Department of Mathematics

Preprint MPS_2009-14

3 September 2009

A Nyström Method for a Boundary Value Problem arising in Unsteady Water Wave

by

Mark D. Preston, Peter G. Chamberlain and Simon N. Chandler-Wilde

A Nyströ[¶] Methǫ for a Bo ų ary ♦

and

Peter G. Chamberlain[†]and Simon N. Chandler-Wilde[‡] Department of Mathematics, University of Reading, PO Box 220, Reading RG6 6AX, UK

September 3, 2009

Abstract

This paper is concerned with solving numerically the Dirichlet boundary value problem for Laplace's equation in a non-locally perturbed halfplane. This problem arises in the simulation of classical unsteady water present and analyse a numerical scheme for computing the Dirichlet-to-Neumann map. i.e. for $\boldsymbol{x}_1 \quad \mathbb{R}$

1I(-)-0.43820.430062(i)-424.44@

t gt t pgp r gpp gr to , t , r t p gt on to t g , t , n r g o ton of t , o n gr - g , pro , n t , n r g g , of gr tr gr o n , ont n o D r , t gt g t n , t r t , o n gr nor 3 (009(n)28.0111((t)0.4362e)-414.647(pr)-0.39949(n)-427.285(t)90.15979.403(R0.11102e3749(b)089(rdf 159.6060.4320.512(139454))0.44

yt yn ant , fro t , no ton of t , t o pyry t t t , o n yr po ton yn t , Dr t o n yr yty pyryton nyt ry ny , t , t, to , o , , , , p tt , t ppn n r y t o , t ro o tt , yt r ya, t ryt r, for , y p , n , t t y yn A y By fort , , , , By r B , , ; B , , o Z yn ; ;

At p, ot att, n, ontri ton ar, nt pap r A a nov, t

$$\begin{array}{ccc} \hline t & & -\frac{-}{r} \ v^2 - gf, \\ \hline \frac{f}{t} & & v_2 - v_1 f'. \end{array}$$

 y_{7} , $t_{1}t_{1}f_{2}n_{1}v_{1}v_{2}$, $t_{1}f_{2}$

for optnt, Dr , to N, ynn yp to prov, y too fort, yn optytony prov, yt , yt , t , t , p for prov, of yt on of non pro yt r yv, , not, o, v r t yt or t oo, ypp nt, p, y y, , nt, rfy, pro Anyttry tonoforn r y, , yn or yny nt yt y, t yt t , yr froorr, t t yt or , ,

ty, yn on \mathbf{x} at n for tr, p, t to t, pro \mathbf{S} t, on tonn r of t, n, yr t, yn t, ror n t, n r y, , r, yn o n, n t, ty $\mathbf{S} \nearrow \infty$, y o not, ty t ro o t, ty, yr, to prov, ty tr, tyn ror o n tytyr, n for tr, p, t to t, rfy, prov, \mathbf{f} , n y rtyn on tryn, t, n, \mathbf{f} , n, \mathbf{f} , yp yt on to t, yt r, of \mathbf{f} or, or ot syton r, y yn t, yp yt on to t, yt r, of \mathbf{f} , n n tytr yr, \mathbf{f} , \mathbf{f} ,

1

Notation., o, t, r, ryro notyton, tro ot npyrt yr , nton of ryro f nton py, tytyr, n, , yr fort, n , r y yny

BC^{0,} G

 $BC_p^n \mathbb{R}$ u BC^n

fntonfort, 3fp3n, H

$$_{H}$$
 x,y x,y - x,y^r, x,y \mathbb{R}^{2} ,x / y,

ŗ,

$$\mathbf{x}, \mathbf{y} = -\frac{1}{\mathbf{x}} \mathbf{n} \mathbf{x} - \mathbf{y}$$

t, fn 3, mt3 o ton to \bigwedge 3p 3, q3ton n to ,n on 3n y^r $y_{1y} \cdot H - y_2$ t, r, , ton of y n $_{\blacksquare H}$

