On con ergence of dyn cs of hopp ng p rt d es to rth nd de th process n cont n

 ${\bf P}_{\!\!\rm A}$ itri Fin d'shtein, Yuri ondr tie $\overset{Y}{,}$ Eugene Lyt yn
o Z

 $M \ rch \quad, \quad 8$

Abstract We show that some classes of birth-and-death processes in continuum fere and 'e 'o , for si plicity of notations, e''st rite $\boldsymbol{x},\boldsymbol{y}$ instead of $\{\boldsymbol{x}\}$

Let s trie y rec \mathfrak{S} !! so e to site for so that \mathfrak{S} on it so so that \mathfrak{S} is so the configuration of \mathfrak{S} is the source of \mathfrak{S} !! for for former det \mathfrak{S} !! Let $_0$ denote the space of \mathfrak{S} !! for form \mathfrak{R}^d is $_0$ or $_{n=0}^{n}$, here $_n^{n}$ is the space of \mathfrak{S} !! for no configurations in \mathbb{R}^d is $_0$ or $_{n=0}^{n}$, here $_n^{n}$ is the space of \mathfrak{S} !! for no configurations in \mathbb{R}^d C error $_0 \subset$, and ender for \mathcal{B}_0 and \mathcal{B}_n^{n} is the trace \mathfrak{S} is the trace \mathfrak{S} is the trace \mathfrak{S} is the form of \mathfrak{S} or $_0 \mathfrak{S}$ and \mathfrak{S}_n^{n} is the space of \mathfrak{S} . If \mathfrak{S}_n^{n} is the trace \mathfrak{S} for \mathfrak{S} is the trace \mathfrak{S} is the trace \mathfrak{S} is \mathfrak{S} formed as \mathfrak{S} is the trace \mathfrak{S} for \mathfrak{S} is the trace \mathfrak{S} is the

Let $\mu \in \mathfrak{S}$ -prot \mathfrak{S} tility est re on \mathcal{B} hen there e ists \mathfrak{S} niq e est re on $\mathcal{O}, \mathcal{B}_0$ s \mathfrak{S} tisfying

$$\Gamma$$
 KG μ d Γ_0 d

for each each ratio $G \cdot _0 \to$, ∞ he each restriction is called the correlation each restriction of μ F rther, denote by the Lebesg e Poisson each restriction on _0, i.e.,

$$e^{\sum_{n=1}^{n}} \frac{1}{n!} dx_1 \cdots dx_n$$

f k is the correstional functional of a protatility easily require the one of the correst of the second state of the correst of the correst

$$\mathbf{k}^{(\mathbf{n})} \mathbf{x}_1, \ldots, \mathbf{x}_{\mathbf{n}} \cdot \mathbf{k} \{\mathbf{x}_1, \ldots, \mathbf{x}_{\mathbf{n}}\}, \mathbf{n} \in \mathbb{N},$$

and analogo signed define $u^{(n)}$ he $k^{(n)}_{n=1}$ and $u^{(n)}_{n=1}$ are called the correlation and result functions of μ , respectively. Note that, if k is translation in arisint, then $k^{(1)} = u^{(1)}$ is a constant.

For \mathfrak{L} f nction $\mathbf{f} \cdot \mathbb{R}^{\mathsf{d}} \to \mathbb{R}$, e def ne \mathbf{e} f, \mathbf{f} f \mathbf{x} , $\in \mathbf{0}$ d e \mathbf{d} A \mathcal{R} , 2.J-286.68 Tf \mathfrak{E} 9 far (1)3444794) TJ / R3498

ze d

Ass e that L is a Mar o generator on Denote $L \cdot K^{-1}LK$, i.e., L is the operator acting on f notions on $_0$ hich satisfies KLG LKG Denote by L

