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1 Introduction

1.1 An Introduction to Non-Linear Diffusion

Non-linear diffusion is characterised by the partial differential equation

‘g—? - % (D(u)g—D . (1.1)

where D(u) is the diffusion coefficient. When D(u) = u”, this equation is

also known as the Porous Medium Equation (PME),

ou 0 L, Ou
i ( a_) ' (12

1.1.1 Gas Diffusion through & Porous Medium

Whe PME can be derived by considering the diffusion of a gas through a
porous medium under the action of Darcy’s law relating the velocity to the
pressure gradient. Whe flow of gas is characterised in terms of pressure, p;
density, v and velocity, v. Whe gas can be assumed to obey the conservation

of mass equation

ou 0
Par T o (uv) =0, (1.3)

where p is the constant porosity of the medium. Whe gas also obeys Darcy’s

law

9,
po = —lia—}; (1.4)

which is an empirical law for the dynamics of the flow through a porous
medium. Here, p is the viscosity of the gas and & is the permeability of the

medium; both these are assumed to be constant. Whe gas is assumed to be



ideal so
p = pou’,

where pg 1s the reference pressure and A

(1.5)



radiation in detail but is expensive to solve numerically, whether by Monte
Carlo methods or by some deterministic method such as Sn or Pn.

In cases when the mean free path of a photon is much smaller than a compu-
tational cell then an approximation can be made to the transport equation
which yields the diffusion equation. In this approximation causality is no
longer significant although in low opaque environments a radiation wave can
exceed the speed of light and care must be taken when the approximation
is applied. However, in a genuinely diffusive regime, it provides an adequate
description of the radiation transport.

In the diffusion approximation, the diffusion coefficient is not a simple con-
stant or linear function, but depends on the type of material and the density
and temperature of the media being traversed. Whe dependence on temper-
ature is roughly proportional to the 4th power and so the diffusion equation
is highly non-linear. Hence to solve the diffusion equation with linear solvers
the timestep must either be small so that the system is effectively linearised
or an iterative scheme devised that takes into account the non-linear nature
of the coefficient [10].

In practice, the temperature dependence is not evaluated via a polynomial
function, but taken from tables derived from theory and experiment. Inter-
mediate values are interpolated. In this case the derivative of the coefficient
must be evaluated numerically if it is involved in the solving iteration.

I shall first be considering the case when the diffusion coefficient is known

analytically to be u*. Whe partial differential equation becomes

du 9 ( ,0u



I shall later look at using a table to evaluate D(u).

1.2 Overview of the Report

In chapter two, I shall give the derivation of the self-similar solution for
equation (1.6). Whis gives a family of analytic solutions which can be used to
compare the errors in different methods. Whe self-similar solution also acts
as an attractor for general solutions.
In chapter three, I shall look at three different static mesh methods used
to solve the partial differential equation in conservation form, based on the
standard Crank-Nicolson scheme. First, I will linearise the equation in u"*!
and use a standard solver. T will then look at two iterative ways of solving the
full non-linear equations, using first Picard iteration and then the Newton-
Raphson method.
In chapter four, T will look at solutions of the PDE with n = 4 in non-
conservation form, as in
2 2

2_1: = u4% + 4u® (%) ,
which comes from (1.2) by direct differentiation. In this form, I will use
the Crank-Nicolson scheme and compare methods using upwind and central
differences for the last term.
In chapter five I will look at a case where the diffusion coefficient D(u) in
(1.1) is not known analytically but is tabulated for a series of values of u. I
will investigate two ways that can be used to extend the above methods for
use 1n this case. First, I will simply use linear interpolation to find the value

D(u) for a value u not present in the table. Second, T will use a least squares



minimisation to fit a function to the tabular data and then use this function
to evaulate the different methods.
In chapter six I will look at a moving mesh method for solving the problem.

Here, the area under the graph between consecutive grid-points is kept



2 A Self-Similar Solution

2.1 Scale Invariance

First we seek a coordinate transform under which the partial differential

equation (1.6) is invariant. Consider the scaling transformation



Integrating equation (1.6) gives




2.2 Self-Similar Solutions

A time dependent phenomenon is called self-similar if the spatial distributions
of its properties at different times can be obtained from one another by a
similarity transform [8].

Note from (2.1) that

L 1
u t T B
A = = 2 = -
vt 2F
We now introduce two new variables
u i
PERT R
and
x T
YT T

Note that these two variables are independent of A and are invariant under
the transformation (2.1).

