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Abstract. The purpose of this paper is to prove that the spectrum of the non-self-adjoint one-particle
Hamiltonian proposed by J. Feinberg and A. Zee (Phys. Rev. E 59 (1999), 6433{6443) has interior
points. We do this by �rst recalling that the spectrum of this random operator is the union of the
set of ‘∞ eigenvalues of all in�nite matrices with the same structure. We then construct an in�nite
matrix of this structure for which every point of the open unit disk is an ‘∞ eigenvalue, this following
from the fact that the components of the eigenvector are polynomials in the spectral parameter whose
non-zero coe�cients are ±1’s, forming the pattern of an in�nite discrete Sierpinski triangle.

Mathematics subject classi�cation (2000): Primary 47B80; Secondary 47A10, 47B36.
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1 Introduction and Notations

In this paper we study in�nite matrices of the form0BBBBBBBBBB@

. . . . . .

. . . 0 1
b�1 0 1

b0 0 1

b1 0
. . .

. . . . . .

1CCCCCCCCCCA
(1)

with bk 2 f�1g := f�1;+1g for all k 2 Z



Physicists have studied the operator Ab as the (non-self-adjoint) Hamiltonian of a particle
hopping (asymmetrically) on a 1-dimensional lattice [15, 16, 9, 22]. Applications of such and
related Hamiltonians, especially examples with random diagonals, include vortex line pinning in
superconductors and growth models in population biology. The particular model (1) was proposed
by Feinberg and Zee in [15], and some properties of its spectrum have been studied in [9, 22] (also
see Paragraph 37, in particular Figure 37.7c, in [38]).

In all these studies the focus is on the case of a random sequence b 2 f�1gZ. A related but
completely deterministic concept is that of a pseudo-ergodic sequence. In accordance with Davies
[11], we call b 2 f�1gZ pseudo-ergodic if every �nite pattern of �1’s can be found somewhere (as
a string of consecutive entries) in b. If b is pseudo-ergodic (which is almost surely the case if all
bk, k 2 Z, are independent (or at least not fully correlated) samples from a random variable with
values in f�1g and nonzero probability for both +1 and �1) then, as a consequence of [7] (also
see [6, 8, 29, 30] and cf. [11]), it holds that

specAb = specessA
b =

[
c2f�1gZ

specAc =
[

c2f�1gZ

spec1pointA
c: (2)

The contribution of [7] is the third \=" sign in (2) that enables, or at least simpli�es, the explicit
computation of the spectra of particular pseudo-ergodic operators in [6, 8, 29]. The �rst \="
sign in (2) follows immediately from the second; the second comes from the Fredholm theory of
much more general operators and is typically expressed in the language of so-called limit operators
[34, 35, 27, 8]. (A similar equality, often with the closure taken of the union of spectra, can be
found in the literature on spectral properties of Schr�odinger and more general Jacobi operators
[32, 4, 10, 11, 21, 1, 31, 17, 18, 19, 20, 33, 26, 25, 36, 37]. The three last papers also shed some
light on the role of limit operators in the study of the absolutely continuous spectrum.)

Note that, by (2), the spectrum of Ab does not depend on the actual sequence b { as long
as it is pseudo-ergodic. In [6] we obtain information about the spectrum, pseudospectrum and
numerical range of the bi-in�nite matrix operator Ab, its contraction Ab+ to the positive half axis
(a semi-in�nite matrix) and the �nite sections Abn which, for n 2 N, are n� n submatrices of (1).
Explicitly and precisely, these related matrices are

Ab+ =

0BBBBBB@

0 1
b1 0 1

b2 0 1

b3 0
. . .

. . . . . .

1CCCCCCA and Abn =

0BBBBBB@

0 1
b1 0 1

b2 0
. . .

. . . . . . 1
bn�1 0

1CCCCCCA ;

where in the case n = 1 we set Ab1 = (0). We explore in some detail in [6] the interrelations between
the spectra and pseudospectra of Ab, Ab+ and Abn. Here, for " > 0 and a bounde" > 0e151[(n)]TJilcord.9626 Tf 19.632 0 5 some detai.9626 46[(b)]TJ 0 -6TJ 3. 47..632 0 5



b) Provided the \positive" part of the sequence b (by which we mean (bk)k2N) is itself pseudo-
ergodic (contains every �nite pattern of �1’s), then, for all " � 0 one has

spec"A
b = spec"A

b
+:

c)





literature) whether specAb has positive Lebesgue measure, in particular whether it has interior
points. Related to this question, Holz et al. [22, Sections I, V, VI], conjecture that clos (�1) �
specAb has a fractal dimension in the range (1; 2), and so has zero Lebesgue measure.

