University of Reading

Pe e pence

August 2003

Abstract

Declaration

©Crown Copyright 2003

• This docu ent is of United ingdo origin. nd contains proprietary infor ation hich is the property of the Secretary of State for Defence It is furnished in condence and any not be copied used or disc osed in hole or in part ithout prior ritten consent of the Director of Collection Defence Procure ent Agency Ash & Mai point MOD Abbey ood Bristo, BS JH Eng. nd.

Contents

1	Introduction	6
	$1 \mathbf{i} \mathbf{n} \mathbf{A} \mathbf{c} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
2	1D Planar Case	10
	$\operatorname{An}^{\mathbf{a}}$ yic gin	-11
	$An^2 yic q n \dots$	-1
	an in tin in i 🖾 🕺 _ n ny .	-7
	an in fin in i Acc in a	-1
	ie jin ini ^a Tyic ^a v n	•
	r	7
		1
		-1
	M^{a} in yic^{a} is Lic^{a} i	7
	$\mathbf{L} = \mathbf{L} \mathbf{c}$ M n n $\mathbf{n} \mathbf{c}$ in \dots	7
	$M = 1 \dots M$	า
	a n n n M n nei n	
	A ic ² in M ^a nc ² in	
	M^{2} k n i n	
	e isisisin Me a a ey	
	n n 🦕 n	า

CONTENTS

3	1D Radial Case	34
	$ \begin{array}{c} -\mathbf{n}^{\mathbf{r}} & \underbrace{\mathbf{e}^{\mathbf{i}} \mathbf{n}} \\ \mathbf{M}^{\mathbf{a}} & \mathbf{i} \mathbf{n} \\ \cdot & \mathbf{M}^{\mathbf{a}} & \mathbf{i} \mathbf{n} \\ \mathbf{i} \mathbf{c} & \mathbf{M}^{\mathbf{a}} & \mathbf{n}^{\mathbf{e}\mathbf{i}} \mathbf{n} \end{array} $	*
	$ \begin{array}{c} \bullet & \bullet $	₹ 1
	$L^{a} \qquad \qquad$	* * * *
4	Conclusions and Further Work	51
	$ \begin{array}{c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet &$	า

List of Figures

77	Neutron tu e sche atic
-1	Sche atic of D free oundary pro le
•	
7	D Planar pro le setup
	Position of calculated free oundary
-	Change in potential across the solution region for varying e ission
	current densities \ldots \ldots \ldots
-₩	Change in solution region size with e ission current density
-	Change in solution potential with distance fro — Ced oundary for
	varying solution region potential diferences
-	Variation in free oundary position as a function of accelerating
	potential provising resolution T T d pot T T d p T T d p R

LIST OF FIGURES

7

Chapter 1

Introduction

1.1 Neutron Tube Basic Operation

Neutron tu e sche atic

1.2 Free Boundary Problem

1.3 Solution Approach

2.1 Analytic Solution

n (x) (x $\rho(x) = \frac{J}{v(x)},$ $p(x) = \frac{J}{v(x)},$ p(x) = $F = qE = -q\frac{dU}{dx}$ $= mv(x)\frac{dv}{dx}$ 🔺 n 🗸 a $\frac{m}{2}\frac{d}{dx}v(x)^2 = -q\frac{dU}{dx}$ a _____i ia^a in a^ain i $v(x)^2 = -\frac{2q}{m}U(x) + c_1$ $\begin{array}{c} \mathbf{\dot{x}} w & c_1 & \text{in} & \mathbf{\dot{c}} & \mathbf{\dot{n}} & \mathbf{$ $c_1 = v_0^2 + \frac{2q}{m}U_1$ **a**n $v(x) = \frac{s}{\frac{2q}{m}(U_1 - U(x)) + v_0^2}$

CHAPTER 2. 1D PLANAR CASE

 \leftarrow Change in solution region size with e \rightarrow ission current density

2.2.2 Variation in Solution Region Size with Accelerating Potential

A^ain^a i y nin ti s t s ?

nein
$$U(x)$$
 in \mathcal{W} is n^a of n n nein $\phi(x,\tau)$. An
a of ni a a a a $\tau \to \infty$ nein $\phi(x,\tau)$ c n of
y of n $U(x)$ i. a $\tau \to \infty$ $\phi_{\tau} \to 0$ c of a final
a final fina

2.5 Mapping from Physical Grid to Logical Grid

$$\frac{\partial c}{\partial \tau} = \frac{1}{2} \sum_{x_{1-1}}^{x_{1}} \frac{\partial M}{\partial \tau} dx - \frac{1}{2} \sum_{x_{1}}^{x_{1}} \frac{\partial M}{\partial \tau} dx - \frac{1}{2}$$