 $\it Proof$ A straightfor and calc ation see that

For rier transfor s so that they are nitary operators in L $\mathbb{R}^d \to \mathbb{C}, dx$ For any \in , consider a dynamic of independent particles hich starts at and s child that each separate particle of the second start of the secon

$$\boldsymbol{\mu}_0 \ \boldsymbol{\mathsf{d}} \ \ \boldsymbol{\mathsf{P}} \ \ast \qquad \boldsymbol{\mathsf{d}} \ \ \boldsymbol{\mathsf{P}} \boldsymbol{\boldsymbol{\wedge}}.$$

 Jere * st&ys for con o'l tion of
 ess res, see
 for detsi's

 I teht
 J setf
 f
 t

gro p > sc led Ly Set

$$\begin{array}{cccc} g & x & \cdot & e^{f_0 \; x)} & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

hen, y and the construction of the process, the r rst integral in the set of the se

$$\begin{array}{c} g \quad x \ \mu_0 \ d \\ \ominus_x \\ & & \\$$

n the Sto e integrS's, one represents the correstion f nctions through the rsell f nctions, S es S change of SriStles nder the sign of integrS', and Sfter S caref langlysis of the ottained e pression, one takes it is \rightarrow FinStly, one sho is that the ottained is it is indeed eq Sto the second integrS' in

Convergence of equi i riu, ws ki dyn , ics of inter cting prtic es

n this section, e ill consider eq ilitri dyng ics of intersecting porticles howing & Gitts egs re & find right egs re O r res it ille tend that of , here stone specific gree of s ch & dyng ics & considered see & so e stort ith & description of the coss of Gitts egs res e & re going to se

A pSir potentiS' is S Borel eSs rStle f nction $\mathbb{R}^{d} \to \mathbb{R} \cup \{-\infty\}$ s ch that $-\mathbf{x} \quad \mathbf{x} \in \mathbb{R}$ for S'' $\mathbf{x} \in \mathbb{R}^{d} \setminus \{ \}$ For \in Snd $\mathbf{x} \in \mathbb{R}^{d} \setminus \{ \}$ e define S rest is energy of intersection tet een S' pSirticle St \mathbf{x} Snd the configuration S' E $\mathbf{x}, \cdots, \mathbf{y}$ and $\mathbf{x} \in \mathbb{R}^{d} \setminus \{ \}$ for est is set to te ∞ A grand control S' Gitts est recorresponding to the pSir potentiS' Snd Section $\mathbf{x} \in \mathbb{R}^{d} \setminus \{ \}$ for est in the state of the

n p§rtic §r, e then h§ e $\mathbf{x} \ge -\mathbf{B}$, $\mathbf{x} \in \mathbb{R}^d$ Net, e s§y th§t the condition of b §cti ity high te per§t re regi e is f \mathcal{V} led if

$$|e^{-x}| - |z dx < e^{1+B-1}$$
,

here **B** is §s in A cSssicSl reskt of R elle sSysthSt, nder the Sss ption of stSUL S and be Sctilty high te perSt reregie, there e ists Gius ess reµcorresponding to Snd z, Snd this ess rehSs correstion f notionSl hich sStisf es conditions i iii of heore ith s in condition i hich is then cSL de the R elle to nd F rther ore, the corresponding result notions sStisfy uⁿ , ..., $\in L^1 \mathbb{R}^{d n-1}$, $dx_1 \cdots dx_n$ for eSch $n \ge n$ hSt follo s, e ill Sss e thSt the potentiSl is Slo to nded fro Sto e o tside so e nite tSL in \mathbb{R}^d hich is Sl Systr e for Sny reSustic potentiSl, since it sho 'd con erge to zero St in nity

respect to μ , is	ell 💲 integr§ 's d	$\mathrm{er} \ \mathbb{R}^{d}$	ith respe	ect to	Lete	\mathbf{sg}	e	e s s re	As
S res it one gets	rid of S ll s	S tions	×	hen, o	one	S	es 🖇	ching	e of

R elle, D \cdot Cl ster property of the correlation f nctions of classical gases Re Mod Phys **36**, \rightarrow

R elle D· Stätisticä'i Mechánics Rigoro s
 Res $\$ its Benfä ins, Ne Yor /A sterda