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Medium-Range Weather Forecasting and the Met Office respectively. However,
numerical issues led to compromises being made in the implementation of the
transform.

In this paper we extend these previous studies by testing the fundamental
assumption that the errors in the balanced and unbalanced control variables are
uncorrelated when the vorticity-based and PV-based parameter transforms are
used. Using a shallow-water model we calculate correlation statistics between
the different control variables to test how well the transforms remove correla-
tions by splitting the flow into its balanced and unbalanced parts. We show
that for certain dynamical regimes the assumption of zero correlations between
control variables is valid when the PV-based transform is used, but not with the
vorticity-based transform. These results give further details of the findings pre-
sented briefly in Bannister et al. (2008). Furthermore, we calculate the spatial
correlations for each control variable and use these to understand the effective-
ness of the parameter transforms at decoupling the balanced and unbalanced
parts of the flow.

The outline of the remainder of the paper is as follows. In section 2 we
present the model used in this study, in its continuous and discrete forms. In
section 3 we present the two different parameter transforms as applied to this
model. Section 4 examines briefly the covariance structures implied by these
transforms. In section 5 we present the statistics of the correlations between



in the y-direction, h is the height of the fluid, φ is the geopotential, H̃ =
H̃(x) is the height of the orography, f is the constant Coriolis parameter and
g is the gravitational force. The model assumes that there is no variation in
the y-direction and the boundary conditions in the x-direction are taken to be
periodic, with x ∈ [0, l].

This model is chosen as it is the simplest system that contains key properties
required to define the vorticity-based and PV-based parameter transforms. In
particular, we have a non-trivial first-order geostrophic balance relationship

fv = g
∂(h+ H̃)

∂x
. (5)

This relationship is found through an asymptotic expansion in small Rossby
number (Pedlosky, 1987), where the Rossby number is defined as the dimen-
sionless parameter

Ro =
U

fL
, (6)

where U and L are characteristic velocity and length scales. The balance (5)
becomes important at horizontal length scales which are larger than the Rossby
radius of deformation Lr, defined as

Lr =

√
gH

f
, (7)

where H is a characteristic depth scale. The shallow-water equations also con-
serve the potential vorticity (PV), defined by

q =
1

h

(
f +

∂v

∂x

)
. (8)

In order to characterize the differing flow regimes in this system we will make
use of the Burger number, which is defined as

Bu =

√
gH

fL
(9)

(Wlasak et al., 2006). The Burger number is a measure of the relative impor-
tance of rotation and stratification in the flow. It is the ratio of the Rossby
number and the Froude number

Fr =
U√
gH

. (10)

The Froude number is the ratio of the advective velocity to the gravity wave
speed. In most deep atmospheric motions Fr is small, i.e. the advective velocity
is much less than the gravity wave speed. The two components on the right
hand side of the PV equation (8) take on a different importance as the Burger
number changes. For small Burger number regimes the PV is dominated by the
first term, f/h, whereas in regimes of high Burger number the PV can be well
approximated by (∂v/∂x)/h (Wlasak et al., 2006).
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2.2 Discrete model

The model (1) to (3) is discretized using a semi-implicit, semi-Lagrangian scheme,
following a similar scheme to Lawless et al. (2003). This gives the following
time-discrete equations

un+1
a − und

∆t
+ α1

[
φx + gH̃x − fv

]n+1

a

+(1 − α1)
[
φx + gH̃x − fv

]n
d

= 0, (11)

vn+1
a − vnd



(the T-transform), where T is a generalized inverse of U. The inner loop mini-
mization problem is then defined in terms of the control variables z′, which are
assumed to be independent. The solution to the minimization problem can then
be transferred to the space of model variables using the U-transform in order
to update the state estimate in the outer loop step.

We note here that normally the transformation U is defined to include also
the transformation of the spatial covariances to spectral space (see, for example,
Lorenc et al. 2000). Here we use the notation U to imply only the parameter
transform. Hence we have

B = UΛUT , (16)

where Λ is a block-diagonal matrix ws



separation of the flow into its rotational and divergent parts by means of a
Helmholtz decomposition. We define a streamfunction ψ′ and a velocity po-
tential χ′. Then for the one-dimensional shallow-water model the Helmholtz
decomposition reduces to the vorticity

ζ ′ =
∂v′

∂x
=
∂2ψ′

∂x2
, (20)

and the divergence

D′ =
∂u′

∂x
=
∂2χ′

∂x2
, (21)

with velocities u′ and v′ given by

u′ =
∂χ′

∂x
, (22)

v′ =
∂ψ′

∂x
. (23)

3.1 Vorticity-based transform



The solutions of (21) and (20) are unique up to a constant, which is chosen to
ensure that the mean values of ψ′ and χ′ are zero. By choosing the constant in
this way we lose a degree of freedom in each equation. These missing degrees
of freedom are used to retain the mean values of the wind components that are
lost through differentiation. Thus the mean values, which we denote < u′ > and
< v′ >, are also control variables.

The U-transform, from control variables to model variables, is defined in the
following way:

1. Calculate the velocity v′ from ψ′ and < v′ >

v′ =
∂ψ′

∂x
+ < v′ > . (27)

2. Calculate the balanced height increment h′b from ψ′ using (25).

3. Calculate the full height increment h′ from h′b using (26).

4. Calculate the velocity u′ from χ′ and < u′ >

u′ =
∂χ′

∂x
+ < u′ > . (28)

It is useful to note that the consideration of the mean values is more natural
in the implementation of the transforms in operational systems such as that of
the Met Office, where the transforms are solved in spectral space (Lorenc et al.,
2000). For these systems the transform is only applied to wavenumbers one and
above and wavenumber zero, which holds the mean values, is not transformed.
It is the lack of a spectral transform in our study that makes necessary a special
treatment of the mean values.

3.2 PV-based transform

For the PV-based transform we allow the streamfunction to have both balanced
and unbalanced components, which we denote ψ′

b and ψ′

u respectively, with cor-
responding balanced and unbalanced winds v′b and v′u defined by the Helmholtz
decomposition. In a similar way the height is split into balanced and unbalanced
components hb and hu. We assume that the linearized PV is associated solely
with the balanced variables and that the balanced variables satisfy the linear
balance equation, with the unbalanced variables satsfying departure from this
balance. Thus from (18) and (19) we obtain

f
∂2ψ′

b

∂x2
− g

∂2h′b
∂x2

= 0, (29)

∂2ψ′

b

∂x2
− q̄h′b = q′h̄, (30)

f
∂2ψ′

u

∂x2
− g

∂2h′u
∂x2

= ζ ′a, (31)

∂2ψ′

u

∂x2
− q̄h′u = 0, (32)
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where ζ ′a, the departure from geostrophic balance, is defined by the equation

ζ ′a = f
∂2ψ′

∂x2
− g

∂2





where ∆x is the matrix representing the discretization of the first derivative
operator ∂/∂x on the periodic domain [0, l]. Therefore the background error
covariance matrix for model variables u′, v′ and h′
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Figure 2: Plot of correlation coefficient against Rossby number for high Burger
number regime. The solid line is the correlation between the full model fields
and the dashed line is the correlation between the model field time differences.
Correlations between vorticity-based control variable are indicated with crosses
and between PV-based variables using circles for the full linearized PV and
triangles when the approximate PV is used.
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