CHAPTER 2. 1D PLANAR CASE

 $\frac{\partial}{\partial \tau} \int_{x_0}^{x_n} \phi dx$

2.6.2 Gradient Dependent Monitor Function

$$M = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$M = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$M = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ n } n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn} n$$

$$Q = 1 + \gamma \phi_x \gamma \text{ in } a \text{ cn}$$

$$\phi_i - \phi_{i-1}$$
 inc^a inc^a x_i

CHAPTER 2. 1D PLANAR CASE

$$\mathbf{A} = \overset{\mathbf{O}}{\overset{\mathbf{B}}{\underline{R}}} \overset{\mathbf{1}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}{\underline{R}} \overset{\mathbf{O}}{\underline{R}}} \overset{\mathbf{O}}$$

CHAPTER 2. 1D PLANAR CASE

2.9.1 Boundary Quadratic Velocity

CHAPTER 2. 1D PLANAR CASE

an an an

CHAPTER 2. 1D PLANAR CASE

Chapter 3

1D Radial Case

n c n c n c a
y c i n a i n i n a i a
i a n c n c i n c i n a i a
i a n c i n a i a
i a n c i n a i a
a n i n a i a

$$\nabla^2 U(x,y) \rightarrow \frac{1}{r^2} \frac{\partial^2 \psi(r,\theta)}{\partial \theta^2} + \frac{\partial^2 \psi(r,\theta)}{\partial r^2} + \frac{1}{r} \frac{\partial \psi(r,\theta)}{\partial r} = -\frac{\rho(r,\theta)}{\epsilon_0}$$
i i n a i a n i a n i a n i a i a c i n a $\psi(r,\theta)$.

3.1 Problem Construction

ince tin tid y

3.2 Mapping from Physical Grid to Logical Grid

ince en aychin in a in n y w c in a an in n c y in n in yic² in n ic² in A in cn i i i i n n in ic² in c n in i a n di in yic² in

$$\lim_{n \to \infty} \frac{2}{\sigma} = \frac{\xi}{\xi_n(\tau) - \xi_0} \operatorname{cn}^{\sigma} \frac{2}{n} \operatorname{in}^{\sigma} = \frac{1}{\frac{1}{(\tau)} \sum_{r_{i-1}}^{r_i} Mr dr} = c_{i-\frac{1}{2}}$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$$\frac{\partial c}{\partial r}\frac{dr}{d\tau} = \frac{1}{(\tau)} Mrr_{r_{i-1}}^{r_i}$$

$$\vec{\Delta r} c = \frac{1}{2} \sum_{r_{i-1}}^{z} M \underline{r} dr + \frac{1}{2} \sum_{r_{i-1}}^{z} \frac{\partial M}{\partial \tau} r dr - \frac{1}{2} \sum_{r_{i-1}}^{z} M r dr$$

$$-\frac{i n n}{z} - \frac{a}{r_{i}} - \frac{z}{r_{i}} - \frac{z}{r_{i-1}} \frac{\partial M}{\partial \tau} r dr$$

$$-\frac{z}{r_{i-1}} - \frac{z}{r_{i-1}} Mr dr + Mr r \frac{r_{i}}{r_{i-1}} = 0 - 1$$

3.3 Choice of Monitor Function

$$M = \mathbf{1} + \frac{\gamma}{r} \phi_r \cdot \mathbf{n}$$

$$\frac{dr}{d\xi} = \frac{1}{r + \gamma \phi_r},$$

 i_n in nein^an ^an ^ai $\xi/(\xi_n(\tau) - \xi_0)$ i ny

$$\frac{\xi}{\xi_n(\tau) - \xi_0} = \frac{\frac{1}{2} r_i^2 - r_{i-1}^2 + \gamma (\phi_i - \phi_{i-1})}{\frac{1}{2} (r_n^2 - r_0^2) + \gamma (\phi_n - \phi_0)}$$
$$= c_{i-\frac{1}{2}}$$

in $n^2 y^2 r_n(\tau)$ in n^2 is right n in n^2 or n^2 in n^2 is right right of n^2 or n^2 in n^2 in n^2 is n^2 in n^2

$$n^{\sigma} = n^{\sigma} \phi_{n} = 0^{\alpha} n \quad I_{3} \quad y$$

$$\sum_{r_{0}}^{r_{n}} \phi_{r} dr \approx \frac{1}{2} \sum_{i=1}^{\infty} (r_{i} - r_{i-1})(\phi_{i} r_{i} + \phi_{i-1} r_{i-1})$$

