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A particle filter (PF) is a data assimilation scheme that employs a fully



Vaswani [16] suggests that the best results should be obtained from the
particle filter with mode tracking when we mode track the maximum number
of unimodal dimensions. In this paper we test this using the 3D stochastic
Lorenz equations with a linear observation operator.

We begin, in section 2, by describing the algorithm for the particle filter
with mode-tracking. We also consider how the state should be split to provide
the best results from the particle filter with mode tracking. The simple
nonlinear stochastic model used for our experiments is described in section
3. In section 4 we test one hypothesis for how to split the state to obtain
the best results for the particle filter with mode tracking. We conclude in
section 5 by summarising and discussing the main results.

2. The Particle Filter with Mode Tracking

In this section we consider the particle filter with mode tracking (PF-
MT). We start by defining the notation used. Let ψk ∈ R

n, k = 0, 1, 2, 3, . . .,
be a sequence of model states at discrete times k and assume the initial pdf
of the state is given by p(ψ0). At subsequent times, ψk satisfies

ψk = M(ψk−1, wk), (1)

where M : R
n × R

n → R
n is a possibly nonlinear function, and wk ∈ R

n

is a noise process sequence. This equation describes a Markov process with
transition density p(ψk|ψk−1).

Let dk ∈ R
p be the observation vector at time k which is related to the

model state by the equation,

dk = H(ψk, vk), (2)





Table 1: The PF-MT Algorithm

The PF-MT Algorithm [16]
Initialization:

• Set k = 0 and sample N times from the importance function
π(ψ0) to give the initial ensemble {ψi

0
}N

i=1
.

• Set the weights, wi
0

= 1/N .

For times k = 1, 2, ....

1. Importance Sample Ψk,s: For i = 1, 2, . . . , N , sample

Ψi
k,s ∼ p(Ψi

k,s|ψ
i
k−1

)

.

2. Mode track Ψk,r: For i = 1, 2, . . . , N , set Ψk,r = mi
k where

mi
k(ψ

i
k−1

,Ψi
k,s, dk) = arg min

Ψk,r

[− log p(dk|Ψ
i
k,s)p(Ψ



part of the subspace. The conditional pdf for Ψk,r may be written as

p(Ψk,r|ψ
i
k−1

,Ψi
k,s, dk) ∝ p(dk|ψ

i
k−1

,Ψi
k,s)p(Ψk,r|ψ

i
k−1

,Ψi
k,s), (8)

using Bayes’ rule, since ψk is a Markov process and the observations are
conditionally independent of the model state [16]. Following [16] we let

J i(Ψi
t,s,Ψt,r)

def
= − log p(Ψk,r|ψ

i
k−1

,Ψi
k,s, dk) (9)

= − log p(dk|ψ
i
k−1

,Ψi
k,s)

− log p(Ψk,r|ψ
i
k−1

,Ψi
k,s) + const. (10)

If the pdf is unimodal we can set the constant term to zero and find the mode
by minimizing the cost function J i with respect to Ψt,r. The cost function
for the example used in this paper follows on from (10) and can be written
as

J i(Ψi
k,s,Ψk,r) =

1

2

[

Jo(Ψ
i
k,s,Ψk,r) + Jq(Ψk,r)

]

, (11)

where, using (7),

J i
o(Ψ

i
k,s,Ψk,r) = − log p(dk|ψ

i
k−1

,Ψi
k,s)

=

(

dk − i



weights. There are many resampling algorithms. Here we use a resampling
scheme known as stratified resampling [8] as it is efficient and simple to
implement [1]. We return to the forecast step to continue the assimilation
cycle. We repeat the iteration until the final forecast time is reached.

We must now consider how to choose the state-space splitting. For the
most efficient algorithm, Ψk,r ostensibly should contain the maximum num-
ber of dimensions such that p(Ψk,r|ψ

i
k−1

,Ψi
k,s, dk) is unimodal, so that the

subspace that is modelled by the standard PF is as small as possible [16]. In
principle, the unimodality of the mode-tracking subspace might change every
time k and for each ensemble member. Vaswani [16] argues that the method
should be successful if unimodality holds for most particles at most times.







when using the PF-MT. We tested the hypothesis that the best results should
be obtained from the PF-MT when we mode track the maximum number of
unimodal dimensions. When using a nonlinear model it was found that the
best results from the PF-MT were not always obtained when the maximum
number of unimodal dimensions was mode tracked. This was possibly due to
the complicated nonlinear structure of the full problem. It was found that
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