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Abstract

This paper is concerned with solving numerically the Dirichlet bound-

ary value problem for Laplace’s equation in a non-locally perturbed half-

plane. This problem arises in the simulation of classical unsteady water



present and analyse a numerical scheme for computing the Dirichlet-to-

Neumann map. i.e.



for x1 ∈ R



have that f and v = (v1, v2) satisfy

∂φ

∂t
= −

1

2
|v|

2
− gf,

∂f

∂t
= v2 − v1f

′. (1.7)

The formulation above separates the determination of the velocity potential

(1.5) at any given time from the evolution of the two parameters, the bound-

ary position and the Dirichlet boundary data (1.7). This separation naturally

enables the system to be modelled by explicit time-stepping numerical meth-

ods used throughout the water wave literature, for example Runge-Kutta and

Adams-Bashforth schemes, see Baker & Beale (2004); Beale et al. (1996); Hou

& Zhang (2002).

Let us spell out what the new contributions are in this paper. A main novelty

is that this paper appears to be the first publication to tackle the numerical

solution of the boundary value problem (1.5) in the general case of arbitrary

bounded continuous Dirichlet data φΓ, with neither the boundary Γ nor φΓ



for computing the Dirichlet-to-Neumann map is to provide a tool for the main

computational problem at each time step for problems of simulation of non-

periodic water waves. We note, however, that our method does apply in the

special case when the surface is periodic. An attraction of our numerical scheme

and our analysis in that case is that it is clear from our results that our scheme

is stable and convergent uniformly with respect to the period S. Thus the

condition number of the linear system and the error in the numerical scheme

remain bounded in the limit as S → ∞. We also note that throughout we take

care to prove stability results and error bounds that are uniform with respect

to the surface Γ, provided f lies in a certain constrained set, defined by the

requirement (1.4) and by bounds on derivatives of f . Of course our motivation

here is again the application to the simulation of time dependent water waves,

where f varies in some constrained set as a function of time.

The structure of the paper is as follows. Section 2 recalls the integral equa-

tion formulation from Preston et al. (2008) that we will discretise; the main new

results in this section are mapping properties of the integral operator, regularity

results for the solution of the boundary integral equation, and an explicit rep-

resentation for and mapping properties of the Dirichlet-to-Neumann map. In

Section 3 we turn to discretisation and numerical analysis. Section 3.1 analyses

a Nyström method for the boundary integral equation based on discretisation

of the integral operator, which is parametrised so that the integration is on

the real line, by the trapezium rule. This analysis uses results from Meier &

Chandler-Wilde (2001); Meier (2001). In section 3.2 we discuss a discrete ap-

proximation to the derivative of a continuously differentiable function on the

real line based on localisation and trigonometric interpolation. In Section 3.3

we use the methods and results of Section 3.2 to formulate and analyse an ap-

proximate Nyström method which is superalgebraically convergent when the

Dirichlet data φΓ and Γ are smooth (in particular f ∈ C∞(R)), but which does



scheme for the water wave problem. In Section 3.4 we derive and analyse sim-

ilar methods for approximating the Dirichlet-to-Neumann map ΛΓ, and hence

for approximating the surface velocity v. Finally, in Section 4 we illustrate the

theoretical convergence results by numerical examples.

Notation. We collect here various notations used throughout, in particular

definitions of various function spaces that are necessary for the numerical anal-

ysis. Given an open or closed set G ⊂ R
m, m = 1 or 2, and n ∈ N0, let BCn(G)

denote the set of functions φ : G → R that are bounded and continuous and

have (partial) derivatives up to order n that are all bounded and continuous.

BCn(G) is a Banach space under the usual norm. We will abbreviate BC0(G)

by BC(G). For 0 < α ≤ 1, let BC0,a(G) ⊂ BC(G) denote the Banach space

of functions that are bounded and uniformly Hölder continuous with index α

and let BC1,α(G) denote the Banach space of functions ψ ∈ BC1(G) for which

∇ψ ∈ BC0,α(G).

For S > 0 and n ∈ N0 let BCnS (R) ⊂ BCn(R) denote the set those func-

tions φ ∈ BCn(R) that are periodic with period S. We abbreviate BC0
S(R) by

BCS(R) and let BC∞
S (R) := ∩n∈NBC

n
S (R). For p > 0 let wp(s) := (1 + |s|)p,

s ∈ R, and let BCnp (R) ⊂ BCn(R) denote the Banach space

BCnp (R) :=

{

u ∈ BCn



function for the half-plane ΩH by

ΦH(x, y) := Φ(x, y) − Φ(x, yr), x, y ∈ R
2, x 6= y,

where

Φ(x, y) := −
1

2π
ln |x− y|

is the fundamental solution to Laplace’s equation in two dimensions and yr :=

(y1, 2H − y2) is the reflection of y in ΓH .