n r, ton r, ton ; t propo, to oo for 3 o t on to t, o n 3r -3, prof, nt, for of 3 o f, 3 r pot nt 3

for o, mt µ BC, Not, tytt, yfpyn, #, mfnton,

Theorem 2.2. pp n | -K | BC | s n r | h $o n + n rs r s n C_f > or so ons n C > p n n$ $on on f_{\pm} H n C_f | h$

$$\| \mathbf{I} - \mathbf{K}^{-1} \| = \mathbf{C},$$

 $n \quad r \|\mathbf{f}\|_{\mathbf{BC}^{2}(\mathbf{f})} \quad \mathbf{C}_{\mathbf{f}}$

t on f an ant to ntro , yn o tr o orp J BC // BC R , n, Ja a , f R for , f a BC // A BC /

k x,
$$\frac{H x, y}{n y} \bigg|_{y=(-,f(-))} W$$

 $-\frac{1}{j'} \frac{x - 1, f}{x - 1, f^2} - \frac{x - 1, H - f}{x - 1, H - f^2} .n W$

un jju

Δ

$$\mu - k$$
 , $\mu - j$, \mathbb{R} , j

, **r** , **k** , **f** , for / [())-0;:080868264 Tf 8.2441

, no prof, g gpp n prop rt for t , nt, rg op rgtor \mathbf{K} gn o t gtt , oot n, of t rn, \mathbf{k} n , to t , oot n, of t , o n gr \mathbf{k} t

$$\mathbf{r}_1$$
 , \mathbf{f}' -

$$\mathbf{r}_2$$
, $\int_0^1 \mathbf{f}'' - - , \quad ;$

for , R 3n not, t 3t 3 or t or , 3r pp ; for $\mathbf{f} \ \mathbf{C}^2 \ \mathbb{R}$ to t 3t

f f
$$- r_1$$
, **f** $- f'$ $- {}^2r_2$, $.$

Theorem 2.3. $\mathbf{f} \ \mathbf{BC}^{n+2} \mathbb{R} \quad \underline{\eta}_{\mathbf{f}} \| \|_{\mathbf{BC}^{n+2}(\cdot)} \quad \mathbf{C}_{\mathbf{f}} \text{ or so } \mathbf{n} \quad \mathbb{N}_{\mathbf{0}} \quad \underline{\eta}_{\mathbf{f}}$ $\mathbf{C}_{\mathbf{f}} > \prod_{\mathbf{k}} n \mathbf{k} \quad \mathbf{BC}^{n} \mathbb{R}^{2} \quad \underline{\eta}_{\mathbf{f}} \quad or \mathbf{i}, \mathbf{j} \quad \mathbb{N}_{\mathbf{0}} \quad \mathbf{i} \quad \mathbf{j} \quad \mathbf{n}$

$$\left| \frac{i+j}{i-j}k \right| = \frac{C_k}{2}, \quad \text{for }, \quad \mathbb{R},$$

 $r \ \mathbf{C}_{\mathbf{k}} \neq p \ \mathbf{n} s \ on \ on \ \mathbf{n} \ \mathbf{f}_{\pm} \ \mathbf{H} \ \mathbf{n} e \ \mathbf{C}_{\mathbf{f}} \ F \ r \ r \ or \ \mathbf{K} \ \mathbf{BC} \ \mathbb{R} \not \sim \mathbf{F}$ $\mathbf{BC}^{\mathbf{n}} \ \mathbb{R} \ \mathbf{n} e \ \mathbf{r} \ s \ s \ \mathbf{C}_{\mathbf{K}} > e \ p \ \mathbf{n} e \ n \ on \ on \ \mathbf{n} \ \mathbf{f}_{\pm} \ \mathbf{H} \ \mathbf{n} e \ \mathbf{C}_{\mathbf{f}} \ s$ $\|\mathbf{K}\| \ \mathbf{C}_{\mathbf{K}}$