Now take ¢ to be a function of y and transform the PDE (1.6) into the
variables ¢ and y to obtain an ODE. First, transform the left hand side of
the PDE into ¢ and y.
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Now transform the right hand side into ¢ and y.
0 (00 _ O[Oy Oud
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dy <¢ dy)

Substituting these into equation (1.6) gives



Rearranging gives

I his integrates to give
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where d is constant. Since ¢ has to be positive we obtain

¢ DB



Figure 1: Self-Similar Solution at times ¢; and 1,

2.3 The Self-Similar Solution as an Attractor

Comparison theory says that if we have two solutions u,w to the problem
with u > w at ¢y then u > w for all time, giving an ordering of solutions [4].
I he self-similar solution is of particular interest due to the following conver-
gence result from [5].

“Let u(x,t) > 0 be an arbitrary solution of equation (1.6) with integral [
and centre of mass zg. When if u(z;t; A) is the self-similar solution with the

same integral and centre of mass, then for all ¢, we have
tz |w—1u|r—0 as 1 — wo.

Equivalently, the PDE (1.6) has as a global attractor the solution of the ODE
(2.7) with the same first integral.” Whis means that a solution with arbitrary
initial data will be squeezed between two discrete self-similar solutions. Dia-
gram 2 from [4] show this for an initial solution that fits between self-similar
solutions with A = 0.9 and A = 2.3. Whe figures in this diagram are plotted

in a reference space €.

11



Figure 2: Convergence of the Solution in the Computational Domain



3 Solutions on a Stationary Mesh - Conser-
vation Form

Whe partial differential equation will be first solved numerically using finite



3.1 Crank-Nicolson with Explicit Treatment of u*

In this section, the non-linear term of the equation will be taken at time level

n. Whis results in the semi-implicit scheme

untt

At

After rearranging, this becomes

u +u” O\ * noo o\ [
urt] (—ua (f) ) Furt (1 o0 ((ﬁ) ; (f)» ¥

(3.2)
W his is solved as a matrix equation Au™*' = b with A being the matrix of
coefficients of the components of the vector u”*! and b being a vector of
the right hand side of equation (3.2). Whis can easily be solved using any

standard method. 1In this case, A is tridiagonal and we use the Whomas

algorithm [11].

14



3.1.1 Stability and Accuracy

Whe stability of this method can be examined using Fourier analysis. Con-
sider the diffusion coefficient u* to be frozen and replace it with a constant.

W he PDE now becomes

b
ot _UaxZ’

where o is constant.

W he scheme to be analysed is simply

n+1 .n
J Uy o

Al Ax? (

U

0 (u?ill - 2“?“ - u?j_ll) + (] - 0) (u?-l-l - 2“? - U?q)) .

(3.3)

Substituting u} = a,e*2% into the equation (3.3), multiplying through by

At and dividing through by e“*2% gives

app1 — an = v ((1 —0)a, + Oa,gq) (eikAx 94 e—ikAg;) ’

agAt
Ax?”

where v =
W his then becomes

e = (1 — 41/(1 — (9) sin? (ICAT”:)) o

1 + 400 sin? (MTT)

For stability, we require that |a,41| < |a,|. For this, we need

kAz kEAz kAx
—1 — 40 sin? ( 2T> <1 —4y(1 —0)sin® ( 2T> < 1+ 408 sin? ( 2T> :

1
Whe right hand part of this inequality always holds. Moreover, for 6 > 2’
the left hand side of the equation is always < 0 so the inequality holds and

the scheme is unconditionally stable.

15



1 , (kA 1
If 6 < 77 then the scheme will be stable only if v(1 — 26)sin” < 2I> < 3

Az

> = 1. Whis gives Fourier stability

il he worst possible case is when sin? <
1

2(1-26)

If § is taken to be equal to % then the method is known as the Crank-Nicolson

for v <

method. Whis method is stable for all v and is second order accurate in both
space and time. Whe stability can be exploited to use large timesteps (with
the order of the space and time steps being equal) and since it is second order
accurate in time, good accuracy will still be obtained.

o is obtained by freezing u* so the maximum value it can take is the maximum
value of u*. Due to the maximum principle, this is equal to the maximum
value of u* in the initial data. Hence the maximum possible value of v is

At )
max 1, .

Az?

