state variables with no cloud to a sudden
cloud growth in the system) and the EnSRF ability to trace the true solution
in the presence of parametrized variables such as cloud fraction and rain.

Here we apply the EnSRF to an idealised 1+1D convective-scale model
first developed by A. Rudd [5] with parametrized cloud and rain to investigate
the performance of the EnSRF in the case of a sudden regime change from
linear to highly non-linear. We examine the frequency of observations and the
number of ensemble members needed for the EnSRF to capture the solution
in the linear phase, as well as the ability of the ensemble to detect the switch
and capture the cloud growth after the change of regime. We are especially
interested in whether the cloud growth is indicated in the forecast error
correlations before it actually happens. To test the ensemble further we
consider the case where part of the growing cloud is allowed to rain out. This
case is more complex as it correlates the two control variables, temperature
and total water, which were previously independent of each other. It is also
of interest to see if there is an optimal way to initialise the ensemble, which
would give better results without increasing its size.

2. The EnSRF

An Ensemble Square Root Filter (EnSRF) has been built and imple-
mented, as given by [2], making sure that the filter is unbiased and does not
collapse [4], [1]. The EnSRF is based on the Kalman Filter (KF) equations,

xa = xf + K
(
y − Hxf

)
(1)

Pa = (I − KH) Pf (2)

K = PfHT
(
HPf HT + R

)−1
(3)

where x is the state vector, K is the Kalman gain, y is the observation vector,
H is the observation operator, P denotes an error correlation matrix and

3



superscripts a, f stand for analysis and forecast, respectively. The ensemble
matrix is defined as

X = [x1,x2, ...,xN ] ∈ Rn×N (4)

where xi are state vectors (ensemble members), n is the total number of
variables in the control vector, and N is the number of ensemble members.
The model state is assumed to be represented by the ensemble mean, which
we define as

x =
1

N

N∑
i=1

x(i) or X = (x,x, ...,x)



where the terms V2,�2,S,Z,� come from the decompositions (see [2] for
more detail). Finally the analysis of the ensemble is

Xa = X
a

+ X′a (7)

and the ensemble analysis forecast error covariance matrix is

Pa
e =

1

N − 1
X′aX′aT

. (8)

The main difference between the traditional EnKF and the square root
version EnSRF (and the reason for using EnSRF) is that in the square root
algorithm the perturbation of measurements is avoided as this can lead to
more errors. Also, we do not need to perform inversion of the observation
error correlation matrix, R, nor do we need the assumption of uncorrelated
measurement error covariance matrix 1 [2].

3. 1+1D column model

In this work we use a 1+1D model (1D in space and time) describing
the atmospheric flow in a vertical column. The model state variables are
vertical velocity, w(z), temperature, T (z), total water, qt(z), pressure, p(z),
temperature change with height, Ψ(z), liquid cloud water, qcl(z), saturated
vapour, qsat(z), and cloud fraction, f(z), where z ∈ [0, 12] km is vertical
height. From all of the model variables, only T (z) and qt(z) are used in the
data assimilation process to update the system, and these are known as the
control variables. In vector form we define the control vector x, as

x =

(
T
qt

)
∈ R102×1, (9)

with height z being discretised with 51 equal levels and T, qt ∈ R51 × 1.
Control variables, T and qt, at a given height z are linearly advected by

a known vertical velocity w(z) = 0.5 sin ((z/ztop)π), constant in time with
maximum speed in the middle atmosphere of 0.5 m/s. The model uses a
cloud scheme [7], to compute a strongly non-linear cloud fraction, f , given
by

f(z) = 0.5

(
1 + tanh

(
2qcl(z)

qsat(z)(1 − RHc)

))
, (10)

1Here we do use uncorrelated R.
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where RHc is critical relative humidity, qcl = qt − qsat and qsat = ϵes/p with
ϵ = 0.622 being the ratio of molecular weights of water and dry air and
es = es(T ) being the saturation vapour pressure. Thus, cloud fraction, f ,
depends on both control variables T and qt, and the range of f is [0,1] with
f = 0 meaning no cloud and f = 1 meaning full cloud.

The model exhibits linear and non-linear regimes. If the model exhibits
no cloud, the system is in a linear state and we refer to this as a ’no cloud
regime’ or ’linear regime’. However, if the model has cloud growth, the



non-linear. The model parameters are chosen so that initially for the first
3 hours there is no cloud in the solution, but then a very sudden and fast cloud
growth occurs in the upper half of the atmosphere. To examine the EnSRF
performance in these conditions we use a twin experiment. We create a
12 hour long reference solution (’truth’) from initial chosen profiles of T (z, 0)
and qt(z, 0). We then sample observations with some time frequency from the
reference solution and add noise with a σo = 1% variance. We also perturb
the initial profiles with σe = 10% variance to give an initial ensemble mean
around which we create the initial ensemble. Using a twin experiment allows
us to deduce the accuracy of the ensemble estimate as a difference between
the ensemble analysis and the truth.

4.1. Results for regime switch

The ensemble exhibits a high ability to capture the solution in the linear
phase (i.e. no cloud) even with a small ensemble size (N = 10) with respect
to the size of the state space (n = 102), provided enough good observations
of both control variables are given at a suitable time frequency, e.g every
30 min. For larger ensemble size the observation quality and/or frequency
can vary to obtain the same accuracy of the solution. Interestingly, the
EnSRF is able to capture the regime switch in most cases, with the accuracy
and the rate of ensemble convergence to the true solution depending mainly
on the ensemble size and secondly on the observation frequency. However, it
is important that both control variables are observed at least once before the
cloud growth. Note that, in cases where the ensemble size is small, we find
that the EnSRF over-predicts the cloud growth, i.e. in the ensemble estimate,
cloud growth is initiated sooner than in the reference solution. This clearly is
an issue, especially in an operational setting, where the ensemble size is much
smaller than the size of the state space. However, in this idealised model,
unless liquid is removed from the system, the model would just saturate
in the levels where cloud is present, thus becoming linear again. If this is
allowed, the ensemble, even with N = 10, can capture the solution very well
after a few observation cycles.

4.2. Results with rain parametrization

To keep nonlinearity in the system we introduce parametrized rain as
explained in section 3. This reduces the cloud fraction after the cloud has
grown to a given threshold in the column. In this case, a large ensemble
(say N > 102) will be able to capture the solution with parametrized rain
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well if good observations (at least every 30min) are used. However, it is not
realistic, for practical applications, to have an ensemble size larger than the
state space. With a small ensemble size and many good observations at the
initial phase (no cloud regime), the ensemble is not capable of increasing its
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Figure 2: Ensemble analysis error (blue) compared to ensemble standard deviation (red).
Observing every tenth level of T and qt every 30min, N = 30. Rain at 3h.

system was observed at least once before the cloud developed, even with a
small ensemble size, the EnSRF was able to detect the regime switch. How-
ever, the accuracy with which the switch was captured depended mainly on
the ensemble size and secondly on the observation frequency. An important
note is that for small ensemble sizes the EnSRF developed cloud in its solu-
tion sooner than in the reference solution. The reason for this and the impact
it has on the ensemble solution needs to be investigated further.

In the cases where parametrized rain was permitted after the initial cloud
development, we found that for ensembles that have more ensemble members
than variables with good frequent observations, the performance of the En-



sembles and, in particular, when rain was parametrized, the correlations and
cross-correlations at the time of cloud development were shifted in time or
incorrect as the ensemble either developed cloud too soon and hence devel-
oped cross-correlations too soon, or its spread was too small, thus resulting
in incorrect correlations.
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