No H X, Y 3t , App 3, q 3t on 3 3 f n ton of jot X 3n Y n H 3n j r, ton ; A, 3; , 37, for X, Y H t X / Y 3n $Y_2 \ge f_- -$

y H X, Y
$$\frac{H - f_{-}}{x - y^{2}}$$
. j'

n fro t, r, grt, t gt, n figr r n r for o ton to, pt pgrt g r nt g q gton r, not, gn pgrt g r nt r, of y H X, Y of or r, t r, p, t to t, o pon nt of X gn Y

 $\mathcal{D}_n \mathbf{1}_{\mathbf{y} \mathbf{H}} \mathbf{x}, \mathbf{y} = \frac{\mathbf{C}_n}{\mathbf{x}_1 - \mathbf{y}}$

 $\label{eq:constraint} \operatorname{for}\, \boldsymbol{x}, \boldsymbol{y} \quad \ \ \, \overset{-}{\boldsymbol{H}} \quad \boldsymbol{x}_1 - \boldsymbol{y}_1 \ \geqslant \quad \operatorname{yn}$

Мµх тµ, x, y s y

 μ^{r} m \mu , x, y $\frac{H x, y}{s y}$ n x .n x $\frac{\mu}{s}$ x - n x .n y $\frac{\mu}{s}$ y $\frac{H x, y}{n y}$ n x .s y - x, y n₁ x $\frac{\mu}{s}$ y $\frac{x, y}{n x}$ n₂ y - $\frac{x, y}{s x}$ n₁ y $\frac{\mu}{y}$ y , x, y $\frac{x_2 y_2 - j' H}{x - y^{r^2}}$

 $n_{\mathbf{r}} \stackrel{\mathbf{\mu}}{=} n_{\mathbf{r}} n_{\mathbf{r}}$

r, e_3 sy \wedge ny $e_1 \wedge e_2$ ot \mathfrak{V} t

 $\mathbf{x} \wedge \mathbf{x} \wedge \mathbf{H} \mathbf{x}, \mathbf{y} \mathbf{n} \mathbf{y} \qquad \mathbf{e}_3 \wedge \mathbf{m}$

r,t,nt,rz n rtoozzCz prnpzzz, zntr,for,, zn trztt,tr

$$\frac{\mu}{s} x = \frac{H x, y}{s y} s y$$

fro j' yn n,t,r, t pro,n

, no , n,t , q \rightarrow at nt, r 2 op r 2 tor $\sigma \rightarrow r \mathbb{R}$ to M n 2 , MBC¹, $\mathbb{R} \nearrow BC^{0}$, $\mathbb{R} \rightarrow n$ M $J M J^{-1}$ nt , 2, t 2t f BC² \mathbb{R} for BC² \mathbb{R} , \mathbb{R} t

$$\mathbf{p}$$
 $\frac{\mathbf{n}}{\mathbf{m}}$, \mathbf{q} , $\frac{1}{\mathbf{p}}$, $-$,

notn t 3t

Trt r t

m , , m
$$J^{-1}$$
 , , f , , f
m₁ , , m₂ , , m₃ , , j^{\prime}

ŗ,

n or, j for \mathbb{R}

, Dr , t to N, ynn yp JJ⁻¹ t ,n 4 ,n

M I – **K**
$$^{-1}$$
.

, no prove, generation of the proventies of the provent of the pr

 $\label{eq:started} \begin{tabular}{cccc} \begin{tabular}{cccccc} {}^{\bullet} f & BC^{n+2} \ \mathbb{R} & {\rm t} & {\rm n} & n_1, n_2, s_1, s_2, w & BC^{n+1} \ \mathbb{R} \\ \end{tabular}$

 $f K_N = f I_N f k \ , \cdot \ \cdot \ h \ k \ , jh \ jh \ , \ \mathbb{R}.$

E p t

$$\mu_N$$
 0 h k , jh μ_N jh , \mathbb{R} . ; $j \in \mathbb{Z}$

,_∢n₃, μ_Nih i

Not,t _It D_h⁰u u_h

Theorem 3.10. f $BC^{n+2} \mathbb{R}$ $n \|f\|_{BC^{n+2}(\cdot)}$ C_{f} or so $C_{f} > n n \mathbb{N}_{0}$ n n n n r r s s C > s $\|\bar{K}_{N} - \bar{K}_{N}\|_{\infty}$ $Ch^{n+1} \circ N$, for $N \mathbb{N}$, $r C_{f} p n s on on n f_{\pm} H n C_{f}$