3.1.2 A Maximum Principle
W he theta method of equation (3.1) with 0 < 8 < 1 and

(1 —6) < (3.4)

DN |

yields u? satisfying

and



are the minimum and maximum values of u on the initial line and the bound-
aries [2].

Using this maximum principle we can deduce stability and hence convergence.
For any v which satisfies the stability condition (3.4), the approximations
given by equation (3.1) with consistent initial and Dirichlet boundary data
converge uniformly if the initial data are smooth enough for the truncation
error to tend to zero as At and Ax are decreased, whilst keeping v constant
[2].

W he condition used in the above theorem, v(1 — ) < % is much more restric-
tive than that obtained using Fourier stability analysis, v(1 — 260) < % For
example, the Crank-Nicolson scheme is always stable but only if v < 1 does
it satisify the maximum principle which is then used to deduce stability and

convergence. If the boundary conditions are uj = v’} = 0 then we want

‘uﬂ < Korélg.(] ull  Vi,n
to be satisfied with K = 1 for a maximum principle to hold. However,

for Fourier stability any value of K is accepted in this bound. Whe weaker
1

condition v(1 — 26) < 9 is then adequate [2].

Hence the maximum priciple can be viewed as an alternative way of obtaining

stability conditions but it may derive conditions that are only sufficient.

17



3.2 Crank-Nicolson with Semi-Implicit Treatment of

u4

3.2.1 Picard Iteration

Here, the non-linear term of the implicit section of equation is taken at time
level n + % It is known that for the Crank-Nicolson method, the diffusion
coefficient, here u?*, produces better accuracy if taken at time level n + %
At the start of each time step, u? is taken at time level n and the problem

is iterated to find a provisional value of u™*!,

un-l—l + un

1,
When u”tz is calculated as

n+1

and the process repeated. When the solution for u has con-

verged, the time step is advanced and the next time step commenced. #he

scheme is

’I’L-l-l _ n

u; Uj —

At
4 4
n-l-% n+% n+% n-l-%
0 Uj1 +uj ( n+1 'n-l-l) U +uj—1 ( n+1 n+1
U, — U _ - u; T =

A2 92 J+1 J 9 J J—1,

(1 — 0) UT-L_I_] + u” 4 n " u” —+ uT_L_] 4 . .
RN ) (G ) = () (G-l )

W he equations can be solved using Picard iteration with the matrix equation

being solved as before.

3.2.2 Newton-Raphson Iteration

Here, the non-linear part of the implicit section of the method is taken at

time level n + 1.

18



Let

4 4
/ ntl nt1 nt1 ntl
At ujr + U (it — urtt) — ujit Fuin (! — )
Ax? 9 J+1 J 9 J J=1

o solve the equation F (u”*') = 0, this method iterates

J(u”"’1 Poéu = —F(u”’H )i

(u”+1)p+1 = (u”+1)p+5u (3.5)

. : . : . : . O0F(u
where p is the iteration count and J is the jacobian matrix ( ) W he
u

Jacobian is evaluated by analytically finding the derivatives of F(u) and
coding these into the fortran. Whe Jacobian is tridiagonal so the equation
can be solved using the Whomas algorithm as before.

4

At the start of each time step, u* is taken at time level n and Newton-

Raphson is applied as in (3.5) to find u”*'. When the solution for u"*! has

converged, the time step is ddvanced and the proces mm,r d the pr WIH‘ yrm v @ l€















4 Solutions on a Stationary Mesh - Non-Conservation
Form

Whe partial differential equation will now be solved numerically in non-

conservation form using finite differences applied using the theta method.
At
Az?

Where v is used in the following section, it is a constant and is equal to

ihe PDE (1.6) can be differentiated to give

Finite differences can be applied to this eq



A <(uj)4 (fsr = 2uf +uj_y) +4(u)’ (ufyy — uf) >

At © = 0, either case can be used.

4.2 Central Differencing

Central differences are of a higher order than upwind differences but they
take data from a wider area and so may use data on which the solution is
not physically dependent. Whis may cause the solution to be less physical
than the upwind solution. Whe central difference scheme is

)

J U;

At

((f)* (il = 205" + i) + () (ufyn = wia) (i — i)

+ A.I'Z ((u’j )4 <uj+1 - 211/] + U’j—l) + (UJ-)F% (“’j+1 — uj—l) ) i

4.3 Results
4.3.1 Evolution of Various Initial Conditions

Figure 8 shows the evolution of the solution with perturbed non-self-similar

initial data

cos (”2—“”) + 0.2 cos (M) for |z| < 1

2

0 for |z| > 1

using the scheme with upwind differencing.

