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Abstract

In this Dissertation linear and quadratic finite elements are used to produce numerical
approximation to the solutions of first order differential equations which arise in a moving
mesh finite element method. The behaviour of the moving mesh velocity is investigated
in detail and is compared these results with the existing exact solutions to investigate the
effect of the moving boundaries and provided the error analysis in both linear and quadratic
cases.
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Chapter 1

Introduction

This dissertation concerns the finite element solution of first order differential equations. It
is well known that the standard finite element method is not well suited to dy

dx = f(x) in
(0, 1) with y(0) = 1, due to the insufficient boundary conditions and difficulty of inverting
the element matrix, leading to various kinds of regularisations in the literature.
There are many applications in which first order equations arise, notably in steady state
fluid mechanics. The motivation in this dissertation, however comes from a moving mesh
method for time-dependent Partial Differential Equations (PDEs).
The strategy is to replace the first order differential equation by a second order one with
an artificial boundary condition, giving ( dy

dx = d2u
dx2 = f(x) with du

dx(0) = 1 and u(1) = 0) a
problem which is well suited to the finite element approach. It then remains to recover the
solution of the first order equation from the finite element solution obtained. In moving
mesh applications this has to be a continous function.
The moving mesh work is new in this field and therefore, there is a limited amount of
information available in existing literature. Due to the nature of this dissertation, the
majority of the preliminary work is based on programming.

1.1 Moving mesh velocity equation

A moving mesh approach to solving the Partial Differential Equation (PDE)

∂p

∂t
= Lxp

12



1.2. WEAK FORM 13

where Lx is a partial operator, is to use conservation of the integral of p to move the mesh,

d

dt

∫ x̂(t)

0
pdx = 0

By Leibnitz’ Integral Rule [
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for the vector of velocities Y, where B is a matrix with entries

Bij =
∫ b

a
p

dφi

dx
φjdx

This is an unsymmetric matrix, similar to an anti-symmetric matrix, and difficult to invert.

1.3 Alternative approach

An alternative approach is to write y = du
dx where u is a velocity potential, giving the second

order equation

− d

dx
(p

du

dx
) = Lxp

with weak form

−
∫ b

a
ω

d

dx

(
p

du

dx

)
=
∫ b

a
ωLxpdx

giving, after integration by parts

−φip
dU

dx
|ba + p

dφi

dx

∑
j
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1.4 Finite elements for a first order Differential Equations

Consider solving the first order differential equation problem

dy

dx
= f(x), y(0) = 1 (1.1)

in (0,1) by the Finite Element method. The weak form is∫ 1

0
ωi

dy

dx
= f(x)

Replace ωi = φi(x) by piecewise linear or quadratic basis functions and expand

y ≈ Y =
∑

Yjφj

which gives us
1∑

j=0

Yj

Yj

∑ ∑
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B is badly conditioned, anti-symmetric and difficult to invert.
In the approach used in this dissertation, put

y =
du

dx

and instead of solving (1.1), solve the second order equation

d2u

dx2
= f(x) (1.3)

where du
dx = 1 at x = 0 and we impose (arbitrarily) the artificial boundary condition u = 0

at x = 1. From the weak form of (1.3), we have

ωi
du

dx
|10 −

∫ 1

0

dωi

dx

du

dx
y =

∫ 1

0
ωf(x)dx

Replacing ωi by finite element basis functions φi(x) and approximating u by

U =
N−1∑
j=0
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1.5 Outline of the Dissertation

Chapter Two, is based on theory of finite elements for second order differential equa-
tions. This chapter investigate the method of Linear Finite elements and deficencies in this
method for our purpose and provides an alternative Quadratic elements method to find the
numerical solution.

Chapter Three, provides the Linear and Quadratic approaches to solve the first order
differential equations as well as the Sturn-Liouiville type differential equations. In this



Chapter 2

Finite Elements for Second order

Equations

There are many ways to solve Partial Differentail Equations (PDEs) numerically with ad-
vantages and disadvantages. The Finite Element Method (FEM) is a good choice for solving
PDEs over complex domains, when a domain changes (as during a solid state reaction with
a moving boundary), when the desired precision varies over the entire domain, or when the
solution lacks smoothness. For instance, in simulations of the weather patterns on Earth, it
is more important to have accurate predictions over land than over the open sea, a demand
that is achievable using the finite element method.
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Figure 2.1: Linear finite elements for one element

