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The quantum crystal studied in this article is a system of interacting quan-
tum anharmonic oscillators indexed by the elements of a crystal lattice L, which
for simplicity we assume to be a d-dimensional simple cubic lattice Z

d. The
quantum anharmonic oscillator is a mathematical model of a quantum particle
moving in a potential field with possibly multiple minima, which has a suffi-
cient growth at infinity and hence localizes the particle. Most of the models
of interacting quantum oscillators are related with solids such as ionic crystals
containing localized light particles oscillating in the field created by heavy ionic
complexes, or quantum crystals consisting entirely of such particles. For in-
stance, a potential field with multiple minima is seen by a helium atom located
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where mph is the physical mass of the particle. Therefore, the commutation
relation for the components of the momentum and displacement takes the form

p
(j)
ℓ q

(j′)
ℓ′ − q

(j′)
ℓ′ p

(j)
ℓ = −ıδℓℓ′δjj′ , j, j′ = 1, . . . , ν. (1.4)

For a detailed discussion on how to derive a model like (1.1), (1.2) from physical
models of concrete substances, we refer the reader to the sur
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strong in the small mass limit, which was in agreement with the experimental
data, e.g., on the isotopic effect in the ferroelectrics with hydrogen bounds, see
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2 Euclidean Gibbs States

The main element of the Euclidean approach is the description of the equilibrium
thermodynamic properties of the model (1.1), (1.2) by means of Euclidean Gibbs
states, which are probability measures on certain configuration spaces. In this
section, we briefly describe the main elements of this approach which are then
used in the subsequent parts of the article. For more details, we refer to [54].

2.1 Local Gibbs states

Let us begin by specifying the properties of the model described by the Hamil-
tonian (1.1). The general assumptions regarding the interaction intensities Jℓℓ′

are
Jℓℓ′ = Jℓ′ℓ ≥ 0, Jℓℓ = 0, Ĵ0

def
= sup

ℓ

∑

ℓ′

Jℓℓ′ < ∞
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where
ZΛ = trace[exp(−βHΛ)] < ∞ (2.6)

is the partition function, and CΛ is the algebra of all bounded linear operators
on L2(Rν|Λ|). Note that adjective local will always stand for a property related
with a certain Λ ⋐ L, whereas global will characterize the whole infinite system.
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These path spaces are equipped with the product topology and with the Borel
σ-algebras B(ΩΛ). Thereby, each ΩΛ is a complete separable metric space,
called Polish space, its elements are called configurations in Λ. For Λ ⊂ Λ′, the
juxtaposition ωΛ′ = ωΛ ×ωΛ′\Λ defines an embedding ΩΛ →֒ ΩΛ′ by identifying
ωΛ ∈ ΩΛ with ωΛ × 0Λ′\Λ ∈ ΩΛ′ . By P(ΩΛ), P(Ω) we denote the sets of all
probability measures on (ΩΛ,B(ΩΛ)), (Ω,B(Ω)) respectively.

2.3 Local Euclidean Gibbs measures

Now we construct the measure νΛ which appears in (2.15). A single harmonic
oscillator is described by the Hamiltonian, c.f., (1.2),

Hhar
ℓ = − 1

2
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where

Zhar
Λ

def
= trace exp

[
−β

∑

ℓ∈Λ

Hhar
ℓ

]

=





exp

[
−(β/2)

√
a/m

]

1 − exp
(

−β
√
a/m

)






ν|Λ|

.

Now let us summarize the connections between the description of the sub-
system located in Λ ⋐ L in terms of the states (2.5) and of the Euclidean Gibbs
measures (2.33). By the density theorem, the state ̺Λ is fully determined by the
Green functions (2.8) corresponding to all choices of n ∈ N and F1, . . . , Fn ∈ FΛ.
Then the multiple-time analyticity theorem leads us from the Green functions
to the Matsubara functions (2.12), which then are represented as integrals over
path spaces with respect to the local Euclidean Gibbs measures, see (2.15).
On the other hand, these integrals taken for all possible choices of bounded
continuous functions F1, . . . , Fn fully determine the measure νΛ. Thereby, we
have a one-to-one correspondence between the local Gibbs states (2.5) and the
states on the algebras of bounded continuous functions determined by the local
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totic properties of Jℓℓ′ , |ℓ− ℓ′| → +∞, see (2.1). If for a certain α > 0,