25









5 Solutions on a Stationary Mesh - A Tabular
Non-Linearity

For some applications, the exact form of the diffusion coefficient, D(u) in

equation (1.1)



the range of the table then linear extrapolation is carried out using the final

two points in the table.

5.1.1 Conservation Form - Explicit Implementation of u*

W his scheme is easy to convert to use the tabular data. Mhe scheme becomes

n+1 n
U’j U,]-

At

ALz (DLI (7”12 J) (U?j:ll - u?"'l) — Drr ( ! !




+1—9
Azx?

<DLI <u?+1 *



Whe equation F (u™') = 0 can now be solved exactly as in Section 3.2.2,

using this new implementation of the Jacobian.

5.1.4 Non-Conservation Form - Upwind Finite Differencing

Whis is slightly more complicated to alter to use the tabular data since the

scheme requires that Dy (u) is differentiated. However, an approximation

to the derivative is easily achieved using an upwinded numerical derivative.

Whe scheme is given in equations (5.2) and (5.3) for the cases z > 0 and

x < 0 respectively.

o
At
0
o (Dur () (] — 2 ) 4 (-

1—4

+ﬁ (DU (“7) (“?H — 2uf + “?—1) + (“J - uj

0

Azx?

(Dt (u7) (] =20 +81) 4 (] -

1—46

+ Ax?

31

Uu

(DU (“n) ( ujly — 2uf + uj 1) + (“}11 —u

w4 (Dur (uf) =

J

Drr (1))

—1) (Drr (uf) = Drr (wi-y)))

T‘LH) (DLI (“y+1) -

Dur (uf)))



5.1.5 Non-Conservation Form - Central Differencing

As with the above method, this requires an approximation of the derivative

of Drr(u). Whe scheme becomes

Y Ui _
At
0 ,
o (D () (i = 20 ) o (=) (Da () = D (1))
1 B 9 n n n n n n n n
TIAL? (Dr (uF) (ufyr = 2uf +ujy) + (wfyy — wf_y) (Dor (ufy) = Dur (ujy))).

5.2 Least Squares Minimisation

In this method, a polynomial function is fitted to the data in the table and

this function is used in the place of D(u) in the schemes. Whe polynomial

chosen to be fitted is Ku* + L.

W his has been chosen since it is known

that for the physical examples considered in chapter one, the function D(u)

is generally u*. Wis analysis could easily be ex@r L



It is now required to minimise these deviations. lhe condition for R* to be

a minimum



and

n n n
4 4
K = i=1 =1 =1
n n 2 )
8 4
n u, — U,

W he exact values of K and L are now easily calculated in the fortran program.

Whis diffusion coefficient can easily be applied to all the methods in the
previous two chapters, simply by replacing D(u) = u* by Ku® + L and

replacing i 4o with 4Ku®.

5.3 Results

Ordinarily, the data in the table would be experimental data. For the purpose
of this project however, this data is not available and the function u* has
simply been used for D(w). Whis allows the results from these schemes to
4

be compared to the schemes in the previous two chapters which have u

programmed into them.

5.3.1 Least Squares Best Fit

In this case, the result is that K’ = 1 and L = 0 so the schemes are exactly the
same as those in chapters three and four and the results are identical. Whe
program will run slightly more slowly due to having to calculate K and L at
the beginning but this difference is too small to be noticeable. o ensure this
scheme works correctly, a new set of data for D(u) have been calculated. For
these, the function D(u) = u* 4+ 0.01 x random, where random is a random
number, has been used. Running this I obtain K" = 0.9982 and L = 0.0055.