Figure 2.2: Quadratic finite elements for one element

C1 and square integrable in (a,b) and integrate it, giving

−
∫ b

a
ωi(x)

d2u

dx2
dx =

∫ b

a
ωi(x)f(x)dx (2.2)

Now integrate left hand side of (2.2) by parts, giving

− ωi(x)
du

dx
|ba +

∫ b

a

dωi(x)
dx

du

dx
dx =

∫ b

a
ωi(x)f(x)dx (2.3)

This is known as the weak form of the differential equation. In equation (2.3), we only
require that u, ωi ∈ H1(a, b), once differentiable. So linear representation of such functions
is allowed. Also since the integrals can be broken into subintervals, piecewise functions are
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2.1. BASIC FINITE ELEMENTS 21

j = 0, N + 1 and f is load vector consisting of

fi =
∫ xj+1

xj−1

φi(x)f(x)dx (2.10)

The first and last equations are special with basis functions which are ”half hats” and are

1∑
j=0

Uj

∫ x1

x0

dφ0
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First and last equations reduced to

− U1 − U0

x1 − x0
=
∫ x1

x0

φ0(x)f(x)dx, (i = 0) (2.16)

and
UN+1 − UN

xN+1 − xN
=
∫ xN+1

xN

φN (x)f(x)dx, (i = N + 1) (2.17)

The right hand side integrals can be evaluated by numerical integration.
The stiffness matrix K is singular, which follows from the fact that the φi(x) form a partition
of unity, so

N+1∑
i=0

φi(x) = 1 ⇒
N+1∑
i=0

dφi

dx
= 0 (2.18)

It means all column sums of the determinant of Matrix K are zero. By applying boundary
conditions, it is possible to invert this matrix.

2.1.4 Evaluation of Stiffness matrix K and Load Vector f for Quadratics

In this section we explain how can we construct solution by adding an extra node in each
element as p-refinement.
There are deficiencies in linear finite elements formulation in convection-diffusion problems.
In such situations to examine the numerical solution of 1D convection-diffusion problem
discretise with quadratic shape functions as shown in figure (2.2).
First of all we establish a matrix equation for the given problem, as for linear finite elements,
then the discrete solution of the problem is analysed.
As shown in figure (2.2), we consider a generic element with nodes 1, 2 and 3, where node 2
is a mid-side. With reference to the condition 0 < x < 1, the shape function of the element
are
N1(x) = 2(x − 1

2)(x − 1), N2(x) = −4x(x − 1), and N3(x) = 2x(x − 1
2).

We can establish an element stiffness matrix Ke of the quadratic elements [1] as follows

Ke =
∫

Ω


∂N1
∂x

∂N1
∂x

∂N1
∂x

∂N2
∂x

∂N1
∂x

∂N3
∂x

∂N2
∂x

∂N1
∂x

∂N2
∂x

∂N2
∂x

∂N2
∂x

∂N2
∂x

∂N3
∂x

∂N1
∂x

∂N3
∂x

∂N2
∂x

∂N3
∂x

∂N3
∂x

 dx
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and load vector f as follows

fi =
∫

Ω
f(x)Ni(x)dx

where i = (1, 2, 3).

2.2 A More General first order Differential Equation
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2.2.2 Quadratic Finite Elements

Similarly from (2.19), apply quadratic finite elements and after applying all the calculations,
we get the matrix equation

KU = f

where K is the assembly of element matrices

Ke
ij =

∫
Ω

p(x)


∂N1
∂x

∂N1
∂x

∂N1
∂x

∂N2
∂x

∂N1
∂x

∂N3
∂x

∂N2
∂x

∂N1
∂x

∂N2
∂x

∂N2
∂x

∂N2
∂x

∂N2
∂x

∂N3
∂x

∂N1
∂x

∂N3
∂x

∂N2
∂x

∂N3
∂x

∂N3
∂x

 dx

and

fi =
∫ 1

0
f(x)Ni(x)dx

is a load vector.
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dy
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-�
���

���
���

��

H
HHH

HHH
HHH

HH

0 1Element 1 x

1

Figure 3.2: linear finite elements for one element

and load vectors for f(x) = x2 are

f0 =
∫ 1

0
(1 − x)x2dx =

1
12

f1 =
∫ 1

0
x3dx =

1
4

By solving the test problem, we get approximate value of velocity potential U shown
in table (3.1).