sup
ℓ

∑

ℓ′

Jℓℓ′ exp(α|ℓ − ℓ′|) < ∞, (2.41)

then the weights {wα(ℓ, ℓ′)}α∈I are chosen as

wα(ℓ, ℓ′) = exp(−α|ℓ− ℓ′|), I = (0, α), (2.42)

where α is the supremum of α > 0, for which (2.41) holds. If the latter condition
does not hold for any α > 0, we assume that

sup
ℓ

∑

ℓ′

Jℓℓ′ · (1 + |ℓ − ℓ′|)αd, (2.43)

for a certain α > 1. Then we set α to be the supremum of α > 1 obeying (2.43)
and

wα(ℓ, ℓ′) = (1 + ε|ℓ− ℓ′|)−αd, (2.44)

where ε > 0 is a technical parameter. In the sequel, we restrict ourselves to
these two kinds of Jℓℓ′ . For more details on this item, we refer the reader to
[54].

Given α ∈ I and ω ∈ Ω, we set

‖ω‖α =

[
∑

ℓ

‖ωℓ‖2
L2

β
wα(0, ℓ)

]1/2

, (2.45)

and
Ωα = {ω ∈ Ω | ‖ω‖α < ∞}. (2.46)

Thereby, we endow Ωα with the metric

ρα(ω, ω′) = ‖ω − ω′‖α +
∑

ℓ

2−|ℓ| ‖ωℓ − ω′
ℓ‖Cβ

1 + ‖ωℓ − ω′
ℓ‖Cβ

, (2.47)

which turns it into a Polish space. The set of tempered configurations is defined
to be

Ωt =
⋂

α∈I

Ωα. (2.48)

We endow it with the projective limit topology, which turns it into a Polish
space as well. For every α ∈ I, the embeddings Ωt →֒ Ωα →֒ Ω are continuous;
hence, Ωα,Ω

t ∈ B(Ω) and the Borel σ-algebras B(Ωα), B(Ωt) coincide with the
ones induced on them by B(Ω).

2.5 Local Gibbs specification

Let us turn to the functional (2.38). By standard methods, one proves that, for
every α ∈ I, the map Ωα × Ωα 7→ IΛ(ω|ξ
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In view of (2.66), the one-site projections of each µ ∈ Gt are sub-Gaussian. The
constant C does not depend on ℓ and is the same for all µ ∈ Gt, though it may
depend on σ and κ. The estimate (2.66) plays a crucial role in the theory of
the set Gt.

According to [30] certain Gibbs states correspond to the thermodynamic
phases of the underlying physical system. Thus, in our context multiple phases
exist only if Gt has more than one element for appropriate values of β and the
model parameters. On the other hand, a priori one cannot exclude that this set
always has multiple elements, which would make it useless for describing phase
transitions. The next statement which we present here2 clarifies the situation.
Let us decompose

Vℓ = V1,ℓ + V2,ℓ, (2.67)

where V1,ℓ ∈ C2(Rν) is such that

− a ≤ b
def
= inf

ℓ
inf

x,y∈Rν, y 6=0

(
V ′′

1,ℓ(x)y, y
)
/|y|2 < ∞. (2.68)

As for the second term, we set

0 ≤ δ
def
= sup

ℓ

{
sup

x∈Rν

V2,ℓ(x) − inf
x∈Rν

V2,ℓ(x)

}
≤ ∞. (2.69)

Its role is to produce multiple minima of the potential energy responsible for
eventual phase transitions. Clearly, the decomposition (2.67) is not unique; its
optimal realizations for certain types of Vℓ are discussed in section 6 of [13].
Recall that the interaction parameter Ĵ0 was defined in (2.1).

Proposition 2.14 The set Gt is a singleton if

eβδ < (a+ b)/Ĵ0. (2.70)

Remark 2.15 The latter condition surely holds at all β if

δ = 0 and Ĵ0 < a+ b. (2.71)

If the oscillators are harmonic, δ = b = 0, which yields the stability condition

Ĵ0 < a. (2.72)
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By means of (2.78) we introduce the periodic Hamiltonian

Hper
Λ = HΛ = −1

2

∑

ℓ,ℓ′∈Λ

JΛ
ℓℓ′ · (qℓ, qℓ′) +

∑

ℓ∈Λ

Hℓ, (2.83)

and the corresponding periodic local Gibbs state

̺per
Λ (A) = trace[A exp(−βHper

Λ )]/trace[exp(−βHper
Λ )], A ∈ CΛ. (2.84)