In Preston et al Preston et al. (2008) it is proposed to look for a solution to

the boundary value problem (1.5) in the form of a double-layer potential

φ(x) :=

∫

Γ

∂ΦH(x, y)

∂n(y)
µΓ(y)ds(y), x ∈ Ω, (2.1)

for some density µΓ ∈ BC(Γ). Note that the half-plane Green’s function is used



Theorem 2.2. The mapping (I −KΓ) : BC(Γ) → BC(Γ) is invertible with a

bounded inverse. Precisely, given Cf > 0, for some constant C > 0 depending

only on f±, H and Cf , it holds that

∥

∥(I −KΓ)−1
∥

∥ ≤ C,

whenever ‖f‖BC2(R) ≤ Cf .

It is convenient to introduce an isometric isomorphism JΓ : BC(Γ) →

BC(R), defined by (JΓaΓ)(σ) = aΓ((σ, f(σ))), σ ∈ R, for every aΓ ∈ BC(Γ).

Let µ ∈ BC(R) be defined by µ := JΓµΓ where µΓ is the solution of (2.2),

φ0 ∈ BC(R) be defined by φ0 := JΓφΓ and let kΩ be defined, for x ∈ R
2 and

σ ∈ R, by

kΩ(x, σ) =
∂ΦH(x, y)

∂n(y)

∣

∣

∣

∣

y=(σ,f(σ))

w(σ)

= −
1

2π

(

x− (σ, f(σ))

|x− (σ, f(σ))|
2 −

x− (σ, 2H − f(σ))

|x− (σ, 2H − f(σ))|
2

)

.n(σ)w(σ)

(2.3)

where w(σ) :=
√

1 + f ′(σ)2, n(σ) := n((σ, f(σ))) = (−f ′(σ), 1)/w(σ), and we

note that s(σ) := s((σ, f(σ))) = (1, f ′(σ))/w(σ). We can then rewrite (2.1) as

φ(x) =

∫

R

kΩ(x, σ)µ(σ)dσ, x ∈ Ω, (2.4)

and (2.2) as

µ(τ) −

∫

R

k(τ, σ)µ(σ)dσ = −2φ0(τ), τ ∈ R, (2.5)

where k(τ, σ) := kΩ((τ, f(τ)), σ), for τ 6= σ



We now prove a mapping property for the integral operator K and show

that the smoothness of its kernel k is linked to the smoothness of the boundary.

Let

r1(τ, σ) :=

∫ 1

0

f ′(σ + (τ − σ)ξ)dξ

and

r2(τ, σ) :=

∫ 1

0

f ′′(σ + (τ − σ)ξ)(1 − ξ)dξ, (2.7)

for τ, σ ∈ R, and note that, by Taylor’s theorem (e.g. (Hardy, 1958, pp.327-8)),

for f ∈ C2(R) it holds that

f(τ) = f(σ) + (τ − σ)r1(τ, σ) = f(σ) + (τ − σ)f ′(σ) + (τ − σ)2r2(τ, σ). (2.8)

Theorem 2.3. If f ∈ BCn+2(R) and ‖f‖BCn+2(R) ≤ Cf for some n ∈ N0 and

Cf > 0 then k ∈ BCn(R2) and, for i, j ∈ N0 with i+ j ≤ n,

∣

∣

∣

∣

∂i+j

∂σi∂τ j
k(τ, σ)

∣

∣

∣

∣

≤
Ck

1 + |σ − τ |
2 , for σ, τ ∈ R,

where Ck depends only on n, f±, H and Cf . Furthermore K : BC(R) →

BCn(R) and there exists CK > 0 depending only on n, f±, H and Cf such that

‖K‖ ≤ CK .