Table 3.1: Results for equation d2u
dx2 = x and x2 for one Element.

x value Exact f(x)=x LFE f(x)=x Error (u-U) Exact f(x)=x2 LFE f(x)=x2 error (u-U)

0 -1.33333 -1.16667 -0.166667 -1.08333 -1.5 0.416667
1 0 0 0 0 0 0

• Stiffness Matrix and load vector for Two element
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0 1
2 1

Figure 3.3: Linear finite element for Two elements.

,

f1 =
∫ 1

2

0
(2x)x2dx +

∫ 1

1
2

(2 − 2x)x2dx =
7
48

and

f2 =
∫ 1

1
2

(2x − 1)x2dx =
17
96

Similarly if f(x) = x the load vector is

fi =
(

1
24

1
4

5
24

)T

The solution for U is shown in table (3.2)

Table 3.2: Results for equation d2u
dx2 = x and x2 of Two Element.

x value Exact f(x)=x LFE f(x)=x Error (u-U) Exact f(x)=x2 LFE f(x)=x2 error (u-U)

0 -1.33333 -1.16667 -0.166667 -1.08333 -1.08333 2.22045e-016
0.5 -0.791667 -0.645833 -0.145833 -0.578125 -0.578125 1.11022e-016
1 0 0 0 0 0 0

•
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and the load vector is

f0 =
∫ 1

4

0
(1 − 4x)x2dx =

1
768

,

f1 =
∫ 1

4

0
(4x)x2dx +

∫ 1
2

(2−4x)x2dx= 7
384

1
4

f2 =
∫ 1

2

1
4

(4x − 1)x2dx +
∫ 3

4
(3−4x)x2dx= 25

384

1
2

f3 =
∫ 3

4

1
2

(4x − 2)x2dx +
∫ 1

3
4

(4 − 4x)x2dx =
55
384

and

f4 =
∫ 1

3
4

(4x − 3)x2dx =
27
256

The load vector f is when f(x) = x is

fi =
(

1
96

1
16

1
8

3
8

11
96

)T
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Table 3.3: Results for equation d2u
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0 1
16

1
8

3
16

1
4

5
16

3
8

7
16

1
2

9
16

5
8

11
16

3
4

13
16

7
8

15
16 1

Figure 3.6: Linear finite element for sixteen elements.

Table 3.5: Results for equation d2u
dx2 = x2 of Sixteen Element.



32 CHAPTER 3. A TEST PROBLEM

0 1
4

1
2

3
4 1

Figure 3.7: Quadratic finite element for Two elements.

N1(x) = 8(x − 3
4)(
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N2(x) = −64(x − 1
2)(x − 3

4),
N3(x) = 32(x − 1

2)(x − 5
8)

4. Fourth Element
N1(x) = 32(x − 7

8)(x − 1),
N2(x) = −64(x − 3

4)(x − 1),
N3(x) = 32(x − 3

4)(x − 7
8)

For each element, the stiffness matrix is

Ke =


28
3

−32
3

4
3

−32
3

64
3

−32
3

4
3

−32
3

28
3


and load vectors for f(x) = x and f(x) = x2 are

f1
i =

[
0 1

48
1
96

1
16

1
48

5
48

1
32

7
48

1
24

]T

and
f2

i =
[

−1
3840

1
320

3
1280

23
960

21
320

89
3540

41
320

53
1280

]T

The matrix after assembly is

K =
1
3



28 −32 4 0 0 0 0 0 0
−32 64 −32 0 0 0 0 0 0

4 −32 56 −32 4 0 0 0 0
0 0 −32 64 −32 0 0 0 0
0 0 4 −32 56 −32 4 0 0
0 0 0 0 −32 64 −32 0 0
0 0 0 0 4 −32 56 −32 4
0 0 0 0 0 0 −32 64 −32
0 0 0 0 0 0 4 −32 28


Table (3.7) gives the solution for four elements
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and

f2
i =

[
−1

30720
1

2560
3

10240
23

7680
3

10240
21

2560
89

30720
41

2560
53

10240
203
7680

83
10240

101
2560

359
30720

141
2560

163
10240

563
7680

213
10240

]T

Table 3.8: Results for equation d2u
dx2 = x and x2 for eight Element.

x Exact (x) QFE (x) Error (x) Exact (x2) QFE (x2) Error (x2)