The relationship between the measure νper
Λ and this state is the same as in the

case of νΛ and ̺Λ.
Set, c.f., (2.50),

πper
Λ (B) =

1

Nper
Λ

∫

ΩΛ

exp [−Iper
Λ (ωΛ)] IB(ωΛ × 0Λc)χΛ(dxΛ
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of the pressure on the external field h, c.f. (2.3), we indicate this dependence
explicitely. For Λ ⋐ L, we set, see (2.49),

pΛ(h, ξ) =
1

|Λ| logNΛ(h, ξ), ξ ∈ Ωt. (2.88)

To simplify notations we write pΛ(h) = pΛ(h, 0). Thereby, for µ ∈ Gt, we set

pµ
Λ(h) =

∫

Ω

pΛ(h, ξ)µ(dξ). (2.89)

Furthermore, we set

pper
Λ (h) =

1

|Λ| logNper
Λ (h). (2.90)

If, for a cofinal sequence L, the limit

pµ(h)
def
= lim

L
pµ
Λ(h), (2.91)

exists, we call it pressure in the state µ
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The same representation can also be written for Nper
Λ (h). One can show that

the pressures pΛ(h) and pper
Λ (h), as functions of h, are analytic in a subset of C,

which contains R. Thus, one can compute the derivatives and obtain

∂

∂h
pΛ(h) = βMΛ(h),

∂

∂h
pper
Λ (h) = βMper

Λ (h), (2.96)

where

MΛ(h)
def
=

1

|Λ|
∑

ℓ∈Λ

̺Λ[q
(1)
ℓ ], Mper

Λ (h)
def
= ̺per

Λ [q
(1)
ℓ ] (2.97)

are local polarizations, corresponding to the zero and periodic boundary condi-
tions respectively. Furthermore,

∂2

∂h2
pΛ(h) (2.98)

=
1

2|Λ|

∫

ΩΛ

∫

ΩΛ

[
∑

ℓ∈Λ

∫ β

0

(
ω

(1)
ℓ (τ) − ω̃

(1)
ℓ (τ)

)
dτ

]2

νΛ(dωΛ)νΛ(dω̃Λ) ≥ 0.

The same can be said about the second derivative of pper
Λ (h). Therefore, both

pΛ(h) and pper
Λ (h) are convex functions. For the reader convenience, we present

here the corresponding properties of convex functions following [69], pages 34 -
37.

For a function ϕ : R → R, by ϕ′
±(t) we denote its one-side derivatives at a

given t ∈ R. By at most countable set we mean the set which is void, finite, or
countable.

Proposition 2.24 For a convex function ϕ : R → R, it follows that:
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3.1 Phase transitions and order parameters

We begin by introducing the main notion of this section.

Definition 3.1
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Proof: By (3.9), B̂(p) cos(p, ℓ − ℓ′) is an absolutely integrable function in the
sense of improper Riemann integral. The right-hand side of (3.11) is its integral
sum; thereby, the convergence stated is obtained in a standard way. �

From claim (i) of (3.9) by the Riemann-Lebesgue lemma, see page 116 in
[55], one obtains

lim
|ℓ−ℓ′|→+∞

Bℓℓ′ = 0. (3.12)

Lemma 3.3 For every box Λ and any ℓ, ℓ′ ∈ Λ, it follows that

DΛ
ℓℓ′ ≥

(
DΛ

ℓℓ −BΛ
ℓℓ

)
+BΛ

ℓℓ′ . (3.13)

Proof: By (3.7), (3.11), and claim (ii) of (3.9), one has

DΛ
ℓℓ −DΛ

ℓℓ′ =
2

|Λ|
∑

p∈Λ∗\{0}
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Let us consider now another possibilities to define phase transitions in transla-
tion invariant versions of our model. For a box Λ, see (2.63), we introduce

PΛ =
1

(β|Λ|)2
∑

ℓ,ℓ′∈Λ

DΛ
ℓℓ′ (3.19)

=

∫

ΩΛ

∣∣∣∣∣
1

β|Λ|
∑

ℓ∈Λ

∫ β

0

ωℓ(τ)dτ

∣∣∣∣∣

2

νper
Λ (dωΛ),

and set
P

def
= lim sup

L→+∞
PΛL

. (3.20)

