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using a balanced truncation approach
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Abstract

Mathematical modeling of problems occurring in natural and engineering sciences
often results in a very large dynamical system. Efficient techniques for model order
reduction are required, therefore, to reduce the complexity of the system. Almost all
such techniques require the dynamical system to be asymptotically stable. Balanced



reduction methods, including rational interpolation and Kyrlov subspace methods, see e.g.
[12].

Originally, the balanced truncation method was proposed for asymptotically stable
continuous-time systems by Moore in 1981 [14]. Pernebo and Silverman [16] extended
the method to discrete-time systems in 1982. There already exist some extensions of the
standard method to unstable systems. Most of these methods are based on an additive
decomposition separating the asymptotically stable from the unstable part of the system.
These techniques assume that unstable poles cannot be neglected when modeling the
dynamics of a system, see e.g. [7, pp. 1177-1178], [15, 10, 19] and the references therein.



Z-transform to the system (1):

zX(z) = AX(z) + BU(z),
Y (z) = CX(z),

(2)

where X(z), U(z), Y (z) are the Z-transforms of xi, ui, yi, respectively. Rewriting (2) we
obtain

Y (z) =
(
C(zI − A)−1B

)
U(z). (3)

2.1 Definition
For a discrete linear system S of the form (1) the function

G(z) := C(zI − A)−1B (4)

is known as the transfer function.

Equation (3) shows that the transfer function relates inputs to outputs in frequency do-





2.4 Theorem:
Let S be a system of the form (1) with corresponding transfer function G. Moreover, let

Ŝ with corresponding transfer function Ĝ be a reduced system of the form (5) with order
k < n that is computed using balanced truncation. Then the following bound for the error
system holds:

‖G − Ĝ‖h∞
≤ 2(σr+1 + . . . + σn), (10)

where σi



3.1 Definition (hp,α-norms)
Let α be a real positive number. For any element

F ∈ M(p,m)
α := {F : D̄C

α → C
p×m|F is holomorphic in D̄C

α },





3.4 Algorithm (α-bounded balanced truncation)

(I) Determine a suitable real positive α



where Gα, Ĝα are the transfer functions of the α-shifted systems Sα, Ŝα, respectively.
Because the systems Sα and Ŝα are asymptotically stable and Ŝα is the result of applying
balanced truncation to Sα the error bound (10) holds. Therefore:

‖Gα − Ĝα‖h∞
≤ 2

(

σ
(α)
r+1 + . . . + σ(α)

n

)

,

where σ
(α)
r+1, . . . , σ

(α)
n are the Hankel singular values of Gα.

Then the statement of the theorem follows with ‖Gα − Ĝα‖h∞
= ‖G − Ĝ‖h∞,α

. �

To summarize, we state that our new technique for balanced truncation of unstable



respectively. Thus, the impulse response yi is a power of the eigenvalue λj (the j-th di-
agonal entry of the system matrix A(1)). The state vector xi only has components in the
direction of the corresponding j-th eigenvector ej .
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for α = 12 (solid line with stars). We note that the solid line with stars is nearly invisible
in the latter case because it lies on top of the solid line. This shows that the output of the
α-reduced system approximates the output of the full order system so well that the two



balanced truncation (Figure 4(b), circles). We see that the α-bounded approach matches
eigenvalues outside as well as inside the unit circle while the standard approach only keeps
some of the eigenvalues outside the unit circle, but none inside.

Thus, the failure of the standard method is not surprising. Because of the simple
structure of this first test model we know that if the input vector ui is chosen as the first
unit impulse, then all state vectors xi are multiples of the eigenvector e1 associated with
the eigenvalue λ1 ≈ 0.8. The reduced order model computed by the standard method
neglects all directions of eigenvectors associated with asymptotically stable eigenvalues.
Thus, the output of the standard low order system is not able to approximate the response
of the full order system, which is a power of the asymptotically stable eigenvalue λ1.
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the error bound (dashed line). Figure 5(b) plots the behavior of the relative error norm
erel of the first impulse output for different values of α. The relative error norm is defined
as

erel :=
‖y − ŷ‖2

‖y‖2
,

where y := [y0, . . . , y5], ŷ := [ŷ0, . . . , ŷ5] are the vectors of outputs of the full and the low





namely λ6, λ8, λ10, λ12, λ14, λ16, λ20, λ22, λ28 and λ29. Thus, whenever a component of the
impulse response stimulates one of these 10 eigenvalues, then the standard approach will
supply a low order system where the output matches the output of the full order system
exactly (assuming the absence of rounding errors), see Appendix A.1.2, Table 1. For
all remaining components of the impulse response (where none of these 10 eigenvalues is



new α-bounded balanced truncation method supplies much better approximations to the
input-output behavior of the full order system than the standard balanced truncation
approach for unstable systems (as long as the time window is not chosen to be too large).
The new method enables a reduction up to an order k = 5 while still capturing the most
important information for all channels of the impulse response.