Proof. For σ, τ ∈ R
2, σ 6= τ , by Taylor’s theorem (Hardy (1958)) we have

∂Φ(x, y)

∂n(y)

∣

∣

∣

∣

x=(τ,f(τ)),y=(σ,f(σ))

= −
1

2πw(σ)

−(τ − σ)f ′(σ) + (f(τ) − f(σ))

(τ − σ)2 + (f(τ) − f(σ))2

= −
1

2πw(σ)

r2(τ, σ)

1 + r1(τ, σ)2
. (2.9)

Given f ∈ BCn+2(R), it is clear that w ∈ BCn+1(R), r1 ∈ BCn+1(R2) and

r2 ∈ BCn(R2). Hence k ∈ BCn(R); moreover there exists a constant Ck > 0

dependent only on n, f±, H and Cf such that ‖k‖BCn(R) ≤ Ck.

Now ΦH(x, y) satisfies Laplace’s equation as a function of both x and y in

Ω̄H and by (Preston et al., 2008, Lemma 2.1), we have, for x, y ∈ Ω̄H with x 6= y

and y2 > f− − 1,

|∇yΦH(x, y)| ≤
3(H − f− + 1)

π |x− y|
2 . (2.10)

9



Then, from the regularity estimates in (Gilbarg & Trudinger, 1977, Theorem

3.9) for solutions to elliptic partial differential equations, where Dn∇yΦH(x, y)

denotes any partial derivative of ∇yΦH(x, y) of order less than or equal to n

with respect to the components of x and y,

|Dn∇yΦH(x, y)| ≤
Cn

|x1 − y1|
2 , (2.11)

for x, y ∈ Ω̄H , |x1 − y1| > 1 and1



We now derive an alternative, more easily computable, expression for MΓµΓ.

Theorem 2.4. If µΓ ∈ BC1,α(Γ) then, for x ∈ Γ,

MΓµΓ(x) =

∫

Γ

mΓ(µΓ, x, y)ds(y)

where

mΓ(µΓ, x, y) =
∂ΦH(x, y)

∂s(y)

(

n(x).n(x)
∂µΓ

∂s
(x) − n(x).n(y)

∂µΓ

∂s
(y)

)

+

(

∂ΦH(x, y)

∂n(y)
n(x).s(y) − γ(x, y)n1(x)

)

∂µΓ

∂s
(y)

+

(

∂γ(x, y)

∂n(x)
n2(y) −

∂γ(x, y)

∂s(x)
n1(y)

)

µΓ(y),

γ(x, y) =
x2 + y2 − 2H

π |x− yr|
2

and ∂µΓ

∂s denotes the tangential derivative of µΓ) (x, y). ) s(y)



where e3 = s(y) ∧ n(y) = e1 ∧ e2, so that

∇x ∧∇x ∧ (ΦH(x, y)n(y)) = e3 ∧
∂



where the integral is understood as a Cauchy principal value, and therefore we

can subtract the term

∂µΓ

∂s
(x)

∫

Γ

∂ΦH(x, y)

∂s(y)
ds(y)

from (2.14) and hence the result is proven.

We now define the equivalent integral operator over R to MΓ, namely M :

BC1,α(R) → BC0,α(R) given byM := JΓMΓJ
−1
Γ . In the case that f ∈ BC2(R),

for ψ ∈ BC2(R), τ, σ ∈ R, let

pψ(σ) :=
n(σ)ψ′(σ)

ω(σ)
, qψ(τ, σ) :=

∫ 1

0

p′
ψ(σ + (τ − σ)ξ)dξ,

noting that,

qψ(τ, σ) =
pψ(τ) − pψ(σ)

τ − σ
, σ 6= τ. (2.15)

Further, let

m(ψ, τ, σ) = mΓ(J−1
Γ ψ, (τ, f(τ)), (σ, f(σ)))ω(σ)

= m1(ψ, τ, σ) +m2(ψ, τ, σ) +m3(ψ, τ, σ) (2.16)

where

m1(ψ, τ, σ)

:=



























1

2π

(

(τ − σ, f(τ) − f(σ))

(τ − σ)2 + (f(τ) − f(σ))2
−

(τ − σ, 2H − f(τ) − f(σ))

(τ − σ)2 + (2H − f(τ) − f(σ))2

)

·
(

n(τ). (pψ(τ) − pψ(σ)) s(σ) + n(τ).s(σ)pψ(σ)

)

, σ 6= τ,

1

2πω(τ)
qψ(τ, τ).n(τ) =

1

2πω(τ)
p′
ψ(τ).n(τ), σ = τ,

m2(ψ, τ, σ)

