Boundary integral methods in high frequency scattering

A stract

In this article we review recent progress on the design, analysis and implementation of numerical-asymptotic boundary integral methods for the computation of frequencydomain acoustic scattering in a homogeneous unbounded medium by a bounded obstacle. The main aim of the methods is to allow computation of scattering at arbitrarily high frequency with finite computational resources.

n Fo 🔩 cc (cy Fo N 🏷 d 🔒 L/

S
$$x, y, y ds, y, D$$
 $\frac{x, y}{n, y} y ds, y,$
D $\frac{x, y}{n, x} y ds, y, H$ $\frac{2}{n, x} n, y}{n, x, n, y} y ds, y.$
a ic a for can n i na
Av $\int D - i Sv f, v u/n.$

 $\mathbf{v} = \begin{bmatrix} \mathbf{v} & \mathbf{v}$ of fo 🔩

$$\mathbf{v} - \mathbf{v}_N$$
 C $\sum_{\mathbf{N}}^{\mathbf{n}^2} \mathbf{v} - N$,

§

din of ood \mathbf{k} d nd n ni di ni on δ in δ in δ in δ in \mathbf{S}_N of $\mathbf{x}^{\mathbf{c}}$ in \mathbf{y} d nd on \mathbf{k} nd o d no $\mathbf{x}^{\mathbf{S}}_{N}$ k

- for o v_N $v_$
 - n 🔪 o t 🔩 🧠 t C B/ fo on o n t y o n

n i cion $\mathbf{L}_{\mathbf{n}} = \mathbf{C}$ con con o $\mathbf{L}_{\mathbf{n}}$ nd \mathbf{n} \mathbf{n} i \mathbf{n} i

v.<u>s.</u>k k 🔨 <u>k</u>γ.<u>s</u> · a V.<u>s</u>.k .

n \hat{x}_1 , \hat{x}_2 , \hat{x}_3 , \hat{x}_1 , \hat{x}_2 , \hat{x}_3 , \hat{x}_4 , \hat{x}_4 , \hat{x}_2 , \hat{x}_3 , \hat{x}_4 , \hat{x}_4 , \hat{x}_4 , \hat{x}_5 , \hat{x}_1 , \hat{x}_2 , \hat{x}_3 , \hat{x}_4 , \hat{x}_4 , \hat{x}_4 , \hat{x}_5 , \hat{x}_1 , \hat{x}_2 , \hat{x}_3 , \hat{x}_4 , \hat{x}_4 , \hat{x}_4 , \hat{x}_5 , \hat{x}_1 , \hat{x}_2 , \hat{x}_3 , \hat{x}_4 , \hat{x}_4 , \hat{x}_4 , \hat{x}_5 , \hat{x}_1 , \hat{x}_2 , \hat{x}_3 , \hat{x}_4 , \hat{x}_4 , \hat{x}_4 , \hat{x}_5 , \hat{x}_6 , \hat{x}_1 , \hat{x}_2 , \hat{x}_3 , \hat{x}_4 , \hat{x}_4 , \hat{x}_4 , \hat{x}_5 , $\hat{$

For all L, M $\mathbb{N} \in \{$, the function V s, k admits a decomposition of the

form:

$$\mathbf{V}_{\underline{s},\mathbf{k}} \begin{bmatrix} {}^{LM} \mathbf{k}^{-1} \mathbf{3}^{-2} \mathbf{3}^{-1} \mathbf{b} \mathbf{s} & (\mathbf{k}^{1} \mathbf{3}^{2} \mathbf{s}) \end{bmatrix} \mathbf{R}_{LM} \mathbf{s}, \mathbf{k} , \qquad \mathbf{s}$$

for s , , where the remainder term has its nth derivative bounded, for n \mathbb{N} { }, by

$$|\mathbf{D}^{n}\mathbf{R}_{LM},\mathbf{s},\mathbf{k}| = \mathbf{C}_{LMN}, \mathbf{k}^{+n}, \mathbf{s}^{-1}, \mathbf{s}^{-1}$$

where $\mu = -\frac{1}{M} \frac{2}{3} L$, M and $C_{L,M\,n}$ is independent of k. The functions b and Z are C -periodic functions. Z has simple zeros at t_1 and t_2

For all n \mathbb{N} { } there exist constants C_n > independent of k and s , , such that for all k su ciently large,

$$|\mathbf{D}^{n}\mathbf{V},\mathbf{s},\mathbf{k}| = \mathbf{C}_{n} \begin{cases} \mathbf{k}^{-1},\mathbf{k}^{-1},\mathbf{s}^{-1} \\ \mathbf{k}^{-1},\mathbf{k}^{-1},\mathbf{s}^{-1},\mathbf{n} \end{cases} \mathbf{n} \end{cases}$$

where $\underline{s} = \underline{s} - t_1 \underline{t_2} - s$. These estimates are uniform in s , .

y cooin **p** o o i y
$$k^{n}$$
 k^{n}^{9} $cc cy o q q d$ din
b o in i d c ion mion in y oic nsin sin
o $n t_{1}$ in do on n_{2} in q oic $nsin$
 $k^{-1} {}^{3}b_{00}$ $k|Z s|^{3/2}$ $(1 + k^{1})|Z s|^{2/2}$ $(1 + k^{1})|Z s|^{3/2}$ $($

calon a odor jadand ic oo no con rino ind ado ronday no no a nion o calin ycor oyona odi

$$|\mathbf{a}, \mathbf{v}, \mathbf{w}| | |\mathbf{A}, \mathbf{v}, \mathbf{w}|_{L^{2}()} | \mathbf{A} | \mathbf{v}|_{L^{2}()} | \mathbf{W}|_{L^{2}()} | \mathbf{A} | \mathbf{v}|_{L^{2}()} | \mathbf{W}|_{L^{2}()} | \mathbf{w}|_{L^{2}()}$$