0 -1.33333 -1.13688 -0.196452 -1.08333 -1.06904 -0.0142904
0.0625 -1.27075 -1.07434 -0.196411 -1.02083 -1.00654 -0.0142901
0.125 -1.20768 -1.01156 -0.196126 -0.958313 -0.944023 -0.0142904
0.1875 -1.14364 -0.948446 -0.19519 -0.89573 -0.881459 -0.0142718
0.25 -1.07813 -0.884603 -0.193522 -0.833008 -0.818754 -0.0142537

0.3125 -1.01066 -0.820109 -0.190552 -0.770039 -0.755944 -0.0140948
0.375 -0.940755 -0.754395 -0.186361 -0.706685 -0.692749 -0.0139364
0.4375 -0.86792 -0.687703 -0.180216 -0.64278 -0.629184 -0.0135963

0.5 -0.791667 -0.619303 -0.172363 -0.578125 -0.564868 -0.0132568
0.5625 -0.711507 -0.549601 -0.161906 -0.512491 -0.499897 -0.0125933
0.625 -0.626953 -0.477702 -0.149251 -0.445618 -0.433687 -0.0119303
0.6875 -0.537516 -0.404175 -0.133341 -0.377216 -0.366456 -0.0107602
0.75 -0.442708 -0.327962 -0.114746 -0.306966 -0.297375 -0.00959066

0.8125 -0.342041 -0.250061 -0.09198 -0.234516 -0.226826 -0.00769018
0.875 -0.235026 -0.170573 -0.0644531 -0.159485 -0.153695 -0.0057902
0.9375 -0.121175 -0.0857747 -0.0354004 -0.0814603 -0.0785655 -0.00289485

1 0 0 0 0 0 0
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Figure 3.10: Quadratic finite element for sixteen elements.

For each element, the stiffness matrix is

Ke =


112
3

−128
3

16
3

−128
3

256
3

−128
3

16
3

−128
3

112
3


and load vectors for f(

7
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3.3 A More General 1-D Differential Equation

Now consider the problem

− d

dx

(
(2x + 1)

du

dx

)
= x2 (3.3)

in (0, 1) with artificial boundary conditions du
dx = 1 at x = 0 and u = 0 at x = 1. This is

representative of the moving mesh movement equation.

3.3.1 Linear Finite Elements

So by using the approach discussed in chapter 2, we can find stiffness and load vector as
shown below.

• Solution for One element

Stiffness matrix for one elemnt with h = 1 and p(x) = 2x + 1 is

K =
1
h2

∫ 1

0
p(x)

dφi

dx

dφ



3.3. A MORE GENERAL 1-D DIFFERENTIAL EQUATION 39

Ke
2 =

1
h2

∫ 1

1
2

p(x)
dφi

dx

dφj

dx
dx =

(
5 −5

−5 5

)

and load vectors are

f0 =
∫ 1

2

0
(1 − 2x)x2dx =

1
96

f1 =
∫ 1

2

0
2x3dx +

∫ 1

1
2

(2 − 2x)x2dx =
7
48

f2 =
∫ 1

1
2

(2x − 1)x2dx =
7
48
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Ke
3 =

1
h2

∫ 3
4

1
2

p(x)
dφi

dx

dφj

dx
dx =

(
9 −9

−9 9

)

Ke
4 =

1
h2

∫ 1

3
4

p(x)
dφi

dx

dφj

dx
dx =

(
11 −11

−11 11

)

and load vectors are

f0 =
∫ 1

4

0
(1 − 4x)x2dx =

1
768

f1 =
∫ 1

4

0
4x3dx +

∫ 1
2

1
4

(2 − 4x)x2dx =
7

384

f2 =
∫ 1

2

1
4

(4x − 1)x2dx +
∫ 3

4

1
2

(3 − 4x)x2dx =
25
384

f3 =
∫ 3

4

1
2

(4x − 2)x2dx +
∫ 1

3
4

(4 − 4x)x2dx =
55
384

f4 =
∫ 1

3
4

(4x − 3)x2dx =
27
256

The stiffness matrix for four elements is

K =


5 −5 0 0 0

−5 12 −7 0 0
0 −7 16 −9 0
0 0 −9 20 −11
0 0 0 −11 11



Table 3.12: Results for equation − d
dx

(
(2x + 1)du

dx

)
= x2 for Four Element.

x values Exact values (u) Linar Finite values (U) Error (u-U)

0 -0.516638 -0.511708 -0.00493015
0.25 -0.314139 -0.311968 -0.00217054
0.5 -0.172985 -0.171901 -0.00108365
0.75 -0.0706532 -0.0701941 -0.000459115

1 0 0 0

Similarly we can find solutions for eight and sixteen elements.
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3.3.2 Quadratic Finite Elements

The solution for equation (3.3) can be found by using the same technique used for first test
problem but for stiffness element matrix, we need to multiply the integral of each entry of
the stiffness element matrix before integrating.