Definition 3.5 The above P is called the order parameter. If P > 0 for
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Proposition 3.9 (Griffiths) Let the sequence of measures {µn}N∈N be as above.
If f ′

+(0) = f ′
−(0) = φ (i.e., f is differentiable at y = 0), then

lim
n→+∞

∫
g(u/Mn)µn(du) = g(φ), (3.22)

for any continuous g : R → R, such that |g(u)| ≤ λeκ|u| with certain λ,κ > 0g
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Proposition 3.10 If there exists α ∈
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3.2 Infrared bound
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Taking this into account we obtain

Q̂〈ℓ1,ℓ′
1〉〈ℓ2,ℓ′

2〉(k) =
∑

p∈Λ∗

〈ω̂(j)(p, k)ω̂(j)(−p, k)〉νper
β,Λ

(3.48)

×
(
eı(p,ℓ1) − eı(p,ℓ′

1)
)
/|Λ|1/2

×
(
e−ı(p,ℓ2) − eı(−p,ℓ′

2)
)
/|Λ|1/2.

Since the summand corresponding to p = 0 equals zero, the sum can be re-
stricted to Λ∗ \ {0}. This representation however cannot serve as a spectral
decomposition similar to (3.45) because the eigenfunctions here are not normal-
ized. Indeed,

∑

〈ℓ,ℓ′〉∈E

(
eı(p,ℓ) − eı(p,ℓ′)

)
/|Λ|1/2 ×

(
e−ı(p,ℓ) − e−ı(p,ℓ′)

)
/|Λ|1/2 = 2E(p)

where

E(p)
def
=

d∑

j=1

[1 − cos pj ]. (3.49)

Then we set

σℓℓ′(p) =
(
eı(p,ℓ) − eı(p,ℓ′)

)
/
√

2|Λ|E(p), p ∈ Λ∗ \ {0}, (3.50)

and

Q̂(p, k) = 2E(p)〈ω̂(j)(p, k)ω̂(j)(−p, k)〉νper
Λ
, p ∈ Λ∗ \ {0}. (3.51)

Thereby,

Q〈ℓ1,ℓ′
1〉〈ℓ2,ℓ′

2〉(τ, τ
′) = (3.52)

=
∑

p∈Λ∗\{0}

∑

k∈K

Q̂(p, k)σℓ1ℓ′
1
(p)σℓ2ℓ′

2
(−p)ek(τ)ek(τ ′),

which is the spectral decomposition of the operator (3.39). Now we show that
the eigenvalues (3.51) have a specific upper bound4.

Lemma 3.13 For every p ∈ Λ∗ \ {0} and k ∈ K, the eigenvalues (3.51) obey
the estimate

Q̂(p, k) ≤ 1/J, (3.53)

where J is the same as in (3.32). From this estimate one gets

〈ω̂(j)(p, k)ω̂(j)(−p, k)〉νper
Λ

≤ 1

2JE(p)
, p ∈ Λ∗ \ {0}. (3.54)

Proof: The estimate in question will be obtained from the Gaussian domination
(3.36). For t ∈ R and a given b ∈ XE , we consider the function φ(t) = YΛ(tb).
By Lemma 3.12, φ′′(0) ≤ 0. Computing the derivative from (3.35) we get

φ′′(0) = J(b,Qb)XE
− ‖b‖2

XE
,

4Their natural lower bound is zero as the operator (3.39) is positive
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Then we take in (3.59) A = p
(j)
ℓ , j = 1
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3.4 Phase transition in the symmetric scalar models

In the case ν = 1, we can extend the above results to the models without
translation invariance and with much more general Jℓℓ′ and Vℓ. However, certain
assumptions beyond (2.1) and (2.2) should be made. Suppose also that the
interaction between the nearest neighbors is uniformly nonzero, i.e.,

inf
|ℓ−ℓ′|=1

Jℓℓ′
def
= J > 0. (3.76)

Next we suppose that all Vℓ



3 PHASE TRANSITIONS 37



3 PHASE TRANSITIONS 38

imposed on the anharmonic potential is (2.2). Obviously, we have to include
the external field, that is the anharmonic potential is now V (u) − hu. Since
we are not going to impose any conditions on the odd part of V , we cannot
apply the GKS inequalities, see [6, 54], the comparison methods are based on,
see (3.84). In view of this fact we suppose that the interaction is of nearest
neighbor type. Thus, for a box Λ, the periodic local Hamiltonian of the model
has the form (3.81).

