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Abstract

We investigate the spectrum of certain Integro-Differential-Delay
equations (IDDEs) which arise naturally within spatially distributed,
nonlocal, pattern formation problems. Our approach is based on the
reformulation of the relevant dispersion relations with the use of the
Lambert function. As a particular application of this approach, we
consider the case of the Amari delay neural field equation which de-
scribes the local activity of a population of neurons taking into con-
sideration the finite propagation speed of the electric signal. We show
that if the kernel appearing in this equation is asymmetric or has a
peak away from the origin, then the relevant dispersion relation yields
spectra with an infinite number of branches, as opposed to finite sets
of eigenvalues considered in previous works. Also, in earlier works
the focus has been on the most rightward part of the spectrum and
the possibility of an instability driven pattern formation. Here, we
numerically survey the structure of the entire spectra and argue that
a detailed knowledge of this structure is important within neurody-
namical applications. Indeed, the Amari IDDE acts as a filter with
the ability to recognise and respond whenever it is excited in such a
way so as to resonate with one of its rightward modes, thereby am-
plifying such inputs and dampening others. Finally, we discuss how
these results can be generalised to the case of systems of IDDEs.

∗Department of Mathematics and the Centre for Integrative Neuroscience and Neuro-
dynamics, University of Reading, UK.
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such that
W (s)eW (s) = s.





of the entire spectrum. This paper represents the first such survey for this



dynamic Turing instability of the homogeneous steady state has been calcu-
lated and patterns emerging from this instability have been discussed in [10].
Also, the Turing instability analysis in layered 2D systems for neural fields
with space-dependent delays is treated in [12]. However, it seems that the
part of the spectrum corresponding to stable modes has not been studied in
any full detail. In sections 3 and 4, we will show that the full spectrum of the
neural field equation with delays has a rich structure previously undetected.

We consider uniform steady state solutions , u = u0, where u0 is a constant
satisfying

u0 = F (u0)φ0, φ0 =

∫ ∞

−∞

φ(y)dy. (8)

Since the function F (u) is uniformly bounded there will generically be an
odd number of such solutions.

Now we write u(x, t) − u0 ∼ eσ(k)t+ikx in equation (7) so that, up to a
linear approximation, we have

(σ(k) + 1)eσ(k)t+ikx = F ′(u0)

∫ ∞

−∞

φ(x− y)e−σ(k)ε|x−y|eσ(k)t+ikydy, (9)



3, we focus on the case that the kernel



Then, for Re(r + εσ) > 0, equation (12) becomes

σ + 1 =
e−εσ(1 + e−2r)r [(r + εσ) cos(2kπ) − 2kπ sin(2kπ)]

4k2π2 + (r + εσ)2
. (18)

First, we consider k fixed and show that there is an infinity of values for
σ corresponding to each value of k :

Multiplying both sides of equation (18) by εeε(σ+1), we find an equation
where the dependence of the right hand side on σ is only rational, namely

ε(σ + 1)eε(σ+1) =
εeε(1 + e−2r)r [(r + εσ) cos(2kπ) − 2kπ sin(2kπ)]

4k2π2 + (r + εσ)2
. (19)

Using the definition of the Lambert function W (s) given by equation (2),
we find the following expression for the spectral values

σ =
1

ε
W (R(k, r, σ)) − 1, (20)

where the function R(k, r, σ) is given by the right hand side of equation
(19).

Equation (20) and the fixed point theorem imply that for each branch of
the Lambert function there is a corresponding value of σ. Since the Lambert
function has infinitely many branches, there is an infinity of spectral values
σ.

In the following, we consider some important limiting cases:

The limit r → ∞

In the limit r → ∞, equation (20) becomes

σ =
1

ε
W (εeε cos(2kπ)) − 1. (21)

Comparing equation (21) with equation (6) we find that these two equations
are the same if β = 1 and λ = cos(2kπ). Therefore, for the extreme values
of λ = ±1, (k = 1,±1,±2, ... and k = ±1

2
,±3

2
, ...), the relevant spectrum is

given by the green and pink points of figure 1 (where wlog ε = 1).
This result should come as no surprise since as r → ∞, the kernel (17)

becomes a sum of two delta functions at x = ±1 representing the interaction
between two ”point” neurons. These coupled neurons can also be described
by following system:

u1t(t) + u1(t) = µu2(t− ε), (22)
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u2t(t) + u2(t) = µu1(t− ε). (23)

Then, letting u(t) = (u1(t), u2(t))(1,±1)T , the above system reduces imme-
diately to equation (5) with µ = ±λ and spectrum depicted in figure 1.

The limit ε→ 0

Assuming that ε→ 0, namely that there is no delay, equation (18) becomes

σ + 1 =
(1 + e−2r) [r2 cos(2kπ) − 2rkπ sin(2kπ)]

4k2π2 + r2
. (24)



Figure 2. Separate spectral branches (b = 0, ±1, ±2, ±3), each starting
(when k = 0) at a separate point (shown as bold) generated via the bth

branch of the Lambert function, before looping through successive points.
Here ε = 1 and r = 20.



remaining real spectrum σ = −1+ φ̂(k). As r tends to infinity the “loops” in
the spectrum become longer, with each loop approaching two parallel lines
at constant imaginary values from the point at infinity, see figure 4. Finally,
when ε becomes large the real part of the spectrum is lost, see figure 5.