• Solution for Two Elements

So the stiffness matrix for two elements is

K =


5 −5 0 0 0

−5 12 −7 0 0
0 −7 16 −9 0
0 0 −9 20 −11
0 0 0 −11 11


So we use the same load vector for f(x) = x2 in quadratic finite elements as used
before in this chapter. The solution is shown in Table (3.13)

Table 3.13: Results for equation − d
dx

(
(2x + 1)du

dx

)
= x2 for Two Element.

x values Exact values (u) Linar Finite values (U) Error (u-U)

0 -0.516638 -0.520043 0.00340488
0.25 -0.314139 -0.31824 0.00410118
0.5 -0.172985 -0.176774 0.00378869
0.75 -0.0706532 -0.0723606 0.0017074

1 0 0 0

• Solution for Four Elements

The stiffness matrix for four elements is

K =



31 −36 5 0 0 0 0 0 0
−36 80 −44 0 0 0 0 0 0

5 −44 84 −52 7 0 0 0 0
0 0 −52 112 −60 0 0 0 0
0 0 7 −60 112 −68 9 0 0
0 0 0 0 −68 144 −76 0 0
0 0 0 0 9 −76 140 −84 11
0 0 0 0 0 0 −84 176 −92
0 0 0 0 0 0 11 −92 81


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We get the solution as shown in Table (3.14)

Table 3.14: Results for equation − d
dx

(
(2x + 1)du

dx

)
= x2 for Four Element.

x values Exact values (u) Linar Finite values (U) Error (u-U)

0 -0.516638 -0.521588 0.00495024
0.125 -0.405083 -0.410112 0.00502911
0.25 -0.314139 -0.319118 0.00497899
0.375 -0.237867 -0.24268 0.00481295
0.5 -0.172985 -0.177631 0.00464633

0.625 -0.117608 -0.12152 0.00391259
0.75 -0.0706532 -0.0739058 0.00325257
0.875 -0.0315377 -0.0330893 0.00155158

1 0 0 0

Similarly we can find the solution for eight and sixteen elements.



Chapter 4

Recovery of the Solution to the

first order Problem

In this chapter we describe how we can accomplish the solution of first order differential
equation i.e. recovery of velocity. In previous chapter we mentioned the approach that
replaced the velocity (y) with the velocity potential (u) as y = du

dx and solved it for U . Now
we describe the approach that gives us Y from U which is an approximation to the exact
solution.

4.1 Discontinuous Solution (by differentiation)

• Linears

We can apply different approaches to find the apprximated velocity vector (Y ). One
way is to get the Y values from U for each element as follows

Yi =
du

dx
=

Ui+1 − Ui

xi+1 − xi

Here U is piecewise linear and the Y function is piecewise constant. So Y is not
continuous. We need to look for another way to go from U to Y (=dUdx) which gives
us a continuous function which we also discuss in the next section.

• Quadratics

In this case recovery of Y from U by differentiation also gives us discontinuous func-

43
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tion. So we need to adapt these values for each node to get continuous function which
we discuss in next section.

4.2 Continuous Solution

Consider the following method to find the continuous solution for linear finite elements,

4.2.1 Least Squares for Linears

Let’s consider the following least square approach∥∥∥∥y − dU

dx

∥∥∥∥2

=
∫ 1

0

(
Y − dU

dx

)2

dx

Minimise it over Y, where Y =
∑

ȳjφj is continuous, requiring minimization of

∫ 1

0

 1∑
j=0

ȳjφj − dU

dx

2

dx

. Minimise over ȳ values,

d

dȳi

∫ 1

0

1∑
j=0

ȳjφj − dU

dx

2

dx = 0

and generally, it is ∫ 1

0

∑
j

ȳjφj − dU

dx

φidx = 0

The above equation can be written in the form

∑
j

(∫ 1

0
φiφjdx

)
ȳj −

∫ 1

0
φi

dU

dx
dx = 0

and in matrix form as
Mȳ = g
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where M is the element mass matrix. For one element M e = h

(
1
3

1
6

1
6

1
3

)
, ȳ is a velocity

vector and

ge
i =

dU

dx

∫ 1

0
φidx =

1
2

h
dU

dx
=


1
2(U1−U0

x1−x0
)

1
2(Ui+1−Ui

xi+1−xi
)

. . .
1
2(Un−Un−1

xn−xn−1
)


We can get an approximation to the velocity vector by applying the approach discussed
above. There are some solutions in section (4.3) for the test problems discussed in chapter
3.