Whe results from this run are shown at the final time ¢ = 10 in figure 10
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Method Az | Hime Error

Analytic D(u) | 0.01 | 7.65s | 0.0618%
Wabular D(u) | 0.01 | 48.04s | 0.0580%
Analytic D(u) | 0.25 | 0.67s | 0.9125%
Wabular D(u) | 0.25 | 1.60s | 0.9163%




6 A Moving Mesh Method

6.1 Deriving a Moving Mesh Method for the Solution
of the Non-Linear Diffusion Equation

With a moving mesh, it must be assumed that the grid points z; are depen-

dent on time. It can then be shown [1] that

d z; (t) z;(t) z;(t) dr
— udx :/ a—ud$+/ 2 uw) de.
dt Ii—1(l‘) wi—1(l‘) 8t wi—1(l‘) 8:0 dt

aking the original partial differential equation du_ 0 <u4g—u
T

5 = 9n ) and sub-
T

stituting for a—;j in the above equation gives
d rz @i(t) @i(t) d-
— udr = / g <u48_u> dr + / g <u—T> dr
dt zi_1 (1) w1 (1) ax &r @1 (1) a:L' dit

/mi(t) 0 ( ,0u N dx J
= — v — 4+ u— ) dz.
zi_1(t) aT ! a"l' dt

Now let — = where ¢ 1s a velocity potential. Whe above equation then

dt ~ 0z’

becomes

|
=
Q.
3
Il

dx #i(t)
Suppose that 7 is such that —/ udr = 0.

W0 9 9 [ut
/ﬂ:i—l(l‘) o <u5_:v [Z + 4) dz = 0. (6.1)

W hen



A solution of (6.1) for which ¢ = 0 when u = 0 which is

a4

“ a0
R
4 [
Waking ¢ = —UI and C(l]—f = g_qb’ gives
dx 4 0u
- = —u-—
dt Ox

everywhere. Whis equation tells us how the grid points move such that the
area under the graph of u between each pair of points remains constant for

all time.

6.2 Implementing this Method
6.2.1 Integrating using Fourth Order Runge-Kuttx [14]

Make an initial condition and a grid equally spaced over the domain of this
initial condition. Calculate the inital areas under the graph of u between

grid points using the trapezium rule,
1
Ai = 5 (o = win) (uli) + ufziz)).

W hese areas should remain fixed,approximately, for the rest of the problem.
o
Ox

d
Integrate d—f = —u f(z) using fourth order Runge-Kutta.

At
ot g = (Ky + 2K, + 2K + Ky)

—~

(@)
At
K, = f <J:f + 718"1)
[\/3 = f (.f? + %]ng)
Ki = [(aF + ALKs)

38



W he derivative —Z required in the function f can be calculated analytically
provided the initial condition is differentiable. Whe solution given by the
Runge-Kutta method gives the new grid points. Whe solution at these grid
points can be constructed using the trapezium rule since the area between
grid points has remained unchanged. Whe solution at the boundaries is known

to be zero since the grid points are moving such that they always exactly cover

the whole domain of the solution. Hence we have

2A;
U, = —— — U;—1. (62)

T, — Xi—

W his process must now be repeated each time step until the end time has been
reached. However, we now do not have an analytic function for u and hence

du . . . .
cannot find —— analytically. Instead, we use an upwind finite difference,

Ox

given by
du Ui — Uiy
—| = ;>0
ox|, = — o
0 Uip1 — U
il B L ) (6.3)
oz |, Tig1 —

) ) . [ 2 0u ) .
W he differential equation Pl (z) is then solved as before using
T

fourth order Runge-Kutta. Where the function in the Runge-Kutta method
needs to be evaluated at x values that are not exact grid points (for ex-
ample, z!" + %Kl(i) will not be on a grid point) then the value of u at
this point should be found using linear interpolation on the values of u at

the grid points on either side of this point. Whe value of g—u should be
T

Al
found numerically as given in equation (6.3) but using u(z" + 7[&"1(2-)) and

At At
u(zl | + 7]&”1(2-_1)) in the case where =" 4+ 7[&"1(2-) > 0 and u(z] + 7[(1(2-))
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and z' are now known and the backward differentiation scheme can be used
to find the values of z; at all following time steps.

Since f(z?™') is not known, the scheme must be iterated as

4 n

n+1yp+1
() = 3

3

1 n—1 2 n+1

3t = gAtf((xz )’)-
Here, p is the iteration count and (z"t')? is taken as z”. Whe iteration is
repeated until |(z"T1)PH — (2"*t1)?| is within a specified range and we have

convergence.

6.3 Results
6.3.1 Evolution of Various Initial Conditions

Figure 11 shows the evolution of the solution with non-self-similar initial data

cos (%) for |z| < 1
0 for |z] > 1
using the fourth order Runge Kutta method to do the integration.