The purpose of the current paper is to shed light on these questions by constructing a sequence
c 2 f�1gZ for which spec1pointA

c contains the open unit disk. As a consequence of formula (2)
and the closedness of spectra, this shows that specAb contains the closed unit disk and therefore
has dimension 2 and a positive Lebesgue measure. This is the main result of the next section.
Intriguingly we will see that the sequence constructed, while rather irregular, is such that each � in
the unit disk is an eigenvalue of Ac in ‘1(Z), and with a vector whose components are polynomials
in � with coe�cients forming the regular self-similar pattern of a discrete Sierpinski triangle.

We will �nish the paper with our own conjecture on the geometry of clos (�1) and specAb.
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Figure 1.2: Our �gure shows the sets �n := �n,0 of all n×n matrix eigenvalues, as de�ned in (4), for n = 1; :::; 30.
Note that in the �rst pictures (with only a few eigenvalues), we have used heavier pixels for the sake of visibility.
By (5), each of the sets with n = 1; 2; :::; 14 in this �gure is contained, respectively, in the set number 2n + 2 of
Figure 1.1.

Figure 1.3: This is a zoom into �25 { the 25th picture of Figure 1.2. The location of this zoom is near the point
1 + i, which is the midpoint of the northeast edge of the square clos (W (Ab)) = conv{2;−2; 2i;−2i}. The picture
clearly suggests self-similar features of the set �25.

2 A sequence c for which spec Ac contains the unit disk

The formula (2) for the spectrum of Ab when b 2 f�1gZ is pseudo-ergodic motivates the following
approach to decide whether a given point � 2 C is in specAb or not: look for a sequence c 2 f�1gZ

such that � 2 spec1pointA
c, in other words, such that there exists a non-zero u 2 ‘1(Z) with

6



Acu = �u, i.e.
ui+1 = �ui � ci ui�1 (6)

for i 2 Z. If such a sequence c exists then � 2



and so on. Explicitly, it is easy to check that, for i � 3, the solution of (6) with initial conditions
u0 = 0 and u1 = 1 is given by the characteristic polynomial

ui =

����������
� �1

�c2 �
. . .

. . . . . . �1
�ci�1 �

����������
:

Thus, for i � 3, ui is a polynomial of degree i � 1 in � with coe�cients depending on c2; :::; ci�1.
We will aim to achieve that u be a bounded sequence at least for j�j < 1. With this in mind we
should try to keep the coe�cients of these polynomials small. Precisely, our strategy will be to try
to choose c1; c2; ::: 2 f�1g such that each ui is a polynomial in � with coe�cients in f�1; 0; 1g.
The following table, where we abbreviate �1 by �, +1 by +, and 0 by a space, suggests that this
seems to be possible.

j → coe�cients of �j−1 in the polynomial ui

i ci 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
1 + +
2 + +
3 − − +
4 − +
5 + − + +
6 − − +
7 + − + +
8 − +
9 + − + + +

10 + − + +
11 − + − − − +
12 + − +
13 − − + + − +
14 − − + +
15 + − + + +
16 − +

.

..
.
..

.

..

(7)

For i; j 2 N, denote the coe�cient of �j�1 in the polynomial u 0 9.464 l S
Q
q
1 87038 -.4904 Td [iN
1�1



Proposition 2.1 De�ne the sequence c 2 f�1gZ, for positive indices by c1 = 1 and by the require-
ment that

c2i = c2i�1 ci and c2i+1 = �c2i; i = 1; 2; ::: ;





Now suppose i+ j is odd. Then, by (10) and the inductive hypothesis,

p2i�1;2j�1 = p2i�2;2j�2 � c2i�2 p2i�3;2j�1

= 0 � c2i�3 ci�1 pi�1;j = c2i�1 pi�1;j ;

since c2i�1 = �c2i�2 = �c2i�3 ci�1. By (10) and the inductive hypothesis and noting that i�1+ j
is even,

p2i;2j = p2i�1;2j�1 � c2i�1 p2i�2;2j

= c2i�1 pi�1;j � c2i�1 pi�1;j = 0:

This completes the proof of (iv), and (v) follows from (iv) by a simple induction argument.