4.2.2 For Quadratics

After finding the values of U
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Table 4.1: Linear finite elements to solve equation dy
dx = x and x2 for 2 elements.

x y=Exact(f(x)=x) Y=LFE(f(x)=x) Error(x) y=Exact (f(x)=x2) Y=LFE(f(x)=x2) Error(x2)

0 1 0.973958 0.0260417 1 0.973958 0.0260417
0.5 1.125 1.08333 0.0416667 1.04167 1.08333 -0.0416667
1 1.5 1.19271 0.307292 1.33333 1.19271 0.140625

Table 4.2: Linear finite elements to solve equation dy
dx = x and x2 for 4 elements.

x y=Exact(f(x)=x) Y=LFE(f(x)=x) Error(x) y=Exact (f(x)=x2) Y=LFE(f(x)=x2) Error(x2)

0 1 0.998512 0.0014881 1 0.998512 0.0014881
0.25 1.03125 1.00688 0.0243676 1.00521 1.00688 -0.00167411
0.5 1.125 1.03646 0.0885417 1.04167 1.03646 0.00520833
0.75 1.28125 1.15978 0.121466 1.14063 1.15978 -0.0191592

1 1.5 1.2619 0.238095 1.33333 1.2619 0.0714286

Table 4.3: Linear finite elements to solve equation dy
dx = x and x2 for 8 elements.

x y=Exact(f(x)=x) Y=LFE(f(x)=x) Error(x) y=Exact (f(x)=x2) Y=LFE(f(x)=x2) Error(x2)

0 1 0.999904 9.58824e-005 1 0.999904 9.58824e-005
0.125 1.00781 1.00068 0.00713245 1.00065 1.00068 -2.90044e-005
0.25 1.03125 1.00519 0.0260618 1.00521 1.00519 2.01353e-005
0.375 1.07031 1.01763 0.0526828 1.01758 1.01763 -5.15368e-005
0.5 1.125 1.04148 0.0835193 1.04167 1.04148 0.000186012

0.625 1.19531 1.08207 0.11324 1.08138 1.08207 -0.000692511
0.75 1.28125 1.13804 0.143209 1.14063 1.13804 0.00258403
0.875 1.38281 1.23295 0.149862 1.22331 1.23295 -0.00964361

1 1.5 1.29734 0.202657 1.33333 1.29734 0.0359904

Table 4.4: Linear finite elements to solve equation dy
dx = x and x2 for 16 elements.

x y=Exact(f(x)=x) Y=LFE(f(x)=x) Error(x) y=Exact (f(x)=x2) Y=LFE(f(x)=x2) Error(x2)

0 1 2.366 -1.366 1 2.366 -1.366
0.0625 1.00195 0.634063 0.36789 1.00008 0.634063 0.366018
0.125 1.00781 1.09873 -0.0909128 1.00065 1.09873 -0.0980742
0.1875 1.01758 0.975918 0.0416598 1.0022 0.975918 0.0262789
0.25 1.03125 1.01225 0.0190003 1.00521 1.01225 -0.00704141

0.3125 1.04883 1.00829 0.0405423 1.01017 1.00829 0.00188673
0.375 1.07031 1.01808 0.0522289 1.01758 1.01808 -0.000505516
0.4375 1.0957 1.02778 0.067925 1.02791 1.02778 0.000135334

0.5 1.125 1.0417 0.0832975 1.04167 1.0417 -3.58178e-005
0.5625 1.1582 1.05932 0.0988849 1.05933 1.05932 7.9377e-006
0.625 1.19531 1.08138 0.113936 1.08138 1.08138 4.067e-006
0.6875 1.23633 1.10834 0.127987 1.10832 1.10834 -2.42057e-005
0.75 1.28125 1.14053 0.140718 1.14063 1.14053 9.27558e-005

0.8125 1.33008 1.17914 0.150939 1.17879 1.17914 -0.000346818
0.875 1.38281 1.22201 0.1608 1.22331 1.22201 0.00129451
0.9375 1.43945 1.27949 0.159964 1.27466 1.27949 -0.00483124

1 1.5 1.3153 0.184697 1.33333 1.3153 0.0180304
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2. Linear Solution for Second Test problem

We fixed the error occured in finding the solution of the second test problem by
applying linear finite elements for moving mesh. So the following tables (4.5), (4.6),
(4.7) and (4.8) show the results for exact velocity y and approximated velocity Y

recovered from the velocity ptential U . All the tables are self explanatory, showing
results for 2, 4, 8, and 16 elements.

