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Abstract

The problem of determining the position of the boundary formed between a

plasma expanding into an evacuated region (subject to a large electric field)

and the vacuum itself has been formulated. The problem has been solved

in an analytical manner for the simple 1D planar case, and solutions to this

problem have been analysed. A different iterative method of solving the same

problem based on nodal equidistribution has been formulated and success-

fully implemented, and solutions compared with the analytic case. The same

iterative method has also been successfully applied to the more difficult 1D

radially symmetric problem and the effects of solution gradient and an input

parameter γ on nodal distribution have been studied.
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Chapter 1

Introduction

The neutron generator group at AWE are primarily concerned with the design

of a small particle accelerator called a Neutron Tube. These devices provide

a short high intensity pulse of neutrons which are used in applications such

as oil exploration and (of course) nuclear weapons.

1.1 Neutron Tube Basic Operation

In order to produce the pulse of neutrons, the neutron tube utilises the

deuterium-tritium fusion reaction which has a peak cross section of ∼120KeV.

For the fusion reaction to take place, deuterium (or tritium) ions must be

accelerated to an energy of ∼120KeV before striking a tritiated (or deuter-

ated) target thereby releasing neutrons with 14.1MeV (in addition to 3.5MeV

alpha particles).

To create the D-T reaction, the tube consists of an evacuated sealed enve-

lope across which the acceleration voltage is held off. A source of deuterium

ions is situated at one end of the tube (it is usual for deuterium ions to be

accelerated onto a tritiated target rather than the converse) whilst the triti-

ated target is at the cathode end (see Figure 1.1) Upon operation, a plasma

of deuterium ions expands into the acceleration gap forming a conductive

’gas’ which is generally impenetrable to the tube main accelerating field (due

6
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Figure 1.1: Neutron tube schematic

to this conductivity). At about the same time, the accelerating voltage is

applied across the tube, and ions begin streaming away from the plasma-

vacuum interface formed by the expanding plasma. Shaped electrodes within

the tube act as ion lenses focussing the ion beam onto the tritiated target

where the fusion reaction takes place.

Ions reaching the plasma-vacuum boundary at a specific rate cause the

boundary to bulge into the vacuum, thereby concentrating the electric field

within the region (since the plasma acts as a boundary for the electric field

within the tube main gap). The increased electric field causes ions to be

accelerated away from the boundary more rapidly than they arrive there, and

consequently the boundary recedes until the electric field at the boundary

is zero. In this final equilibrium state, ions leave the boundary at the same

rate they arrive there.

The determination of the equilibrium position of the plasma-vacuum

boundary, with a specific current density of ions arriving at the boundary,
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and a specific potential difference across the main accelerating gap, is a free

boundary problem.

1.2 Free Boundary Problem

The ultimate aim in solving this problem is to be able to predict the position

of the plasma-vacuum boundary for two dimensional regions with geometri-

cally complex boundaries and associated boundary conditions. A schematic

of the problem in 2D is shown in Figure 1.2. Referring to Figure 1.2, either
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Figure 1.2: Schematic of 2D free boundary problem

Neumann or Dirichlet conditions are placed on each of the boundaries C1 to

C4, and C1 has the added condition

∂U

∂n
= 0

which is required to determine the boundary shape (n being normal to C1),

along with a specified current density. The governing equation describing

the electrostatic potential within the region 
 is P3515579 d
(P)Tj
7.63Td9n’ 0 Td4(solving)Tj
348.9125 6 -185 420
(P)Tj
7.483 0 Td
(h)Tj
10.5146 0 Td-
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∇2U =
−ρ(x, y)

ε0
(1.1)

Here ρ(x, y) is a source term representing the free charge density within 
,

and ε0 is a scale factor termed the permittivity of free space.

It is the purpose of this dissertation to solve a simplified 1D version of this

free boundary problem for both radial and planar geometries.

1.3 Solution Approach

In Chapter 2 we begin with an essentially analytic solution to a reduced 1D

planar version of (1.1) and explore the solutions generated.

Since the equivalent 1D radial problem cannot be solved in the same way,

we modify the problem by introducing a pseudo-time variable and make the

assumption that the solution of the now parabolic moving boundary problem

tends to the solution of the original free boundary problem as time tends to

infinity.

In order to solve the parabolic moving boundary problem, we introduce

a numerical method based upon equidistribution of nodes (Section 2.3) in a

logical space and apply it to the planar case.