:=
1

π

(

(2(τ − σ)(2H − f(τ) − f(σ)), (τ − σ)2 + (2H − f(τ) − f(σ))28891 Td
[(�)96264 Tf
12.(�)Tj
/R37 9.96264 Tf
9.96289 0 Td
[(�)-0.409244]TJ
/R26 9.96264 Tf
6.05703 0 Td
[())0.4362(()0.4362(2)0.433749]TJ
/R37 9.96264 Tf
12.7315072]TJ
/R26 9.96264 Tf
6.67812 -2.88008 Td
[(+)-222.219(()0.4362(2)0.433749]TJ
/R37 9.96264 Tf
18.8098 0 Td
[(H)0.144583]TJ
/R41 9.96264 Tf
11.3129 0 Td
(�)Tj
/R37 9.96264 Tf
9.96289 0 Td
(f)Tj
/R26 9.96264 Tf
5.94883 0 Td
[(()0.4362]TJ
/R37 9.96264 Tf
3.86992 0 Td
[(�)-0.0833191]TJ
/R26 9.96264 Tf
5.48086 0 Td
[())0.4362]TJ
/R41 9.96264 Tf
6.10195 0 Td
(�)Tj
/R37 9.96264 Tf
9.96289 0 Td
(f)Tj
/R26 9.96264 Tf
5.94883 0 Td
[(()0.4362]TJ
/R37 9.96264 Tf
3.86992 0 Td
[(�)-0.409244]TJ
/R26 9.96264 Tf
6.05703 0 Td
[())0.4362())0.4362]TJ
ET
Q
1926.81 3192.93 m
3041.19 3192.(2)0.315072]TJ
/R26 9.96264 Tf
4367812 -2.88008 Td
[(+)-222.219(()0.4362(2)4 Tf
3.8]TJ
/R37 9.9624 Tf
12.7315072]TJ
/R26 9.96264 0570367031 18 Td
[(�)-0.142133]TJ
/R41 9.96264 T0 T6999 144110-14.0398 Td
[(;)-2166.7 Tf
9.41406 0 Td5Tf
2.257.60 4.1132806 Td
[(�)-0.142133]TJ
/R35 9.9660
1 0-Td
[512-7.30781 Td
[(()0.43626]TJ
/R26 9.962641797 257.60 4.11328(τ), σ( ττ



Then, by Theorem 2.4, for τ ∈ R,

(Mµ)(τ) =

∫

R

m(µ, τ, σ)dσ. (2.17)

The Dirichlet-to-Neumann map, Λ := JΓΛΓJ
−1
Γ , is then given by

Λ = M(I −K)−1.

We now prove a similar result to Theorem 2.3, by showing that the smooth-

ness ofm(µ, ·, ·) is dependent on the smoothness of f and µ and that the operator

M maps BCn+2(R



If f ∈ BCn+2(R) then n1, n2, s1, s2, w ∈ BCn+1(R





where

KNψ(τ) := IN (k(τ, ·)ψ(·)) = h
∑

j∈Z

k(τ, jh)ψ(jh), τ ∈ R.

Explicitly, (3.1) is

µN (τ) = φ0(τ) + h
∑

j∈Z

k(τ, jh)µN (jh), τ ∈ R. (3.2)

The values µN (ih), i R



Theorem 3.4. If f ∈ BCn+2(R), φ0 ∈ BCn(R) and ‖f‖BCn+2(R) ≤ Cf , for

some Cf > 0 and n ∈ N0 with n even, then there exists N̄ ∈ N, such that, for



Note that Ḋ0
hu = uh









Theorem 3.10. If f ∈ BCn+2(R) and ‖f‖BCn+2(R) ≤ Cf for some Cf > 0

and n ∈ N0 and with n even, then there exists C > 0 such that

∥

∥

∥K̄N − K̃N

∥

∥

∥

∞
≤ Chn+1 log (1 +N), for N ∈ N,

where C depends only on n, f±, H and Cf





3.4 Velocity Approximation



introduced in (3.9), and writing xj and nj in terms of their components as

xj = (xj,1, xj,2) and nj = (nj,1, nj,2), define m̃ij : l∞(Z)3 → l∞(Z2) by

m̃ij ({ψk}k∈Z, {ψ
′
k}k∈Z, {ψ

′′
k}k∈Z)

= −
1

2π

(

xi − xj

|xi − xj |
2 −

xri − xj

|xri − xj |
2

)

·

(

(njni.sj + sjni.nj)
ψ′
j

ωj
− sj

ψ′
i

ωi

)

+
1

π





(

2(xri,1 − xj,1)(x
r
i,2 − xj,2), |x

r
i − xj |

2
)

|xri − xj |
4



 ·

(

(ninj,2 − sinj,1)ωjψj

)

+
1

π

(

xri,2 − xj,2

|xi − xrj |
4

)

ni,1ψ
′
j , i 6= j,

and by

m̃ii ({ψk}k∈Z, {ψ
′
k}k∈Z, {ψ

′′
k}k∈Z)

=
1

2πω2
i

(

ψ′′
i −

(Dhf)(ih)(D2
hf)(ih)ψ′

i

ω2
i

)

+
1

4H2π

(

ωiψi + ni,1ψ
′
i

)

, i = j.