Figure 4. The spectra of the Amari equation for ε = 1 and r = 200.

Figure 5. The spectra for ε = 20 and r = 2.

Let us now show one further example. Here the kernel φ(x) contains a
sum of four terms, similar to the terms appearing in (17), each symmetric
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about points x±1 and x = ±2 respectively, which we expect to resonate with



constant matrix, describing the point dynamics and Φ(x) is anm×m matrix-
valued smooth, integrable kernel.

We set Φ0 =
∫ ∞

−∞
Φ(x) dx, and assume that u = u0 is a constant steady

state, satifying
A.u0 = Φ0.F(u0).

Linearising about u0, we write

u(x, t) − u0 ∼ eσ(k)t+ikxv(k),

so that

(σ(k)I + A).v(k) =

∫
Φ(x− y).dF.e−σ(k)ε|x−y|eik(y−x) dy.v(k).

Here dF = dF(u0) is the Jacobian of F at u0.
Define the integral operator Ĥ(k, σ(k)) to be the (matrix-valued) Fourier

transform of Φ(x).dF.e−σ(k)ε|x|. Then we have

(σ(k)I + A).v(k) = Ĥ(k, σ(k)).v(k).

Thus the spectrum is given by

det(σ(k)I + A− Ĥ(k, σ(k))) = 0. (28)

Let us consider a more specific example with m = 2. Take

A =

(
a1 0
0 a2

)
, Φ =

(
φ1(x) 0

0 φ2(x)

)
, dF(u0) =

(
0 β1

β2 0

)
.

Let

Ĥj(k, σ) =

∫ ∞

−∞

e−2πikxφj(x)e−εσ|x|dx. (29)

Assuming that Ĥj(k, σ) = e−εσRj(k, σ), where Rj(k) is a polynomial in
σ,



The last equation yields

σ =
1

ε
W (µ

√
β1β2εe

εa (R1R2)
1/2 (k, σ)) − 1. (32)

For example, if φ1 and φ2 are both given by the kernel (17), we obtain
the figure below, showing the multi-branched spectrum in the case where
µ = ±1, corresponding to the purple and green curves respectively.cA1.9291(9g)-2.26432(r)-2.26432(i)0.972873(n)1.9482],





has a local maximum): it relatively amplifies such inputs, and dampens oth-
ers (see Figure 8 below). This is “resonance” in action; the system recognises
certain inputs and ignores others at no computational cost, in real time. We
contend that it is these “hot spot” resonant modes that are the currency of
input-output response: the latter being a dynamic and spatial distribution
of neural activity. It should be emphasised that it is the delays in the Amari
IDDE that produce this multiple resonance, or “harmonic” behaviour. This
behaviour in turn, increases the capacity of the system to show a muliplicity
of responses.

Therefore, the answer to the question raised above could be briefly stated
as follows: modes of increased responsiveness of the neurodynamical system
correspond to the forays of the real part of the spectrum of the Amari system.

In summary, the structure of the spectrum for the IDDE is (i) intimately
connected with the choice of the kernel and (ii) a crucial component in filter-
ing input information and producing a discrete range of resonant responses,
as opposed to a passive continuum response. Of course, the nonlinearities be-
come important away from equilibrium in the longer term. Nevertheless, for
natural neurodynamical systems to perform rapid coherent signal “recogni-
tion and response” behaviour it is the complex nature of the spectra derived
in this paper, even for simple systems, that is exactly what is required.

In practice, observations of neurodynamical patterns and waves via scans
will allow us constrain and locate kernel behavioural properties at the meso
level within the brain. Anisotropy, spatial variability, behaviour at bound-
aries, and piecewise continuity will make the future inverse and forward
problems much harder. However, we suggest that such a programme can-
not commence without a solid understanding of the rich spectral structure
that is available, even for the ideal (spatially uniform, isotropic) situation
considered here.
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the input-output response behaviour when this system is stimulated. In
practice, this may be far more important than studying the spontaneous
pattern formation. Resonance (as represented by the peaks in a response
surface) is a hugely efficient mechanism for tunable, responsive, learning:
namely a process of producing functional quantised responses in real time
relating to the form of a noisy stimulation.

The currency (or state) of such a system exists within the space of spatio-
temporal patterns. This is very important in applications. If we take a single
snap shot or scan - how can we judge the state of the system?

The set of possible spatio-temporal resonances is dependent on the right-
ward cusps of the entire spectrum, and it is large. If this is the currency
of information processing within such systems (like our brains) then in this
single concept, we attain both capacity and efficiency (since neural resonance
requires no computation and responds in real time). This idea suggests that
in seeking to understand reasoning processes from patterns and connectivi-
ties within single fMRI scans [16] we are looking in the wrong place: we must
see the evolution of such activity over time as the response to the upstream
stimuli.
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