Table 4.5: Results by solving equation − d
dx ((2x + 1)y) = x2 for 2 elements.

x values Exact values (y) Linear values (Y) Error(y-Y)

0 1 0.740278 0.259722
0.5 0.479167 0.498611 -0.0194444
1 0.222222 0.256944 -0.0347222

Table 4.6: Results by solving equation − d
dx ((2x + 1)y) = x2 for 4 elements.

x values Exact values (y) Linear values (Y) Error(y-Y)

0 1 0.854184 0.145816
0.25 0.663194 0.688506 -0.025312
0.5 0.479167 0.469468 0.00969817
0.75 0.34375 0.334909 0.00884075

1 0.222222 0.25371 -0.0314879

Table 4.7: Results by solving equation − d
dx ((2x + 1)y) = x2 for 8 elements.

x values Exact values (y) Linear values (Y) Error(y-Y)

0 1 0.925543 0.074457
0.125 0.799479 0.815147 -0.0156674
0.25 0.663194 0.656595 0.00659966
0.375 0.561384 0.561588 -0.000204438
0.5 0.479167 0.478101 0.00106524

0.625 0.408275 0.407409 0.000866366
0.75 0.34375 0.344444 -0.000693876
0.875 0.282434 0.277335 0.00509873

1 0.222222 0.239135 -0.0169126



48
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Table 4.10: Results by solving equation dy
dx with f(x) = x and f(x) = x2 for 4 Elements.

x y=Exact (f(x)=x) Y=QFE (f(x)=x) Error (x) y=Exact (f(x)=x2) Y=QFE (f(x)=x2) Error (x2)

0 1 0.994792 0.00520833 1 0.998958 0.00104167
0.125 1.00781 1.01042 -0.00260417 1.00065 1.0013 -0.000651042
0.25 1.03125 1.02604 0.00520833 1.00521 1.00365 0.0015625
0.375 1.07031 1.0625 0.0078125 1.01758 1.01562 0.00195313
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2. Quadratic Solution for Second Test Problem

The following tables (4.13), (4.14), (4.15) and (4.16) give us the results for 2, 4, 8 and
16 elements by using quadratic approach.
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Table 4.15: Results by solving equation − d
dx ((2x + 1)y) = x2 for 8 elements.

x values Exact values (y) Quadratic values (Y) Error(y-Y)

0 1 0.991845 0.0081547
0.0625 0.888817 0.892426 -0.00360984
0.125 0.799479 0.793007 0.00647168
0.1875 0.725675 0.727765 -0.00208987
0.25 0.663194 0.659971 0.0032238

0.3125 0.609125 0.61174 -0.00261577
0.375 0.561384 0.560897 0.000486572
0.4375 0.518446 0.521957 -0.00351112

0.5 0.479167 0.480754 -0.00158723
0.5625 0.44267 0.448019 -0.00534887
0.625 0.408275 0.412336 -0.00406035
0.6875 0.375445 0.383522 -0.00807682
0.75 0.34375 0.350878 -0.007128

0.8125 0.312841 0.324515 -0.0116744
0.875 0.282434 0.293326 -0.010892
0.9375 0.252293 0.268426 -0.0161336

1 0.222222 0.237632 -0.0154098

Table 4.16: Results by solving equation − d
dx ((2x + 1)y) = x2 for 16 elements.

x values Exact values (y) Quadratic values (Y) Error(y-Y)

0 1 0.997705 0.00229458
0.03125 0.941167 0.942245 -0.00107789
0.0625 0.888817 0.886784 0.0020324
0.09375 0.841874 0.842661 -0.000787368
0.125 0.799479 0.798074 0.00140485

0.15625 0.760936 0.761631 -0.000695042
0.1875 0.725675 0.724777 0.000897804
0.21875 0.693225 0.694016 -0.000790709

0.25 0.663194 0.662797 0.000397904
0.28125 0.635254 0.636327 -0.00107276
0.3125 0.609125 0.609288 -0.000163062
0.34375 0.584569 0.586112 -0.00154289
0.375 0.561384 0.562212 -0.000828374