The point of this definition is that, where µ is the solution to the integral

equation (2.6), m̃ij(LNµ,LNµ
′, LNµ

′′) is a first approximation of



Theorem 3.14. If φ0 ∈ BCn(R), f ∈ BCn+2(R), ‖f‖BCn+2(R) ≤ Cf , for some

Cf > 0 and some n ∈ N0 with n even, then there exists C >



where C depends only on n, f±, H and Cf .

Finally, by Theorem 3.12, ‖LNµ− µ̃N‖∞ ≤ Chn and therefore, by Theorem

3.8 with p = n,

∥

∥

∥LNµ
′ − D̃hµ̃

∥

∥

∥

∞
≤ Chn−2,

∥

∥

∥LNµ
′′ − D̃2

hµ̃
∥

∥

∥

∞
≤ Chn−3.

Now, utilising these bounds and (3.12), (3.13), and (3.19), we have

∥

∥

∥
M̂Nµ− M̃N µ̃

∥

∥

∥

∞

= sup
i∈Z

h
∑

j Z

L

N



Moreover, to approximate the velocity on Γ we use (3.17) and (3.18), with the

range of summation in (3.17) reduced to {−NA





so that EOC = p if the error is proportional to N−p.

The numerical results in Table 4.1 and Figure 4.1 are consistent with the

superalgebraic convergence predicted by Theorems 3.12 and 3.14 when f ∈

BC∞(R). Precisely, it can be seen that both approximations converge at an
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Figure 4.1: Relative errors in potential at the test point and in normal velocity

for the first example (sinusoidal surface profile).

for each fixed P , values of EOC are also tabulated. It can be seen that the

approximation given by (4.2) converges to φ(x) as N → ∞ and P → ∞ and
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P

N 1 2 4 8 16 32 64

2 7.28e-01 7.29e-01 7.28e-01 7.28e-01 7.28e-01 7.28e-01 7.28e-01

2.29 2.27 2.27 2.27 2.27 2.27



P

N 1 2 4 8 16 32 64

2 6.75e-01 6.73e-01 6.73e-01 6.73e-01 6.73e-01 6.73e-01 6.73e-01

0.25 0.21 0.21 0.21 0.21 0.21 0.21

4 5.68e-01 5.81e-01 5.81e-01 5.80e-01 5.80e-01 5.80e-01 5.80e-01

1.12 1.12 1.12 1.12 1.12 1.12 1.12

8 2.61e-01 2.67e-01 2.66e-01 2.66e-01 2.66e-01 2.66e-01 2.66e-01

3.37 3.34 3.34 3.34 3.34 3.34 3.34

16 2.52e-02 2.63e-02 2.63e-02 2.63e-02 2.63e-02 2.63e-02 2.63e-02

1.64 4.15 4.18 4.18 4.18 4.18 4.18

32 8.13e-03 1.48e-03 1.45e-03 1.45e-03 1.45e-03 1.45e-03 1.45e-03

-0.18 2.10 4.11 5.04 5.30 5.33 5.34

64 9.21e-03 3.46e-04 8.42e-05 4.42e-05 3.69e-05 3.60e-05 3.59e-05

-0.14 -0.12 0.13 0.78 2.16 3.86 5.43

128 1.02e-02 3.76e-04 7.70e-05 2.57e-05 8.23e-06 2.48e-06 8.34e-07

-0.10 -0.08 -0.01 -0.00 0.00 0.03

256 1.09e-02 3.96e-04 7.76e-05 2.57e-05 8.22e-06 2.44e-06 -

-0.06 -0.05 -0.01 -0.00 -0.00

512 1.14e-02 4.09e-04 7.79e-05 2.57e-05 8.23e-06 - -

-0.04 -0.03 -0.00 -0.00

1024 1.17e-02 4.18e-04 7.81e-05 2.57e-05 - - -

Table 4.3: Relative ℓ2 error in normal velocity (with EOC) for the third example

(Gaussian surface profile).
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