Once confidence is established that the method works in the 1D planar

case, we reformulate the method and apply it to the 1D radial case (Chapter

3), and again explore the solutions generated.
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2.1 Analytic Solution

In order to solve (2.1) subject to (2.2), an expression relating the charge

density ρ(x) (at any point within 
) to the solution potential and the current

density at the free boundary is required. This relationship is found from the

expression

ρ(x) =
J

v(x)
, (2.3)

where v(x) is the particle velocity at a position x within 
. In this 1D case,

the current density J at the free boundary is a constant. Clearly from (2.3)

as the particle velocity increases (due to acceleration from a large electric

field), particles spend less time within a unit volume thereby causing the

charge density ρ(x) to decrease.

The form of the particle velocity v(x) is also required to integrate (2.1),

and is found by equating the force exerted on a particle of charge q by

the electric field within the region 
, and the force required to accelerate a

particle of specific mass m,

F = qE = −q
dU

dx

= mv(x)
dv

dx
(2.4)

Rewriting (2.4) as
m

2

d

dx

�

v(x)2
�

= −q
dU

dx

allows immediate integration to give

v(x)2 = −
2q

m
U(x) + c1 (2.5)

with c1 being a constant of integration. When x = S, U = U1 and v(x) = v0

(the initial velocity of an emerging particle) such that

c1 = v0
2 +

2q

m
U1

and

v(x) =

s

2q

m
(U1 − U(x)) + v0

2 (2.6)
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Figure 2.4: Change in solution region size with emission current density.

2.2.2 Variation in Solution Region Size with Accelerat-

ing Potential

Again as previously mentioned, it is expected that
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function U(x) is now written as the time dependent function φ(x, τ). An

assumption is made that as τ → ∞, the function φ(x, τ) converges to the

steady state solution U(x) (i.e. as τ → ∞, φτ → 0 such that the original

equation (2.7) holds) 3.

2.5 Mapping from Physical Grid to Logical Grid

The equation (2.10) subject to the boundary conditions (2.2) is now a moving

boundary problem since the solution region evolves with the time variable τ .

We therefore seek a time-stepping procedure that calculates the velocity of

nodes within a discretised version of the physical solution region 
 (including

the node at the moving boundary). Nodal positions may then be updated at

each time-step along with the solution φ(x, τ), and the procedure continued

until the mean nodal velocity falls below a tolerance.

Mapping the nodes in the physical region 
 on to a logical region � (the

mapping must be both injective 4 and surjective 5) such that the distribution

of nodes in the logical region is constantlogicalnodes in the0Td
d
(h)Tj
9spa.20)54295(prTd
(y)Tj
108ll681 0 Td8ical)Tj
61ws81 0 Td0hatthe no velo the ph0al

til b f
44A996 0 Td
ion 117751 Tf
6.92or14 0 Td8
(W)Tj
11monitor4.33794cons4(W)Tj
110.996 0 Td
(function)Tj
/R30 
mp8den�4ustb te variable2en
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which on expansion gives

∂c

∂τ
=

1

�

Z xi

xi−1

∂M

∂τ
dx−

_�

�2

Z xi
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in time, the node at xi will have a slightly higher velocity than the node at

xi−1 such that the ith element increases in size accordingly (e.g for the first

’element’ x0 is fixed, and x1 must move in a positive x direction to ensure

that the ratio is held constant).

Referring then to (2.19), the system of equations relating the nodal velocities

_x and _� is given by

[ _x]xi

xi−1
−

_�

�

Z xi

xi−1

dx = 0,

which for the ith equation is

_xi − _xi−1 − ci− 1

2

_� = 0 (2.22)

Referring to the mass balance equation (2.20), the LHS can be re-written

d

dτ

Z xn

x0

φdx =
∂

∂τ

Z xn

x0

φdx+ [φ _x]xn

x0
(2.23)

and approximating the integral on the RHS of (2.23) using the trapezium

rule gives

∂

∂τ

Z xn

x0

φdx∂τre-written

d

@ �

Z
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Combining (2.24), (2.25), (2.26), and (2.27) gives an expression relating the

nodal velocities _x and the nodal rate of change of solution _φ,

1

2

n−1X

i=1

(φi−1 − φi+1) _xi +
1

2
(3φn + φn−1) _xn +

1

2

n−1X

i=1

(xi+1 − xi−1) _φi =

−
∂φ

∂x

�
�
�
�
�
x0

+
1

2

n−1X

i=1

(xi+1 − xi−1)g(φi) + · · ·

· · · +
(x1 − x0)

2
g(φ0) +

(xn − xn−1)

2
g(φn) (2.28)

Due to the choice of monitor function, there is no apparent way of linking the

nodal velocities _x and _� from equation (2.28). In addition, the differential

equation (2.10) does not appear globally in the system (2.22). As such it

is deemed that the use of the monitor function M = 1 in this application

is fruitless. We therefore seek a different monitor function which enables

a relationship between _x and _� to be established from the mass balance

equation, and one which allows the differential equation under study to be

more globally applied throughout the _x equations.