To see that (vi) is true, observe �rst that, from (i), (iii), and (iv) (and cf. Remark 2.2), it holds
for i0; j0 2 N that (i0; j0) 2 S i�, for some i; j 2 N either (a) (i0; j0) = (2i; 2j) and (i; j) 2 S; or (b)
(i0; j0) = (2i� 1; 2j � 1) and (i; j) 2 S or (i� 1; j) 2 S. From this it follows that S = T(S).

De�ne a metric d on � by

d(�; �) :=
X

(i;j)2(�[�)n(�\�)

2�i�j ; �; � 2 �:

Then

d(T(�);T(�)) �
X

(i;j)2(�[�)n(�\�)

�
2�2i�2j + 2�(2i�1)�(2j�1) + 2�(2i+1)�(2j�1)

�
=

X
(i;j)2(�[�)n(�\�)

2�i�j
�
2�i�j + 22�i�j + 2�i�j

�
� 3

4
d(�; �); (14)

if (1; 1) 62 (� [ �) n (� \ �). Let �1 := f� 2 � : (1; 1) 2 �g. Then T(�1) � �1 and, by (14), T is
a contraction mapping on �1. Thus, by the contraction mapping theorem, T has a unique �xed
point in �1, which is the set S, and, if �1 2 �1 and �n+1 := T(�n), n 2 N, then d(�n; S) ! 0
as n ! 1. In particular, d(Sn; S) ! 0 as n ! 1. Since also (by an easy induction argument)
S1 � S2 � :::, it follows that S = [n2NSn.

De�ne v�i for i = 0; 1; ::: by v�i := diui, which implies that v0 = 0, and set v1 = 1. Then, since
ui is de�ned uniquely for i � 0 by the requirement that it satisfy (6) for i � 0 with the initial
conditions that u0 = 0 and u1 = 1, to show (vii) it is enough to check that the sequence vi satis�es
(6) for i � 0, i.e. that

v�i+1 = �v�i � c�iv�i�1; i = 0; 1; ::: :

But v1 � �v0 + c0v�1 = 1 + c0d1u1 = 0, so the equation holds for i = 0, and, for i 2 N,

v�i+1 � �v�i + c�iv�i�1 = di�1ui�1 � �diui + ci+1di+1ui+1

= (di�1 � cici+1di+1)ui�1 � �(di � ci+1di+1)ui;

since ui+1 = �ui � ciui�1. Since u0 = 0, the right hand side of this last equation is zero for i 2 N
provided that di = ci+1di+1 for i 2 N. But this follows from the de�nitions of the sequences c and
d.

Remark 2.4 The standard in�nite discrete Sierpinski triangle (e.g. [24]) is the set ~S � N2 de�ned
by ~S := [n2N ~Sn, where ~S1 := f(1; 1)g and the sets ~Sn, n = 2; 3; :::, are de�ned recursively by
~Sn+1 := 2 ~Sn + ~V , where ~V := f(0; 0); (�1;�1); (0;�1)g. One instance where ~S arises is as the
pattern of odd coe�cients in Pascal’s triangle: for i 2 N and j = 1; :::; i the coe�cient of xj�1

in (1 + x)i�1 is odd i� (i; j) 2 ~S, so that the discrete Sierpinski triangle is often referred to as
Pascal’s triangle modulo 2 (e.g. [13]). Proposition 2.1(vi) (cf. Remark 2.2) makes clear that the
pattern S � N2 of the non-zero coe�cients in table (7) is essentially that of the standard discrete
Sierpinski triangle ~S; indeed, the sets ~S and S are connected by a linear mapping: (i; j) 2 ~S i�
(2i� j; j) 2 S, for i; j 2 N.
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Remark 2.5 Note that the sequence c from Proposition 2.1 is not pseudo-ergodic since, by
c2i+1 = �c2i, the patterns \+ + +" and \� � �" can never occur as consecutive entries in the
sequence c.

Based on Theorems 1.1 and 2.3 and the numerical results displayed in Figures 1.1 and 1.2, we
make the following conjecture.

Conjecture. We conjecture that clos (�1) = clos (�1) = spec[())-361(=)-360(e(wing)-334.311 0 Td [(.)]TJ
E238 Tf 5A 0 Td [(i)]TJ/F8 9.74 92(th6)-4 Tf 5b0 Td [(.)]TJ
ET
q
1 006.9th6)-4 Tf 58 -196umerica050
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