4.2 Second simple test model

The second test model S(2) is chosen to be a single-input, single-output (SISO) system
of the form (15), i.e. the input and the output matrices are a column and a row vector,
respectively. The system matrix A(2) ∈ R

30×30 is a real dense matrix that has real and
complex eigenvalues inside as well as outside the unit circle. The input matrix B(2) ∈ R

30×1

is the first canonical unit vector and the output matrix C(2) ∈ R
1×30 is, as in the previous

example, a row vector which only contains ones. The distribution of the eigenvalues of
A(2) is shown in Figure 10 (see also Appendix A.2).



matrix are kept by the two different model reduction techniques. The standard balanced
truncation method is capable of matching some of the eigenvalues outide the unit circle but
none inside (Figure 13(a)) while the α-bounded approach also matches (approximately) an
eigenvalue inside the unit circle (Figure 13(a)). This explains why the standard method
cannot supply very accurate approximations of an output that is composed of a linear
combination of both stable and unstable modes.
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(a) Approximation using standard method
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(b) Approximation using α-bounded method

Figure 11: Comparison of impulse responses of full and reduced systems of order k = 10
using standard balanced truncation (a) as well as α-bounded balanced truncation for
α = 4.0 (b)
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accurately approximate the outputs of the full order systems (see Figures 14(c), 14(d)).
We note again that the actual choice of α is not significant as long as it is not too close



rotation. The corresponding continuous shallow water equations are given by

Du

Dt
+

∂φ

∂x
+ g

∂H̃

∂x
− fv = 0,

Dv

Dt
+ fu = 0,

D ln φ

Dt
+

∂u

∂x
= 0,

where
D

Dt
≡ ∂

∂t
+ (Uc + u)

∂

∂x

and
φ = gh,

where u denotes the departure of the velocity in the x-direction from a known constant
forcing mean flow Uc, H̃ = H̃(x) is the height of the orography, f is the Coriolis parameter
and g is the gravitational force. The model assumes that velocities u and v as well as the
depth h do not vary in the y-direction. Moreover, the model states are periodic in the
x-direction. The continuous equations are discretized using a two-time-level semi-implicit
semi-Lagrangian integration scheme, following [11]. The discrete nonlinear system is then
linearized by computing the Jacobian of the nonlinear system equations. The resulting
discrete linear system is known as the tangent linear model.

A time-invariant linear model that approximates the tangent linear model of the system
is used in the experiments. It is a multiple-input, multiple-output (MIMO) system. Its
system matrix A(3) and its input matrix B(3) are both of dimension 1500 × 1500. The
output matrix C(3) ∈ R

750×1500 is chosen such that every other point is observed. We refer
to the first, second and third set of 500 components of the state vector as the u-, v- and
φ-field, respectively.

This test model is only slightly unstable, i.e. only 10 of the 1500 eigenvalues lie strictly
outside the unit circle and the absolute value of the largest eigenvalue is approximately
1.00013 (see Figure 15 for the distribution of the eigenvalues). However, the system is still
an interesting test model because many of the asymptotically stable poles are so close to



Very similar results hold for the φ-field vector components of the 250th impulse re-
sponse as shown in Figure 17. The error of the α
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4.4 Summary of numerical experiments

All the numerical experiments demonstrated the superiority of the α-bounded balanced
truncation method over the currently used balanced truncation approach for unstable sys-
tems, especially over a short time window. This result is not very surprising. If the system
has a considerable number of unstable poles, then the standard approach for unstable sys-
tems cannot supply a good approximation to the input-output behavior of the full order
system. The reason is that essential or even all information of the asymptotically stable
part of the full order system is lost (depending on the chosen reduction order). Thus,
at the beginning of the time window (where the asymptotically stable part still influ-
ences the behavior of the system) we cannot expect the standard approach to supply good
approximations.

Moreover, the shallow water test model showed that the standard balanced truncation
method fails not only for systems with large numbers of unstable poles, but also for systems
that have only a few unstable poles, but large numbers of asymptotically stable modes
that are very close to being unstable.

5 Conclusions

Model order reduction of unstable control systems is an important problem to be consid-
ered. However, most of the known and approved model reduction methods are for asymp-
totically stable systems only. The existing approaches for unstable systems are based on
an additive decomposition of the system into its asymptotically stable and its unstable
part. The model reduction procedure is then applied to the asymptotically stable subsys-
tem while the unstable part remains unchanged. This procedure may only supply good
approximations to the full order system if the number of unstable poles is rather small or
if the asymptotically stable part of the system is of minor importance. These assumptions
are rather restrictive. At the beginning of the time window, especially, the standard low
order approximations are poor because at the initial time steps the asymptotically stable
components (which are neglected in the standard approach) still have influence on the
behavior of the system.

In this paper we have proposed a novel approach for model reduction for unstable
systems using balanced truncation. The new α-bounded balanced truncation method is
independent of the number of unstable poles. It equally takes into account the asymptot-
ically stable as well as the unstable modes of the full order system within the reduction
process. We were able to show that the new method is embedded in a theoretical framework
very similar to that of the original balanced truncation method for asymptotically stable
systems. While balanced truncation for asymptotically stable systems computes a low
order system that is close to being optimal with respect to the h2-norm, the α-bounded
balanced truncation method supplies a low order system close to being optimal in the
h2,α-norm. Moreover, we have proved a theoretical error bound for the new α-bounded
approach based on neglected Hankel singular values.

In numerical experiments with two simple unstable test models we have shown that
the new method computes a low order model that approximates the input-output behavior
of the full order system very accurately. It is possible even to reduce the order up to a
sixth of the order of the original system while still capturing the essential information in
the response. Comparison with the standard balanced truncation approach for unstable
systems demonstrated the superiority of the new α-bounded balanced truncation method,
especially at the beginning of the time window.

In addition to the simple models, we have also investigated a more realistic test model

26



derived from discretized and linearized shallow water equa



A Appendix

A.1 First test model S(1)

A.1.1 Eigenvalues of first test model





reduction order k=5 error norm standard method error norm α-bounded method

1st impulse response 1.0000e+000 7.7524e-003

2nd impulse response 1.0000e+000 1.0094e-002

3rd impulse response 1.0000e+000 6.6808e-005

4th impulse response 1.0000e+000 5.9113e-004

5th impulse response 1.0000e+000 5.2918e-004

6th impulse response 1.0000e+000 7.1272e-005





[5] C. Boess.
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