3.4 Velocity Approximation

ntro , n 3n rtn x_j 3n n_j ntr oft, ropon, nt 3 $x_j x_{j,1}, x_{j,2}$ 3n n_j $n_{j,1}, n_{j,2}$, n, \tilde{m}_{ij} $l^{\infty} \mathbb{Z}^3 \swarrow l^{\infty} \mathbb{Z}^2$

$$\tilde{\mathbf{m}}_{ij} \quad _{\mathbf{k}} \}_{\mathbf{k} \in \mathbb{Z}}, \quad _{\mathbf{k}}' \}_{\mathbf{k} \in \mathbb{Z}}, \quad _{\mathbf{k}}'' \}_{\mathbf{k} \in \mathbb{Z}}$$

3n ∣

, point of t , into in the state r , μ , is on to to into the structure of the state of the structure of the stru

Theorem 3.14. $_{0}$ BCⁿ \mathbb{R} f BCⁿ⁺² \mathbb{R} $\|f\|_{BC^{+2}()}$ C_f or so C_f > n_{\star} so n \mathbb{N}_{0} n n_{\star} n_{\star} $r \not \approx s \ s \ C >$

$$\begin{split} \mathbf{r}, \mathbf{C} \quad \mathbf{p}, \mathbf{n} \quad \mathrm{on} \quad \mathbf{n} \quad \mathbf{f}_{\pm} \quad \mathbf{H} \quad \mathbf{y} \mathbf{n} \quad \mathbf{C}_{\mathbf{f}} \\ \mathbf{\zeta} \quad \mathbf{n}_{\mathbf{y}} \quad \mathbf{p}, \quad \mathbf{or}, \quad \mathbf{f}' \quad \|\mathbf{L}_{\mathbf{N}}\boldsymbol{\mu} - \boldsymbol{\mu}_{\mathbf{N}}\|_{\infty} \quad \mathbf{Ch}^{\mathbf{n}} \quad \mathbf{y} \quad \mathbf{t} \quad \mathbf{r}, \quad \mathbf{for}, \quad \mathbf{p} \quad \mathbf{n} \\ \mathbf{t} \quad \mathbf{p} \quad \mathbf{n} \\ & \left\|\mathbf{L}_{\mathbf{N}}\boldsymbol{\mu}' - \mathbf{\check{D}}_{\mathbf{h}}\boldsymbol{\check{\mu}}\right\|_{\infty} \quad \mathbf{Ch}^{\mathbf{n}-2}, \quad \left\|\mathbf{L}_{\mathbf{N}}\boldsymbol{\mu}'' - \mathbf{\check{D}}_{\mathbf{h}}^{2}\boldsymbol{\check{\mu}}\right\|_{\infty} \quad \mathbf{Ch}^{\mathbf{n}-3}. \end{split}$$

Notnt, jon yn j'yn , y1,

$$\begin{split} \left\| M_N \boldsymbol{\mu} - \tilde{M}_N \boldsymbol{\hat{\mu}} \right\|_\infty \\ & \underset{i \in \mathbb{Z}}{\overset{p \ h}{\overset{j \not e}{\mathbb{Z}}}} \end{split}$$

or $o_{\forall i}$ r to $gppro_{2t}$, t, $_{\forall i}$, o t on $_{i}$, , gn t t, r, gn t t, r, of gt on n r, , to $-N_A$

ot $\mathfrak{A} \to \mathbb{R}^{\infty} \mathbb{R}$ p ft, are properties to \mathbb{N}^{-p} , n arg r, t n y, yn \mathcal{T} r, yr, on tant t t, parg rg on a r n, pr, t, or, j yn in **f** $\mathbb{B}\mathbb{C}^{\infty} \mathbb{R}$ r, t yn, ant yt ot yppro yt on on a r, yt yn