Figure 12 shows the evolution of the solution with self-similar initial data

1

(1—%)Z for 2% <3
u =
0 for 22 > 3

using the second order backward differentiation method to do the integration.
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6.3.2 The Self-Similar Solution &s an Attractor for the Numerical

Solution

As with the static mesh methods, the numerical solution should hopefully



6.3.3 Accuracy of the Numerical Solution

By using the analytic solution at time ¢t = 1, the numerical evolution of
this solution can be compared to the analytic evolution to find a percent-

age error in the numerical solution at final time. Whe initial condition is

22
uzl—(



the numerical solution to depend on data on which the physical solution does

not depend.

6.3.4 Conservation of the Integral

If the method used is conservative then it is expected that the integral of
the solution will remain constant. It will probably not be equal to the ana-

lytic integral due to the discretisation in space. Using the initial condition

U = cos (%), the analytic integral is % {sin (%)} 1_1 = % = 1.27324.
Method Wime | Integral
Analytic 1.27324
Conservation Form | Explicit u* t=0 | 1.27321

t=10 | 1.27321

Implicit u* Picard t=0 | 1.27321

t=10 1| 1.27321

Newton | =0 | 1.27321

t=10 | 1.27321

Non-Conservation | Central Difference t=0 | 1.27321
Form t=10 | 1.05728
Upwind Difference t= 1.27321

t=10 | 1.23091

Moving Mesh RK4 t=0 | 1.27321
t=10 | 1.27321

BDF2 t=0 | 1.27321

t=10 | 1.27321
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i he static mesh methods all have Az = 0.01 and the moving mesh method
has an initial regular mesh with Az = 0.01. Whe moving mesh method is
based on the area under the solution curve remaining constant between each
grid point so must conserve the integral of the solution. Whe numerical meth-
ods based on the PDE in conservation form are shown to be conservative, as

expected.
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7 Conclusions

For this dissertation, I have looked mainly at a number of different numerical
schemes that can be used to solve the non-linear diffusion equation.
Initially, T investigated scale invariance and how it was used to obtain a family
of self-similar solutions to the problem. Whis family of solutions acted as an
attractor for more general solutions.

I have looked at different static mesh methods for solving the equation in
both conservation form and non-conservation form. T also looked at a moving
mesh method.

In conservation form, I used the Crank-Nicolson scheme with three different

*1 and a standard solver used.

solvers. First, the equation was linearised in u”
W he fully non-linear equation was then solved using Picard iteration and the
Newton-Raphson method.

In non-conservation form, the equation was linearised in "t and both up-
wind and central differences were used in the scheme.

All the static mesh methods have also been applied to the case where the
diffusion coefficient is not known analytically but is in the form of a table of
values.

For the moving mesh method, the integral of the solution is kept constant
between consecutive grid points throughout the entire calculation and this
fact is used to form an ordinary differential equation which can be solved
to give the new positions of the grid points at the next time step. Whis
differential equation was solved in two different ways, using fourth order

Runge-Kutta and using second order backward differentiation with the initial

values given by second order Runge-Kutta.
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All the methods carried the property of the analytic solution that a general
solution should tend to the self-similar solution. Even an oscillatory initial

condition remains sandwiched by two self-similar solutions for all methods.



8 Further Work

I he most successful method considered here is the Newton-Raphson method.

However, this req



(b) Compute the preconditoned Krylov vector, JM~'v, using a

multigrid cycle to approximate the solution to Ay, = v,.

(¢) Perform the matrix-vector multiply through the operation
F(u+ ey,) — F(u)

€

W, =
W,

(d) Complete the Krylov iteration, v,,4; = ———
1w |2

convergence. If converged, exit, otherwise n :=n + 1 and go to

(b).

and compute

3. Compute the update to the full nonlinear problem.

4. Check for nonlinear convergence. If converged, exit; otherwise,

k:=k+1 and go to 2.

i his method proves to be more accurate than the standard Crank-Nicolson
method with Picard iteration. Figure 15 from [7] shows the propogation of
a one dimensional radiation heat wave (also referred to as a Marshak wave
[15]). Whe system was run using four different solvers, backward Euler with
Picard iteration, Crank-Nicolson with Picard iteration, backward Euler with
Newton-Krylov iteration and Crank-Nicolson with Newton-Krylov iteration.
It is obvious from this graph that the solutions using Newton-Krylov iteration

are much closer to the exact solution than those using Picard iteration.
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Figure 15: WWhe one-dimensional Marshak wave problem used to demonstrate

the accuracy of various non-linear iterative techniques.
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