In accordance with Definition 3.7, our goal is to show that the model pa-
rameters (except for h) and the inverse temperature β can be chosen in such a
way that the set R, defined by (2.100), is non-void. The main idea on how to
do this can be explained as follows. First we find a condition, independent of
h, under which Dµ

ℓℓ′ does not decay to zero for a certain periodic µ. Next we
prove the following

Lemma 3.23 There exist h±, h− < h+, which may depend on the model pa-
rameters and β, such that the magnetization (2.101) has the property:

M(h) < 0, for h ∈ Rc ∩ (−∞, h−); M(h) > 0, for h ∈ Rc ∩ (h+ + ∞).

Thereby, if R were void, one would find h∗ ∈ (h−, h+) such that M(h∗) = 0.
At such h∗, the aforementioned property of Dµ would yield the non-ergodicity
of µ and hence the first order phase transition, see Theorem 3.22.

In view of Corollary 3.4, Dµ
ℓℓ′ does not decay to zero if (3.16) holds with big

enough ϑ. By Proposition 3.18, the lower bound (3.16) can be obtained from
the estimate (3.61). The only problem with the latter estimate is that it holds
for h = 0.

Lemma 3.24 For every β > 0 and θ, there exist positive m∗ and J∗, which
may depend on β > 0 and θ but are independent of h, such that, for any box Λ
and any h ∈ R,

〈
[ωℓ(0)]

2 〉
νper

Λ

≥ θ, if J > J∗ and m > m∗. (3.85)

Proof: For h ∈ R, we set

λh(dω) =
1

Nh
β

exp

(
h

∫ β

0

ω(τ)dτ

)
λ(dω), (3.86)

Nh
β =

∫

Cβ

exp

(
h

∫ β

0

ω(τ)dτ

)
λ(dω),

where λ is as in (2.102). Then for ±h > 0, we get the estimate (3.64) in the
following form

βJd
〈

[ωℓ(0)]
2 〉

νper
Λ

≥ βJdε2 + log λh
[
B±(ε, c)

]
, (3.87)

where B±(ε, c) is as in (2.108), (2.109). Let us show now that, for ±h ≥ 0,

λh
[
B±(ε, c)

]
≥ λ

[
B±(ε, c)

]
. (3.88)

For h ≥ 0, let I(ω) be the indicator function of the set C+
β (n; c), see (2.106).

For δ > 0 and t ∈ R, we set

ιδ(t) =






0 t ≤ c,
(t− c)/δ t ∈ (c, c+ δ],
1 c ≥ c+ δ.
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Thereby,

Iδ(ω)
def
=

n∏

k=0

ιδ [ω(kβ/n)] .

By Lebesgue’s dominated convergence theorem

Nh
βλ

h
[
C+

β (n; c)
]

=

∫

Cβ

I(ω) exp

(
h

∫ β

0

ω(τ)dτ

)
λ(dω) (3.89)

= lim
δ↓0

∫

Cβ

Iδ(ω) exp

(
h

∫ β

0

ω(τ)dτ

)
λ(dω).

As the function Iδ is continuous and increasing, by the FKG inequality, see
Theorem 6.1 in [6], it follows that

∫

Cβ

Iδ(x) exp

(
h

∫ β

0

ω(τ)dτ

)
λ(dω) ≥ Nh

β

∫

Cβ

Iδ(ω)λ(dω).

Passing here to the limit we obtain from (3.89)

λh
[
C+

β (n; c)
]

≥ λ
[
C+

β (n; c)
]
,

which obviously yields (3.88). For h ≤ 0, one just changes the signs of h and ω.
Thereby, we can rewrite (3.87) as follows, c.f., (3.64),

〈
[ωℓ(0)]

2 〉
νper

Λ

≥ ε2 + [log γ(
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Proof: Letm∗ be as in (2.110) and J∗, θ be as in Lemma 3.24. Fix any β > 0 and
m > m∗. Then, for J > J∗
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in [24]. For translation invariant models with bounded interaction, non-
differentiability of the pressure corresponds to the non-uniqueness of the
Gibbs states, see [36, 69]. We failed to prove this for our model.