A the other for contain Bin den factor for on in w Avin and in a y of A the for contain B for ic dod the y of cond of in a fit de

$$\mathbf{A} \mathbf{v}_{L^{2}(\mathbf{v})} \mathbf{v}_{L^{2}(\mathbf{v})} | \mathbf{A} \mathbf{v}_{t} \mathbf{v}_{L^{2}(\mathbf{v})} | | \mathbf{a} \mathbf{v}_{t} \mathbf{v} | | \mathbf{v}_{L^{2}(\mathbf{v})}^{2}$$

О 🦂

$$A^{-1}$$
 -1.

a to B/ to nd do y condition number of o a o A

$$\frac{\mathbf{B}}{-} \operatorname{cond} \mathbf{A} \quad \mathbf{A} \quad \mathbf{A}^{-1} .$$

i on to dy'n condition n of **A** and i d nd nc on **k** ic i a n o c of i c on Ano at on i fo o in in y i on y f **f a** co of ic i o i no n o ca f c c c o no of a n y o no **a** co of i c

ď

🔒 N 🧠 k

An
$$i \mathbf{v}_{0}$$
 an $i \mathbf{v}_{1}$ c_{0} for \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{R}_{0}^{-1} , $\mathbf{l}_{2}\mathbf{k}$
A \mathbf{v}_{1} on \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{R}_{0}^{-1} , $\mathbf{l}_{2}\mathbf{k}$
for \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{R}_{0}^{-1} , $\mathbf{l}_{2}\mathbf{k}$
for \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{R}_{0}^{-1} , $\mathbf{l}_{2}\mathbf{k}$
for \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{R}_{0}^{-1} , $\mathbf{u}_{2}\mathbf{k}$,
for \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{1}

$$R_0^{-1}$$
 k,

$$\mathbf{L}^{\mathbf{C}} = \mathbf{L}^{\mathbf{C}} \mathbf{$$

			Ĺ			
	onc n 🔒 d or	n oyo ^c in		on o 🔨	on fo	J J T SO Z
$\stackrel{\sim}{\checkmark} \text{ncy } c_{a}$	A V S	o (on y (a) o (on λ)	in and c	o ocaton v	od cod	n . V
	Jod c n		CO T	n í 🔨	ČC	ana a
k in n in i	ic do d c	co		o c on o d	ໍ ນ ົງ]	
a do	fon	. y . m	0.011 0	on o'u	11	
			í			

					7		
	i a in an	d co oc _à fon	🔩 od (d ci d 🔊	0	on 🔒	y of t
n	Č	n o ^c	C à		oy'n	Ny	0 1

no în S _n 📽	à	a no	jon y oʻn	and $\mathbf{F} \mathbf{P}_n$	à	• c´n y	n' n'	'n
-------------------------------	---	------	-----------	-------------------------------	---	---------	-------	----

- Bonn B (a, b, c) (a, b, c) (a, c)B and n d bic c A n d di c c A n di c A n di c c A n di di c c A n di di c c A n di c c A n di c A n di c c A n di di B no $z \le n \in \mathbb{C}$ A Mon o A thic child o ó nc thin a d co $z \ge n = 0$ a fin o $z \ge n$ o $z \ge n$ o $z \ge n$ or $z \ge n$ or = n or $z \ge n$ or $z \ge n$ or $z \ge n$ or = n or $z \ge$ B no and $z \le n \quad C \quad A$ An O in $z \le n \quad C \quad A$ d' $\mathbf{x}_{\mathbf{x}}^{\mathbf{n}}$ ion $z \quad \mathbf{x}_{\mathbf{x}}^{\mathbf{r}}$ o $\mathbf{x}_{\mathbf{x}}^{\mathbf{r}}$ J. Comp. Appl. Math. B no $z \leq n \in \mathbb{C}$ A tic n O o fon of $z \leq n$ IEEE Trans. Magn. B no $A = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} = \frac{1}{2} \sum_{k=1}^{n}$ Bno and nyan y L 🗸 🐾 c ca in in d'antion an acc a d i o d 🎓 Proc. R. Soc. Lond. de de B no 🔪 🗡 co 🔨 n c lon B A and A n aco ic in y on A A if a for and a of a y is SIAM J. Sci. Comput. de ded N on n Cand id N Landon and i L A i nan o onday n doo naco ic ca in o Phil. Trans. R. Soc. Lond.
 - Α.

	♥ and id N and Mon a sant c a in SIAM J. Math. Anal. B B B C C C C C C C C C C C C C
	€ z in d ond cond a state d o state y of y o
	Computer Modeling in Engineering and Sciences
	Co on andIntegral Equation Methods in Scattering Theory in yN Yo
8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
¢₽	nd A do nd o Ma a fon a a nd o Ma a fon a a
	$\circ = 1$ z $i = 1$ and $i = 1$ $i = 1$ A y id n $= 1$ c $i = 1$ y $= 0$ ic ond $i = 1$ ncy $i = 1$ c $i = 1$ Numer. Math.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	An y of the control of four new control of the new co
-	Bod M and M NM d_{B} on $cn < row for ond y$ o $cn < cn < for ond y$

Li de fic cnand af dAna d cinn icn Math. Z.

Mo B yo M de Na a ca in and co c d i c o

8	J. Sov. Math.		00	i c _à ion of	×	t d _a nd	₽O
ģ	o M dd	ncy	c in	y acon vo	a ^C	Duke Math. J.	