$$= \frac{1}{2} (r_{n} - r_{n-1}) \phi_{n} r_{n} + \frac{1}{2} \sum_{i=1}^{\infty} (r_{i+1} - r_{i-1}) \phi_{i} r_{i} \qquad (\mathbf{v} = \mathbf{v} + \mathbf{v}$$

$$\sum_{j=i+1}^{n} c_{j-\frac{1}{2}} = \frac{1}{2} (r_n^2 - r_i^2) + \gamma (\phi_n - \phi_i)$$

$$\phi_i = \phi_n - \frac{1}{\gamma}\overline{C_i} + \frac{1}{2\gamma}(r_n^2 - r_i^2)$$

$$\mathbf{P}_{i}^{n} \quad \mathbf{P}_{j=i+1}^{n} c_{j-\frac{1}{2}} = \overline{C_{i}}^{n} \mathbf{a}$$

$$\mathbf{T}^{a} \mathbf{i}_{n} \mathbf{\sigma} \mathbf{\sigma} \mathbf{i} \quad \mathbf{i}^{a} \mathbf{i}_{1}$$

$$\phi_i = -\frac{-}{\gamma}\overline{C_i} + \frac{1}{\gamma}(r_n\underline{r}_n - r_i\underline{r}_i)$$

$$\frac{1}{2} \sum_{i=1}^{\infty} \phi_i - \frac{r_i^2}{\gamma} (r_{i+1} - r_{i-1}) \underline{r}_i + \frac{1}{2} (3r_n - r_{n-1}) \phi_n + \cdots$$

$$\cdots + \frac{r_n}{\gamma} \sum_{i=1}^{\infty} r_i (r_{i+1} - r_{i-1}) \underline{r}_n - \frac{1}{2\gamma} \sum_{i=1}^{\infty} r_i (r_{i+1} - r_{i-1}) \overline{C_i}$$

$$= 0$$

3.5 Results and Conclusions From

Chapter 4

Conclusions and Further Work

4.1 Conclusion

inine eine a a Υ . 'n J. ⊿wn n k n in aa_n aa \mathbf{a}_{n} а e ic c n a a a vica y ini i y ĺ n' . ¢in ₹ а , n , * а iin^a **n** n a . ٦. у $nc \perp n$ c n ↓ n ã C an c, n niy 🦾 C C а cc ↓n 🤨 n 🕯 n 🏄 , C c n n à а y∔c^a ⊥n c n " n n y inc n a cin " inc^a a a а ini n n у 'n 1 a a a n y y in 🔬 \downarrow n 'n c ic cc а а C. dn i in i . A in " n តុរ្ភ i n ð, d n y i . e ic 'n c n n а a a а а , P 'n į, i i n nc Ti . . n. V а . n y. n **a** , a a a cc ain , a iin.⊿wcn , C ↓n а ein ini in 🛓 $\dot{\mathbf{n}}$. . aa n y in g and a in T а y∤ n 1 a a wy y c eic T in 🤊 i v i n h n c n

CHAPTER 4. CONCLUSIONS AND FURTHER WORK

CHAO 112.4.CONCLUSIONSANDFU TH. WORK

Acknowledgements

ð ↓n a c n M n n i n . **.** W n 🔎 Č 'n ¢ n **a**n A c n in i ni c^an y . а, а а а a а а ð ň. n n \mathbf{a}_{n} e n in і Мс 🚚 i yin i . n \mathbf{a}_{n} a а ð ð n n 'ny а \mathbf{a}_{n} a с 🎙 in a i n a y in^ay an M กิจ 2 \mathbf{i}_{n} $1 \,\mathrm{n}^{2}$ ġ Ŵ anyan T aaa nc \mathbf{a}_{n} i≀n а ĺn ₹ 55 . W . a W ni " у i_n , i $\mathbf{i}_{\mathbf{n}}$ 7 a My 7 с.

Bibliography

- ^a ^an n V cuu ue Mc ^a [→] [→] M ^an e l A ^a [→] [→] [→] ^{n n n ^a [→] ^a ^{i ni^a} ^a ^{i n} ^{i n} M ^{i n} M A ⁱ P cee ng ell ng n S ul n n C e c l Eng nee ng C P ug l A^a ^{i c} ^{j n} ^{j y} [→] M ^a n A L^a ^a ^{n ^a} ^{n M} ^{i n} ^{i n} ⁿ M ^o nc ^a ^{i n} M ⁿ nc ^{i n} P cee ng SCA C n e ence H ng K ng ^a ⁿ}
- ▼ j n $\stackrel{\mathbf{a}}{=}$ n. Fee n vng vn P le $\stackrel{\mathbf{a}}{=}$ n n ¬ ▼
- jMg ^an⊿wint_i → ^an n a v n