In the language of limit theorems of probability theory, the appearance of
the long range order corresponds to the fact that a new law of large num-
bers comes to power, see Theorem 3.9 and the discussion preceding Defi-
nition 3.11. The critical point of the model corresponds to the case where
the law of large numbers still holds in its original form (in the translation
invariant case this means absence of the first order phase transitions), but
the central limit theorem holds true with an abnormal normal
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The latter condition can be satisfied by picking big enough β. Therefore, the
classical anharmonic crystals always have phase transitions – no matter how
small is the interaction intensity. For finite m, the left-hand side of (4.4) is
bounded by 8mϑ2

∗J , and the bound is achieved in the limit β → +∞. If for
given values of the interaction parameter J , the mass m, and the parameter
ϑ∗ which characterizes the anharmonic potential, this bound does not exceed
J (d), the condition (4.4) will never be satisfied. Although this condition is only
sufficient, one might expect that the phase transition can be eliminated at all
β if the compound parameter 8mϑ2

∗J is small enough. Such an effect, if really
exists, could be called quantum stabilization since it is principally impossible in
the classical analog of the model.

4.2 Quantum rigidity

In the harmonic case, big values of the rigidity a ensure the stability. In this
subsection, we introduce and stugy quantum rigidity, which plays a similar role
in the anharmonic case

Above the sufficient condition (4.4) for a phase transition to occur was ob-
tained for a simplified version of the model (1.1), (1.2) – nearest neighbor inter-
actions, polynomial anharmonic potentials of special kind (3.78), ect. Then the
results were extended to more general models via correlation inequalities. Like-
wise here, we start with a simple scalar version of the one-particle Hamiltonian
(1.1), which we take in the form

Hm =
1

2m
p2 +

a

2
q2 + V (q





4 QUANTUM STABILIZATION 45

Proof: Given α > 0, let Uα : L2(R) → L2(R) be the following unitary operator

(Uαψ) (x) =
√
αψ(αx). (4.18)
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where

H(0)
m0

=
1

2m0
p2 + b(r)q2r,

and

R(ρ) = ρ
(
ρr−2(b(1) + a/2)q2 + ρr−3b(2)q4 + · · · + b(r−1)q2(r−1)

)
.

Repeating the above perturbation arguments one concludes that the self-adjoint
family { ˆ
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where Zm
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4.4 Decay of correlations in the scalar case

In this subsection, we consider the model (1.1), (1.2) which is (a) translation
invariant; (b) scalar; (c) the anharmonic potential is V (q) = v(q2) with v being
convex on R+.

Let Λ be the box (2.63) and Λ∗ be its conjugate (3.2). For this Λ, let

KΛ
ℓℓ′(τ, τ ′)

def
=

〈
ωℓ(τ)ωℓ′ (τ ′)

〉
νper

Λ

(4.34)

be the periodic correlation function. Recall that the periodic interaction poten-
tial JΛ

ℓℓ′ was defined by (2.78). For the one-particle Hamiltonian (1.2), let û(k)
be as in (4.28).

Theorem 4.4 Let the model be as just describes. If

û(0)Ĵ0 < 1, (4.35)

then

KΛ
ℓℓ′(τ, τ ′) ≤ 1

β|Λ|
∑

p∈Λ∗

∑

k∈K

exp [ı(p, ℓ− ℓ′) + ık(τ − τ ′)]

[û(k)]−1 − ĴΛ
0 + ΥΛ(p)

, (4.36)

where

ĴΛ
0 =

∑

ℓ′∈Λ

JΛ
ℓℓ′ , ΥΛ(p) = ĴΛ

0 −
∑

ℓ′∈Λ

JΛ
ℓℓ′ exp[ı(p, ℓ− ℓ′)]. (4.37)

Proof: Along with the periodic local Gibbs measure (2.82) we introduce

νper
Λ (dωΛ|t) (4.38)

=
1

Nper
Λ (t)

exp




t

2

∑

ℓ,ℓ′∈Λ

JΛ
ℓℓ′(ωℓ, ωℓ′)L2

β
−
∫ β

0

∑

ℓ∈Λ

V (ωℓ(τ))dτ



 χΛ(dωΛ),

where t ∈ [0, 1] and Nper
Λ (t) is the corresponding normalization factor. Thereby,

we set
Xℓℓ′(τ, τ ′|t) = 〈ωℓ(τ)ωℓ′ (τ ′)〉νper

Λ (·|t), ℓ, ℓ′ ∈ Λ. (4.39)