0.40625 0.539394 0.541598 -0.0022039
0.4375 0.518446 0.520073 -0.00162671
0.46875 0.498409 0.501468 -0.00305881

0.5 0.479167 0.481744 -0.00257778
0.53125 0.460617 0.464727 -0.00411046
0.5625 0.44267 0.446366 -0.00369557
0.59375 0.425246 0.430608 -0.00536141
0.625 0.408275 0.413266 -0.00499026

0.65625 0.391694 0.398508 -0.00681386
0.6875 0.375445 0.381915 -0.00646945
0.71875 0.359479 0.367949 -0.00846977

0.75 0.34375 0.351889 -0.00813891
0.78125 0.328216 0.338547 -0.0103308
0.8125 0.312841 0.322844 -0.0100031
0.84375 0.29759 0.309989 -0.0123983
0.875 0.282434 0.294499 -0.0120656

0.90625 0.267343 0.282017 -0.0146735
0.9375 0.252293 0.266622 -0.0143291
0.96875 0.23726 0.254417 -0.0171575

1 0.222222 0.239018 -0.0167959



Chapter 5

Discussion

Comparison of the results.

5.1 Exact solution for y

• First Problem

To find the exact solution of
dy
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u =
x3

3
+ x − 4

3
(5.4)

the exact solution for u.

Let us consider f(x) = x2, giving
du2

dx2
= x2 (5.5)

Now by integrating (5.5), the exact solution for y is

y =
x3

3
+ 1 (5.6)

and for u is

u =
x4

12
+ x − 13

12
(5.7)

•
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5.2 Results

5.2.1 Linear and Quadratic continuous Solution for y (Problem-1)

All the graphs shown below give us enough information to understand about the results.
By comparison of linear and quadratic results it is clear that linear approach is not good
as compared to quadratic in case of first test problem. Quadratic finite elements gives us
better results.

(a) Linear finite Elements for f(x) = x. (b) Quadratic finite Elements for f(x) =
x.

(c) Linear finite Elements for f(x) = x. (d) Quadratic finite Elements for f(x) =
x.

Figure 5.1: Graphs showing the results for linear and quadratic finite elements of first test
problem for 2 and 4 elemets.
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(a) Linear finite Elements for f(x) = x. (b) Quadratic finite Elements for f(x) =
x.

(c) Linear finite Elements for f(x) = x. (d) Quadratic finite Elements for f(x) =
x.

Figure 5.2: Graphs showing the results for linear and quadratic finite elements of first test
problem for 8 and 16 elemets.
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(a) Linear finite Elements for f(x) = x2. (b) Quadratic finite Elements for f(x) =
x2.

(c) Linear finite Elements for f(x) = x2. (d) Quadratic finite Elements for f(x) =
x2.

Figure 5.3: Graphs showing the results for linear and quadratic finite elements of first test
problem for 2 and 4 elemets.
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(a) Linear finite Elements for f(x) = x2. (b) Quadratic finite Elements for f(x) =
x2.

(c) Linear finite Elements for f(x) = x2. (d) Quadratic finite Elements for f(x) =
x2.
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5.2.2 Linear and Quadratic continuous Solution for y (Problem-2)

The comparison of the results for linear and quadratic finite elements of second test problem
tells us

• Graphs show that numerical values for Y get better as we increase the number of
elements.

• Linear results are really good except for end values for 16 elements.

• Quadratic results are better at the start of any number of elements.

(a) Linear finite Elements. (b) Quadratic finite Elements.

(c) Linear finite Elements. (d) Quadratic finite Elements.

Figure 5.5: Graphs showing the results for linear and quadratic finite elements of second
test problem for 2 and 4 elemets.
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(a) Linear finite Elements. (b) Quadratic finite Elements.

(c) Linear finite Elements. (d) Quadratic finite Elements.

Figure 5.6: Graphs showing the results for linear and quadratic finite elements of second
test problem for 8 and 16 elemets.

5.3 Conclusion

We have showed that when linear elements approach does not work very well to recover the
values of velocity (Y



5.4. FUTURE WORK 61

ential equations as well as the Sturn-Liouiville type differential equations. In this chapter
we solved test problems to investigate the numerical results.

Chapter Four introduced the results for moving boundary and discussed the possible be-
haviour that can arise as the boundary moves. We also discussed the numerical results of
the test problem and compared them with the exact solutions to investigate the errors.

5.4 Future Work

Our next target is to find the solutions for higher order differential equations.
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