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ABSTRACT: Self-consistent-field theory is used to predict the center-of-mass distribution of spherical nanoparticles
embedded in the lamellar phase of a diblock copolymer melt. The calculation is performed in the dilute limit,
where the particle-particle interactions have a negligible effect on the distribution. We investigate how the
distribution is affected by particle radiusR, surface affinityΛN, diblock segregationłN, diblock compositionf,
and invariant polymerization indexNh



separating the statistical mechanics into two steps. First, a partial
partition function

is calculated for a fixed distribution,{Râ}, of particles. Because
the particles are fixed, this step can now be performed using
SCFT without the polymers violating their excluded volume.
Furthermore, the SCFT should provide accurate predictions so
long as the block copolymer melt is well segregated (i.e., the
A- and B-rich domains are relatively pure).19 Next the full
partition function

is evaluated by integrating over the particle coordinates. Sides
et al.11 performed this last step of the statistical mechanics using
Brownian dynamics (BD). However, this approach is also very
computational as each time step in the simulation requires a
full SCFT calculation. To make the method tractable, Side et
al. had to limit themselves to two dimensions and still the SCFT
had to be solved on a relatively course mesh of 72× 80,
undoubtedly resulting in considerable numerical inaccuracy.
Nevertheless, the general behavior of their simulation was in
nice qualitative agreement with experiment.

Here we examine the particle distribution using a similar
hybrid approach, where the integration over the polymer
coordinates in eq 2 is performed using SCFT, but where the
integration over the particle coordinates in eq 3 is evaluated in
the ideal-gaslimit. The latter limit assumes that particles are
sufficiently dilute that the particle-particle interactions can be
ignored, in which case the equilibrium particle distribution can
be evaluated by considering an isolated particle in the effective
periodic potential created by its interactions with the block
copolymer matrix. Our calculation is done for the most common
experimental situation of spherical nanoparticles in a block
copolymer lamellar phase, as depicted in Figure 1. This simple
geometry has an axial symmetry about thezaxis, which greatly
reduces the computational cost. Although we cannot consider
the same concentration of particles as Sides et al.,11 we are now
able to treat true three-dimensional spherical particles, and we
can do so with high numerical precision.

II. Theory

This section outlines how the present theoretical technique
differs from the SCFT/DFT approach of Thompson et al.14 As
before, the polymers are modeled as Gaussian chains with a

natural end-to-end length ofaN1/2 and a physical volume of
N/F0, whereN is the degree of polymerization,a is the statistical
segment length, andF0 is the melt segment density. The
dimensionless concentrations of A and B segments are still
specified by

respectively, wheref denotes the fraction of the diblock formed
by A segments. Again, the particles have a center-of-mass
distribution of

but now their dimensionless concentration is calculated as

where

defines the particle profile. Reference 14 assumed a step profile
whereP(r) switches from 1 to 0 at the particle radiusR, whereas
we now assume a gradual interface with a characteristic width
of wp



conditions, the effective Hamiltonian of the particles is given
by

whereQ is the partition function of a single diblock molecule
subject to the fields,wA(r ) andwB(r ). The statistical mechanics
of the particles is then evaluated according to eq 2, where the
different particle configurations,{Râ}, are weighted byZ[{Râ}]
≡ exp(-F[{Râ}]/kBT).



is near the middle of the B domain (e.g.,Z1 ≈ -0.25D), its
affinity for A segments pulls the two neighboring A domains
into contact. As the particle is moved toward, for example, the
upperz) 0 interface, it ultimately breaks contact with the lower
z) -0.5D interface atZ1 ) -0.1256D, causing a discontinuous
change in the morphology as illustrated by Figures 4a,b. When
this happens, there is an abrupt increase in the force pulling
the particle toward the center of the A domain. The force results
from the deformation of the A domain, which engulfs the



transition will occur as the particle crosses the center of the B
domain (Z1 ) -0.25D) and the contact switches from one
interface to the other.

We now repeat our calculation for a strongly segregated block
copolymer melt ofłN ) 40, where the increased interfacial
tension swells the domain spacing toD ) 1.95aN1/2. Figure 8
shows the variation in free energy asR ) 0.2aN1/2 particles of



and large domains are shown in parts b and c of Figure 10,
respectively. The difference is fairly minimal, but the particles
are somewhat more localized in the smaller domain forf )
0.4. This should be expected given that a smaller A domain
implies less volume over which the particles can move without
contacting a B domain.

IV. Discussion

Our study provides the most quantitatively reliable predictions
to date for the particle distributions in a block copolymer
nanocomposite. Not only does it fully respect the excluded
volume of the particles, the particles are modeled as true three-
dimensional spheres and the numerical calculations are per-
formed with high precision. However, the predictions are
restricted to low particle concentrations because the statistical
mechanics over the particle coordinates,Râ, in eq 3 are treated
in the ideal-gas limit. This restriction will be most serious when
the distribution,FP(r ), is narrow and the particles are essentially
arranged in two-dimensional planes. For the approximation to
remain valid, the total cross-sectional area of the particles,npðR2,
must be much smaller than the total interfacial area, 2V/D, of
the block copolymer. This requires that the particle volume
fraction satisfies

For typical experimental particle sizes (e.g.,R/D ∼ 0.1), we
expect that our predicted distributions,FP(z), will be reasonably
accurate for particle volume fractions of less than 1%.

For these low concentrations, it is unlikely that there would
be any significant deviation of the lamellar period,D, from that
of the neat diblock copolymer melt,8 as we have assumed in
our present calculation. Nevertheless, it could be interesting to
calculate the leading order correction for nonzeroφhP.17 Provided
the particles still remain sufficiently dilute, the partition function
in eq 3 can still be evaluated in the ideal-gas limit as a function
of the domain size. The corrected equilibrium period would then
be obtained by minimizing the resulting free energy,F ) kBT
ln Z.

For more concentrated particles, the shape ofFP(r ) would
begin to depend onφhP.7 To predict the change in the distribution,
one would have to go beyond the ideal-gas approximation and
account for the effective particle-particle interactions by a
cluster expansion or an appropriate density functional theory.
Of course, this would be much more complicated than for
classical gases because of the periodic background potential and
the fact that the effective interaction between two particles
depends on their actual positions,Z1 and Z2, as well as their
lateral separation. Apart from the special case of when the
particles are aligned in thez direction, a numerically accurate
calculation would be highly computational. Reister and Fre-
drickson25 have evaluated these effective interactions, but only
for cylindrical and planar objects oriented parallel to the
lamellae. As a simple approximation, one could ignore the effect
of the block copolymer matrix and just include the direct hard-
core interaction, which for spheres is only a function of their
separation.

The virtue of the hybrid approach introduced by Sides et al.11

and used here is that it prevents the polymers from entering the
excluded volume of the particles,φ̂P(r ). Provided that the width
of the particle profile in eq 7 is narrow (i.e.,wp , aN1/2), the
entropic penalty of restricting the polymer configurations is well
approximated by13

This penalty should be relatively constant, assuming that the
particles remain reasonably dispersed. However, this is not the
case in the SCFT/DFT approach,14-16 where the polymers are
effectively excluded from the average particle positions. In that
case, the entropic penalty is still approximated by eq 13, but
with φ̂P(r ) replaced by its thermodynamic average,φP(r ).
Consequently, the entropic penalty in the SCFT/DFT calcula-
tions increases as the particles become more localized, which
leads to an unphysical mechanism that broadens the particle
distribution.

The violation of the excluded volume also impacts the
particle-polymer interaction,F0∫dr [łAP