 \mathbf{r} r, \mathbf{r} , \mathbf{r} , \mathbf{r} ror n pot \mathbf{n} t \mathbf{r} , \mathbf{t} , \mathbf{t} pont \mathbf{r} n n nor \mathbf{r} , \mathbf{r} ,

for a_{n} , $\mathbf{P} \rightarrow a_{n}$, of $\mathbf{E} \leftarrow \mathbf{C} \mathbf{y}$, \mathbf{y} or $\mathbf{y} = \mathbf{y}$, $\mathbf{t} = \mathbf{y} = \mathbf{r}$, $\mathbf{n} = \mathbf{t} + \mathbf{t}$, \mathbf{y} pprogram \mathbf{y} to $\mathbf{r} \rightarrow \mathbf{n} = \mathbf{r}$, $\mathbf{t} = \mathbf{t}$, $\mathbf{x} = \mathbf{y} = \mathbf{N} + \mathbf{r}$, $\mathbf{t} = \mathbf{t}$, $\mathbf{t} = \mathbf{t}$, $\mathbf{t} = \mathbf{t}$, $\mathbf{t} = \mathbf{t}$

	Р									
N	1	2	4	8	16	32	64			
2	7.28e-01	7.29e-01	7.28e-01	7.28e-01	7.28e-01	7.28e-01	7.28e-01			
	2.29	2.27	2.27	2.27	2.27	2.27				

			Р							
N	1	2		4	8	16	32	64		
2	6.75e-01	6.73e	-01	6.73e-01	6.73e-01	6.73e-01	6.73e-01	6.73e-01		
	0.25		0.21	0.21	0.21	0.21	0.21	0.21		
4	5.68e-01	5.81e	01	5.81e-01	5.80e-01	5.80e-01	5.80e-01	5.80e-01		
	1.12		1.12	1.12	1.12	1.12	1.12	1.12		
8	2.61e-01	2.67e	01	2.66e-01	2.66e-01	2.66e-01	2.66e-01	2.66e-01		
	3.37		3.34	3.34	3.34	3.34	3.34	3.34		
16	2.52e-02	2.63e	02	2.63e-02	2.63e-02	2.63e-02	2.63e-02	2.63e-02		
	1.64		4.15	4.18	4.18	4.18	4.18	4.18		
32	8.13e-03	1.48e	-03	1.45e-03	1.45e-03	1.45e-03	1.45e-03	1.45e-03		
	-0.18		2.10	4.11	5.04	5.30	5.33	5.34		
64	9.21e-03	3.46e	04	8.42e-05	4.42e-05	3.69e-05	3.60e-05	3.59e-05		
	-0.14	-	0.12	0.13	0.78	2.16	3.86	5.43		
128	1.02e-02	3.76e	04	7.70e-05	2.57e-05	8.23e-06	2.48e-06	8.34e-07		
	-0.10	-	0.08	-0.01	-0.00	0.00	0.03			
256	1.09e-02	3.96e	04	7.76e-05	2.57e-05	8.22e-06	2.44e-06	-		
	-0.06	-	0.05	-0.01	-0.00	-0.00				
512	1.14e-02	4.09e	04	7.79e-05	2.57e-05	8.23e-06	-	-		
	-0.04		0.03	-0.00	-0.00					
1024	1.17e-02	4.18e	04	7.81e-05	2.57e-05	-	-	-		

References

Atkinson, K.E. r o on o n r Eq onso on m Curr, n r t r,

Baker, G. R. & Beale, J. T. ; ort, Boy to pp, to Intrfp 3 ot on Linton, C. M. 3p Converse to promotion of \mathcal{F} , $n \in \mathbb{C}$ n ton for $p_3 p_3$, Equation ro $p_0 o_{\mathcal{F}} o A 455$

Meier, A., Arens, T., Chandler-Wilde, S. N. & Kirsch, A. \boldsymbol{j}

List of Figures