2.6.2 Gradient Dependent Monitor Function

If we choose M = 1 + γφx (γ being a constant) then from (2.11) it is clear

that when the solution gradient φx is large, the rate of change of nodes in

the physical domain with respect to the logical domain is small (i.e. nodes

are concentrated around areas where the solution changes rapidly). As in

section 2.6.1, from (2.12) and (2.13) the ratio �ξ/(ξn(τ) − ξ0) is now given
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(φi−φi−1) must increase, the width of the element must increase (xi ust
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and _�. In order to use (2.28) an expression relating _� and _φi must be found.

Referring to (2.29) and summing the constants ci− 1

2

from i+ 1 to n gives

nX

j=i+1

cj− 1

2

=
γ(φn − φi) + (xn − xi)

�
(2.36)

(using the expression (2.12) for theta in the denominator of (2.29)). Rear-

rangement of (2.36) gives an expression for φi in terms of �,

φi = φn −
�

γ
Ci +

1

γ
(xn − xi) (2.37)

where the summation in (2.36) is replaced by Ci for brevity. Taking the time

derivative of this gives us the required relationship

_φi = −
_�

γ
Ci +

1

γ
( _xn − _xi), (2.38)

which can now be substituted into (2.28). Performing the substitution and

collecting terms gives the required final equation in _x and _�,

1

2

 
n−1X

i=1

(

(φi−1 − φi+1) −
1

γ
(xi+1 − xi−1)

)!

_xi +
1

2

�

(3φn + φn−1) + · · ·

· · · +
1

γ

n−1X

i=1

(xi+1 − xi−1)

!

_xn −
1

2γ

 
n−1X

i=1

Ci(xi+1 − xi−1)

!

_�

=
∂φ

∂x

�
�
�
�
�
x0

+
1

2

n−1X

i=1

(xi+1 − xi−1)g(φi) +
(x1 − x equation tT

x
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where

A =

0

@
B c1

R s

1

A , b =

0

@
b1

e

1

A . (2.41)

and

B is an n× n bi-diagonal matrix (columns 1 to n in (2.35)),

c is a column vector of length n (column n+ 1 in (2.35)),

R is a row vector of length n (given
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Multiplying out the first row of (2.42) gives

D _x+ c2 _� = b2 (2.44)

such that

_x = D
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of � (found from (2.12)). The solution at the nodes φi is now found from

(2.37).

This procedure is repeated until the RMS nodal velocity falls below a

tolerance (or until the procedure is called to stop).

2.9.1 Boundary Quadratic Velocity

Initially the procedure was
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(2.2) and the solution
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solutions having been generated using the equidistribution method. Clearly

the solution is behaving as expected since



CHAPTER 2. 1D PLANAR CASE 33



Chapter 3

1D Radial Case

In order to construct a problem equivalent to that in Section 2 but in radial

geometry, the original Poisson’s equation (1.1) must be transformed into ra-

dial coordinates as follows,

∇2U(x, y) →
1

r2

∂2ψ(r, θ)

∂θ2
+
∂2ψ(r, θ)

∂r2
+

1

r

∂ψ(r, θ)

∂r
= −

ρ(r, θ)

ε0
(3.1)

Here the original potential function U(x, y) in (1.1) becomes an equivalent

function in radial coordinates ψ(r, θ).

3.1 Problem Construction

Since the solution sought is radially
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This nonlinear problem subject to the boundary conditions (3.3) is not solu-

ble analytically, and so we appeal to the equidistribution method introduced

in Section 2.3 to determine the solution. In order to do this and as in the

planar case we introduce a pseudo time variable τ and rewrite (3.6) as the

parabolic equation
∂φ

∂τ
=

1

r

∂

∂r

 

r
∂φ(r)

∂r

!

