Department of Mathematics

Preprint MPS_2010_15

21 April 2010

State estimation using model order reduction for unstable systems

by

C. Boess, A.S. Lawless, N.K. Nichols, A. Bunse-Gerstner

State estimation using model order reduction for unstable systems

> ^aDepartment of Mathematics, University of Reading, UK ^bZeTeM, Universitaet Bremen, Germany

$$(\mathbf{x}) = f(\mathbf{x})^T f(\mathbf{x});$$
 (1)

c f(x) c d f(x) c f(x) a da a f(x) c a d d f(x) c f(x) a dc f(x) a d d f(x) c f(x) a dc f(x) a f(x) a d

$$I \quad \text{ac c}, \qquad \mathbf{A} \quad \mathbf{a} \quad \mathbf{A} \quad \mathbf{a} \quad \mathbf{A} \quad \mathbf{a} \quad \mathbf{b} \quad \mathbf{A} \quad (1) \qquad f \quad \mathbf{a} \quad \mathbf{d} \quad \mathbf{f} \quad \mathbf{d} \\ (2) \text{ ca } \mathbf{b} \quad \mathbf{a} \quad \mathbf{d} \quad \mathbf{b} \quad \mathbf{a} \quad \mathbf{A} \quad \mathbf{G} \quad \mathbf{G} \quad \mathbf{A} \quad \mathbf{A}$$

F at , a a d (k) t , \mathcal{A} . W c t d , a a a a

$$S: \begin{cases} x_{i+1} = M x_i; \\ d_i = H x_i; \end{cases}$$
(6)

a (5), c a a c M a d H a a a - a a $M_{i+1,i}$ a d H_i d $[t_0; t_N]$. T a a a $x_0 = B_0^{\frac{1}{2}}$ a a M d H_i d $[t_0; t_N]$. T a a a $x_0 = B_0^{\frac{1}{2}}$ a a M d H_i d a a d c a a c a $B_0 \in \mathbb{R}^n$ a M d A a a d d T a c T (6) a c A a a d d c d c b b a c d a I d

$$T: \mathbb{C} \to \mathbb{R}^{p-m}; \tag{7}$$

$$z \mapsto T(z) := H(zI - M)^{-1}B_0^{\frac{1}{2}}$$
 (8)

$$\mathcal{S}: \begin{cases} \hat{x}_{i+1} = U^T M V \ \hat{x}_i; \\ \hat{d}_i = H V \ \hat{x}_i; \end{cases}$$
(9)

$$\|T - \hat{T}\|_{h_{\infty,\alpha}} \le 2($$

$$\begin{split} F: \mathbb{C} \to \mathbb{R}^{m \ p} & \text{a} & \text{a} & \text{c} & \text{c} & \text{c} & \text{c} & \text{a} & \text{d} \\ & \text{ad} & \text{a} & \text{d} & \text{,} & \text{-b} & \text{d} & \text{d} & \text{c} & \text{T} & \text{cad} \\ & & \text{i} & \text{i} & \text{i} & \text{i} & \text{i} & \text{i} & \text{c} \\ & & & \text{i} \\ & & & \text{b} & \text{a} & \text{c} & \text{c} \\ & & & T & = \frac{1}{-}H(zI - \frac{1}{-}M)^{-1}B_0^{\frac{1}{2}}; \end{split}$$

- 4.1. $E e e \leftrightarrow a de g \leftrightarrow$

$$\frac{\mathscr{Q}^2}{\mathscr{Q}_X^2} + \frac{\mathscr{Q}^2}{\mathscr{Q}_Z^2} = 0; \qquad z \in [-\frac{1}{2}; \frac{1}{2}]; \ x \in [0; X]; \tag{13}$$

b da c d 🍎

$$\frac{\mathscr{Q}}{\mathscr{Q}_Z} = b; \qquad z = \pm \frac{1}{2}; \ x \in [0; X]:$$
(14)

$$\left(\frac{\mathscr{Q}}{\mathscr{Q}_{t}}+z\frac{\mathscr{Q}}{\mathscr{Q}_{X}}\right)b=\frac{\mathscr{Q}}{\mathscr{Q}_{X}}; \qquad z=\pm\frac{1}{2}; x\in[0;X]:$$
(15)

T a a b da c d x-d c a a b dc c a a a , t, a d , z, b(0;z;t) = b(X;z;t) a d (0;z;t) = (X;z;t). A [8] d x a c , z, z, a d t. I a d d , Ead d d d d c d c d 11 cada d a c b. T ad c a a d c d a a c c . W [8]. d a \mathcal{A} . T b \mathcal{A} a $H \mathcal{A}$ c \mathcal{A} c a b \mathcal{A} a \mathcal{A} a \mathcal{A} a \mathcal{A} c \mathcal{A} .

Figure 1: Comparison of low resolution (dotted line with triangles), standard balanced truncation (dashtione

10 d $\overset{\bullet}{\bullet}$, a^{\bullet} d acc a.

(a) Solution on upper boundary

(b) Error on upper boundary

Figure 2: Comparison of low resolution (dotted line with triangles), standard balanced truncation (dashed line with circles) and α -bounded balanced truncation (solid line with stars) approximations to the buoyancy on the upper boundary

b é é a é a é a d . I d . I d é a 🍊 🄹 🍝 ac 🚽 d b 🦽 a $\mathbf{A} \mathbf{a} \mathbf{A} \mathbf{a}^{\mathbf{a}} \mathbf{a}^{\mathbf{a}} \mathbf{b} \mathbf{A} \mathbf{c}^{\mathbf{a}} \mathbf{a} \mathbf{d} \mathbf{b} \mathbf{A} \mathbf{a} \mathbf{d} \mathbf{a}^{\mathbf{b}}$ a $\mathbf{a} \mathbf{a}^{\mathbf{a}} \mathbf{a}^{\mathbf{a}$ a Ι b**√ **** √ d * [€]a a a Ga $\stackrel{\bullet}{\leftarrow}$ -N cd Eac $\stackrel{\bullet}{\leftarrow}$ a d c a $\stackrel{\bullet}{\leftarrow}$ a $\stackrel{\bullet}{\leftarrow}$ a $\stackrel{\bullet}{\leftarrow}$ b c $\stackrel{\bullet}{\leftarrow}$ a d $\stackrel{\bullet}{\leftarrow}$ a $\stackrel{\bullet}{\leftarrow}$ a 🖌 🖌 a d 🖌 (TLM). T TLM 🍎 d d c d, a 🖌 a ad ab *abd afi d. T *a c * a d * ad, a a *a d * *abd. U* ad TLM *a adb * *a d a *a . d * *abd.

Ъ

T $\stackrel{\bullet}{\bullet}$ d a b NERC Na a $\stackrel{\circ}{\bullet}C$. Ea Ob[≉] a .

- [4] La ▲ AS, N c ▲ NK, B ▲ C, B ▲ -G ▲ A. U ▲ d → d c d ▲ c a ↓ AD-Va. M ▲ W a R 2008;136:1511 22.
- [6] B * C, N c * NK, B G A. M d d c d c d c abd c * abd c & * a bad c d c a a c. P MPS_2010_06, D a Ma a c, U * R ad 2010;.
- [7] Ead ET. L ⁶ a ⁴ a d c c ⁴ a ⁶. T ⁴ 1949;1:33 52.
- [8] J ◆ C, H ◆ ◆ BJ, N c ≄ NK. A ◆ ◆ ▲ c ◆ c ↓ 4D-Va : F ▲ ▲ a d ▲ . Q J R M ▲ S c 2005;131:1 19.