By direct calculation

∂

∂t
Xℓℓ′(τ, τ ′|t) (4.40)

=
1

2

∑

ℓ1,ℓ2∈Λ

JΛ
ℓ1ℓ2

∫ β

0

Rℓℓ′ℓ1ℓ2(τ, τ ′, τ ′′, τ ′′|t)dτ ′′

+
∑

ℓ1,ℓ2∈Λ

JΛ
ℓ1ℓ2

∫ β

0

Xℓℓ1(τ, τ ′′|t)Xℓ2ℓ′(τ ′′, τ ′|t)dτ ′′,

where

Rℓ1ℓ2ℓ3ℓ4(τ1, τ2, τ3, τ4|t) = 〈ωℓ1(τ1)ωℓ2(τ2)ωℓ3 (τ3)ωℓ4 (τ4)〉νper
Λ (·|t)

− 〈ωℓ1(τ1)ωℓ2(τ2)〉νper
Λ (·|t) · 〈ωℓ3(τ3)ωℓ4 (τ4)〉νper

Λ (·|t)

− 〈ωℓ1(τ1)ωℓ3(τ3)〉νper
Λ (·|t) · 〈ωℓ2(τ2)ωℓ4 (τ4)〉νper

Λ (·|t)

− 〈ωℓ1(τ1)ωℓ4(τ4)〉νper
Λ (·|t) · 〈ωℓ2(τ2)ωℓ3 (τ3)〉νper

Λ (·|t).
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for all p ∈ Λ∗ and k ∈ K. Thus, the problem (4.48) can be solved explicitly,
which via the transformation (4.47) yields (4.46).

Given θ ∈ (0, 1), we set

Y
(θ)

ℓℓ′ (τ, τ ′|t) = Yℓℓ′ (τ, τ ′|t+ θ), t ∈ [0, 1 − θ]. (4.50)

Obviously, the latter function obeys the equation (4.44) on t ∈ [0, 1 − θ] with
the initial condition

Y
(θ)

ℓℓ′ (τ, τ ′|0) = Yℓℓ′ (τ, τ ′|θ) > Yℓℓ′ (τ, τ ′|0) = Xℓℓ′(τ, τ ′|0). (4.51)

The latter inequality is due to the positivity of both sides of (4.44). Therefore,

Y
(θ)

ℓℓ′ (τ, τ ′|t) > 0, (4.52)

for all ℓ, ℓ′ ∈ Λ, τ, τ ′ ∈ [0, β], and t ∈ [0, 1 − θ].
Let us show now that under the condition (4.35), for all θ ∈ (0, 1) and

ε ∈ (0, ε0),

Xℓℓ′(τ, τ ′|t) < Y (θ)
ℓℓ′ (τ, τ ′|t), (4.53)

also for all ℓ, ℓ′ ∈ Λ, τ, τ ′ ∈ [0, β], and t ∈ [0, 1 − θ]. To this end we introduce

Z±
ℓℓ′(τ, τ

′|t) def
= Y

(θ)
ℓℓ′ (τ, τ ′|t) ±Xℓℓ′(τ, τ ′|t), t ∈ [0, 1 − θ]. (4.54)

Then one has from (4.40), (4.44)

∂

∂t
Z−

ℓℓ′(τ, τ
′|t) (4.55)

=
1

2

∑

ℓ1,ℓ2∈Λ

JΛ
ℓ1ℓ2

∫ β

0

{
Z+

ℓℓ1
(τ, τ ′′|t)Z−

ℓ′ℓ2
(τ ′, τ ′′|t)

+Z−
ℓℓ1

(τ, τ ′′|t)Z+
ℓ′ℓ2

(τ ′, τ ′′|t)
}

dτ ′′

+
ε

|Λ|
∑

ℓ1,ℓ2∈Λ

∫ β

0

Y
(θ)

ℓℓ1
(τ, τ ′′|t)Y (θ)

ℓ′ℓ2
(τ ′, τ ′′|t)dτ ′′ − Sℓℓ′(τ, τ ′|t),

where Sℓℓ′(τ, τ ′|t) stands for the first term on the right-hand side of (4.40). By
(4.54) and (4.51)