+ g(φ) (3.7)

where g(φ) is the negative value of the RHS of (3.6) and the steady state

radially symmetric function ψ(r) is now written as the time dependent func-

tion φ(r, τ). The same assumptions as the planar case for the convergence

with time of φ(r, τ) to the steady state function ψ(r), are made.

3.2 Mapping from Physical Grid to Logical Grid

Since (3.7) subject to the boundary conditions (3.3) is now a moving bound-

ary problem, we proceed in the same manner as in the planar case by mapping

the nodes in the physical region 
 on to a logical region �. Again, forcing

the distribution of nodes in the logical region to be constant in time allows

the nodal velocities in the physical region to be
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where rn(τ) corresponds to the moving outer boundary (S in Figure 3.1).

Also integrating (3.8) over a single ’element’ in the physical region gives
Z ri

ri−1

Mrdr =
R ξi
ξi−1

dξ

= �ξ (3.10)

Holding the ratio, �ξ/(ξn(τ) − ξ0) constant in time

1

�(τ)

Z ri

ri−1

Mrdr = ci− 1

2

(3.11)

again allows an expression relating the nodal velocities _r and _� to be found.

This is done by taking the time derivative of (3.11)

dc

dτ
= 0 =

∂c

∂r

dr

dτ
+
∂c

∂τ
(3.12)

with the first term on the RHS of (3.12) being given by

∂c

∂r

dr

dτ
=

1

�(τ)

�

Mr _r
�ri

ri−1

(3.13)

The second term on the RHS of (3.12) may be written

∂c

∂τ
=
Z ri

ri−1

∂

∂τ

 

Mr

�(τ)

!

dr = 0 (3.14)

which on expansion gives

∂c

∂τ
=

1

�

Z ri

ri−1

M _rdr +
1

�

Z ri

ri−1

∂M

∂τ
rdr −

_�

�2

Z ri

ri−1

Mrdr (3.15)

Combining (3.13) and (3.15),
Z ri

ri−1

M _rdr +
Z ri

ri−1

∂M

∂τ
rdr

−
_�

�

Z ri

ri−1

Mrdr +
�

Mr _r
�ri

ri−1

= 0 (3.16)
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and approximating the integrals using the trapezium rule once again yields

an (n+1)×n system of equations for the n nodal velocities _r and _� ( _r0 = 0).

Again, since this is not a square system, the mass balance equation relat-

ing to the original DE (3.7),

d

dτ

Z rn

r0

φrdr =
Z rn

r0

 

1

r

∂

∂r

 

r
∂φ(r)

∂r

!

+ g(φ)

!

rdr (3.17)

is used to provide a further relationship between the nodal velocities _r and

_� (see Section 3.4).

3.3 Choice of Monitor Function

The case for the monitor function M = 1 is not evaluated here for the reasons

given in Section 2.6.1.

If we choose M = 1 + γ
r
φr, then from (3.8)

dr

dξ
=

1

r + γφr
, (3.18)

it is clear that if the solution gradient φr is high, the rate of change of nodes in

the physical domain with respect to the logical domain will be small. In ad-

dition, as the radial coordinate increases this rate of change will also decrease.

Using this monitor function and from (3.9) and (3.10), the ratio �ξ/(ξn(τ) − ξ0)

is given by

�ξ

ξn(τ) − ξ0
=

1
2

�

r2
i − r2

i−1

�

+ γ (φi − φi−1)
1
2
(r2
n − r2

0) + γ (φn − φ0)

= ci− 1

2

(3.19)

If the moving boundary at rn(τ) moves in a positive r direction, the de-

nominator of the term on the RHS of (3.19) will increase quadratically. In

order that this term remain constant in time, either the ith element solution



CHAPTER 3. 1D RADIAL CASE 39

difference (φi − φi−1) must increase, the element size must increase, or a

combination of both. For small i, the size of an element will increase more

significantly than for large i (for a similar element solution gradient) at each

timestep.

Substituting M = 1 + γ
r
φr into (3.16) gives

Z ri

ri−1

�

1 +
γ

r
φr

�

_rdr =
∂

∂τ

Z ri

ri−1

rdr + γ
Z ri

ri−1

_rφr
r
dr

= [r _r]riri−1
+ γ

Z ri

ri−1

_rφr
r
dr (3.20)

for the first term,

Z ri

ri−1

∂M

∂τ
rdr = γ

Z ri

ri−1

∂

∂τ

 

φr
r

!

rdr

= γ
Z ri

ri−1

φrτ −
_rφr
r
dr (3.21)

for the second term, and

−
_�

�

Z ri

ri−1

Mrdr = −ci− 1

2

_� (3.22)

for the third term (from (3.11)).

Combining (3.20), (3.21) and (3.22) and substituting into (3.16) gives the

expression

γ

"

1

r

∂

∂r

 

r
∂φ(r)

∂r

!

+ g(φ)

#ri

ri−1
| {z }

I1

+ [r _r]riri−1
+ [(r + γφr) _r]riri−1

− · · ·

· · · − ci− 1

2

_� = 0 (3.23)

where the term I1 comes from the differential equation (3.7) and becomes

the RHS93399 -33C33 0 0 cm BT335 in81ψ0ψTd-7.6695ψ0ψTd
(tial)1ψBT
/R286ψ5.97758ψTe8.774ψ63ψ4ψ0ψTd
(simi629ψ0ψ..774ψ636851ψTf
4.5Thid
(RH2(the6695ψ0ψTd.9551ψ70698ψTd
(�)T51983.23))Tj6CψTf
9.61198ψ1.79101ψTd
(comes)Tj
35.5/R63Tm
(2)Tj
5t.218ψ-29180Tj
32.147ψ0ψTd
((mi629ψ0ψ..7main
(=)Tj
12.4188ψ0ψTd
55136(the)Tj
2ψ11.9551ψTf
11.7528ψ0ψTd
(γ)Tj
6.72n
(=)Tj
12.4188ψ0ψTd
4968ψTd
((3.2/R52ψ11.831ψ70698ψT1d
(r)Tj
11ψTf
5.07293ψ-229158ψTd
(Z)�j
/R62ψ7.97011ψTf
2.8)Tj3l)Tj
21.7nψTd
(the)Tj
21.1221ψ9425ψ2ψ1.4ψTf
8.71201ψ1563ψ0ψ.218ψ7.9348(com)Tj
20/R52ψ11.9551ψTf
6.03811.75)Tj
6.72ψ7.97011ψTf
3.27103ψ5.80her3336ψ4836ψ142.64ψTf
4ψTf1517.45402ψ569.283ψTm
(r)Tj
7.36198ψ8.19897ψTd
(φ)Tj
/R81ψ7.2
(Z)Tj
/R81ψ7.97011ψT17897ψ0ψ(!)T9104ψTd
Td
(_)Tj

12.4188ψ0ψTd
555ψ7.3ψ0ψTd
((3.231ψTf
107.285ψ0ψTd
((3.23))Tj(the)Tj
21.1221ψ0ψ088)Tj
32.14,)Tj
36.ψTd050ψTd
((3.21Tψ0ψTd
(4ψTd
ution)Tj
0.654ψTd
(�)Tj
/R52ψ11.656ψ0ψTd
73(RHS93399Tj
-109.722ψ-18.774ψTd
(Coψ0ψTd
2
/Rs)Tj
-35220/R52(the370ψTd
(term)Tj
/R30ψ1Z)Tj
099ψ0ψ..7ma/R52(ψTd770ψTd
(tey3333ψ0ψ076.6937ψ0ψψ-33C33ψ0ψ0ψcmψBT335-33C98.33
(b)Tj
6.8xp.65ed218ψ7.92(_).774ψTd
96264ψTf
-149.506ψ)Tj
/R30ψ11.9551ψTf
25(_)Tj

12.4188ψ0ψTd
-2
2
r333
28.972
/R30ψ11.9551ψTf
-1.83615ψ0ψTd
(r)Tj
/R52ψ11.9551ψTf
5.5962ψ0ψTd32])Tj
/R81ψ7.97011ψTf
3.2901ψ5.805ψ45
(r)Tj
/R335ψ5.97758ψTf
3.825ψ-1.215ψTd
(i)Tj
/R81ψ7.97011ψTf
-3.827774ψ.951019ψTd
(r)Tj
/R335ψ5.97758ψTf
3.825ψ-1.215ψTd
(i)Tj
/R338ψ5.97758ψTf
2.660011ψ0ψTd
(�)Tj
/R286ψ5.97758ψTf
5.7564ψ0ψTd
(1)Tj
/R101ψ11.9551ψTf
7.30658ψ4.70698ψTd
(�)Tj
11.9531ψ0ψTd
(�)Tj
5.30057ψ0ψTd
(�)Tj
51.9551ψTf
6.03811Tm
6.7069/R286ψ5.Tj
/R81ψ7.97011ψTf
9.9629(_)Tj
/R30rj
/R286ψ5.97758ψTf
7.728ψ0ψcom)Tj
28.585ψi�)Tj
51.9551ψTf
6.03Tf
3019ψm9615ψ0ψTd
(r)Tj
5.59679101ψTd
(r)Tj
/R
5.30057ψ0ψψ142.286ψ5.97758ψTf
7.72810ψTd
(1)TjTd
(1)Tj
ETψQ
2907ψ3304ψ30.45ψ3.37476ψre
f
qψ8.311.9551ψTf
9.99694ψ0ψTd
(m)Tj
9.4314ψ0ψTd
(ust)T9696851ψm
r mr + γφr) 64cm B1 -14.544 Td
(_)Tj
3615 0 Td
(r)Tj
/R019 m ]riri� 1