Z−
ℓℓ′(τ, τ

′|0) = Yℓℓ′(τ, τ ′|θ) −Xℓℓ′(τ, τ ′|0) > 0, (4.56)

which holds for all ℓ, ℓ′ ∈ Λ, τ, τ ′ ∈ [0, β]. For every ℓ, ℓ′ ∈ Λ, both Yℓℓ′ (τ, τ ′|t),
Xℓℓ′(τ, τ ′|t) and, hence, Z±

ℓℓ′(τ, τ ′|t) are continuous functions of their arguments.
Set

ζ(t) = inf
{
Z−

ℓℓ′(τ, τ
′|t) | ℓ, ℓ′ ∈ Λ, τ, τ ′ ∈ [0, β]

}
. (4.57)

By (4.56), it follows that ζ(0) > 0. Suppose now that ζ(t0) = 0 at some
t0 ∈ [0, 1 − θ] and ζ(t) > 0 for all t ∈ [0, t0). Then by the continuity of Z−

ℓℓ′ ,
there exist ℓ, ℓ′ ∈ Λ and τ, τ ′ ∈ [0, β] such that

Z−
ℓℓ′(τ, τ

′|t0) = 0 and Z−
ℓℓ′(τ, τ

′|t) > 0 for all t < t0.

For these ℓ, ℓ′ ∈ Λ and τ, τ ′ ∈ [0, β], the derivative (∂/∂t)Z−
ℓℓ′(τ, τ ′|t) at t = t0

is positive since on the right-hand side of (4.55) the third term is positive and
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the remaining terms are non-negative. But a differentiable function, which is
positive at t ∈ [0, t0) and zero at t = t0, cannot increase at t = t0. Thus,
ζ(t) > 0 for all t ∈ [0, 1 − θ], which yields (4.53). By the latter estimate, we
have

Xℓℓ′(τ, τ ′|1 − θ) < Yℓℓ′(τ, τ ′|1)

=
1

β|Λ|
∑

p∈Λ∗

∑

k∈K

exp [ı(p, ℓ− ℓ′) + ık(τ − τ ′)]

[û(k)]−1 − t[ĴΛ
0 + εδp,0] + tΥΛ(p)

.

All the function above depend on θ and ε continuously. Hence, passing here to
the limit θ = ε ↓ 0 and taking into account (4.43) we obtain (4.36). �

By means of Proposition 2.21, the result just proven can be extended to all
periodic elements of Gt. For µ ∈ Gt, we set

Kµ
ℓℓ′(τ, τ

′) =
〈
ωℓ(τ)ωℓ′ (τ ′)

〉
µ
. (4.58)

Theorem 4.5
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4.5 Decay of correlations in the vector case

In the vector case, the eigenvalues of the Hamiltonian (4.5) are no longer simple;
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In the scalar case, the most general result is the following statement, see
Theorem 3.13 in [54].

Theorem 4.10
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If Λ is a box, the parameter (3.28) can be written

P
(α)
Λ =

1

β2|Λ|α
ν∑

j=1

∫ β

0

∫ β

0

Γβ,Λ

Q
(j)
Λ ,Q

(j)
Λ

(τ, τ ′)dτdτ ′. (4.67)

Thus, if the fluctuations are normal, phase transitions of the second order (and
all the more of the first order) do not occur.

Like in the proof of Theorem 4.9, the model is compared with the scalar
ferromagnetic model with the same mass and the anharmonic potential v(q2).
Then the gap parameter ∆m is the one calculated for the latter model.

Theorem 4.12
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m∆2
m was called quantum rigidity and the effect was called quantum sta-

bilization. If the tunneling between the wells gets more intensive (closer
minima), or if the mass diminishes, m∆2

m gets bigger and the particle ‘for-
gets’ about the details of the potential energy in the vicinity of the origin
(including instability) and oscillates as if its equilibrium at zero is stable,
like in the harmonic case.

• Subsection 4.3: Theorems 4.2 and 4.3 are new. Preliminary results of this
kind were obtained in [3, 50].

• Subsection 4.4: Theorems 4.4, 4.5, 4.7 were proven in [45].

• Subsection 4.5: Various scalar domination estimates were obtained in [47,
48, 49].

• Subsection 4.6: Theorem 4.10 was proven in [54]. The proof of Theorem
4.12 was done in [49]. The suppression of abnormal fluctuations in the
hierarchical version of the model (1.1), (1.2) was proven in [2].
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