+ γ
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and the term I1,

γ

"

1

r

∂

∂r

 

r
∂φ(r)

∂r

!

+ g(φ)

#ri

ri−1

= γ

8

<

:

1

ri

∂

∂r

0

@ri
∂φ

∂r

�
�
�
�
�
ri

1

A

�
�
�
�
�
�
ri

− · · ·

· · · −
1

rr �

rr

0

@
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(noting that _φn = 0) and I3 by

Z rn

r0

φ _rdr ≈
1

2

nX

i=1

(ri − ri−1)(φi _ri + φi−1 _ri−1)

=
1

2
(rn − rn−1)φn _rn +

1

2

n−1X

i=1

(ri+1 − ri−1)φi _ri (3.34)

Clearly an expression relating _φi and _� is required to obtain a system in

_r and _� from (3.31). Such an expression can be found by summing (in a

similar manner to the planar case) the constant ci− 1

2

in (3.19),

�
nX

j=i+1

cj− 1

2

=
1

2
(r2
n − r2

i ) + γ(φn − φi) (3.35)

such that

φi = φn −
�

γ
Ci +

1

2γ
(r2
n − r2

i ) (3.36)

where
Pn
j=i+1 cj− 1

2

= Ci as before.

Taking the time derivative of (3.36) gives the required expression

_φi = −
_�

γ
Ci +

1

γ
(rn _rn − ri _ri) (3.37)

Using (3.33), (3.34) and (3.37) in the mass balance equation (3.31) and col-

lecting terms in _ri, _rn and _� gives the final equation to be added to the

system (3.30),

1

2

n−1X

i=1

 

φi −
r2
i

γ

!

(ri+1 − ri−1) _ri +
1

2

(

(3rn − rn−1)φn + · · ·

· · · +
rn
γ

n−1X

i=1

ri(ri+1 − ri−1)

)

_rn −
_�

2γ

n−1X

i=1

ri(ri+1 − ri−1)Ci

= 0 (3.38)
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3.5 Results and Conclusions From
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Chapter 4

Conclusions and Further Work

4.1 Conclusion

The problem of determining the position of the plasma boundary formed

between an expanding plasma and a large electric field was constructed and

initially solved (in the most part analytically) for the 1D planar case.

Exploration of the solution to this problem revealed that the behaviour of

the solution and boundary position as a function of various initial conditions

(such as accelerating voltage and current density) was exactly as expected.

We confirmed that the solution region width reduces in size as the ion

emission current density increases. In a physical sense, this is due to the

increase in ion flux reaching the plasma boundary being greater than the

ion flux being stripped away from the boundary by the accelerating electric

field. As such, the plasma bulges into the region, reducing it in size, until the

electric field is sufficiently high that the ion flux both reaching and leaving

the boundary are balanced. This is the equilibrium state and is the position

of the free boundary.

In addition we confirmed that as the accelerating voltage is reduced in

magnitude, the solution region size reduces. This is again due to the ion flux

reaching the plasma boundary being greater than the flux caused by ions

being stripped away by the (reduced) electric field. The solution region con-
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sequently reduces in size until the ion fluxes on both sides of the boundary

are balanced.

Since one of the aims of this project was to solve the same problem in a

1D radially symmetric geometry and it was apparent that this radial prob-

lem could not be
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enden

tfree b oundary problem toaparab olic mo ving b oundary problem, it

has b een assumed that the same

equilibriumsolutionw ould b e ultimately

obtained inboth cases. W
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