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On convergence of dynamics of hopping particles

to a birth-and-death process in continuum
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Abstract

We show that some classes of birth-and-death processes in continuum
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Here and below, for simplicity of notations, we just write x, y instead of {x}
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Let us briefly recall some basic facts of harmonic analysis on the configura-
tion space, see [8, 10] for further detail. Let Γ0 denote the space of all finite
configurations in Rd, i.e., Γ0 =

⋃∞
n=0 Γ(n), where Γ(n) is the space of all n-point

configurations in Rd. Clearly, Γ0 ⊂ Γ, and we define B(Γ0) and B(Γ(n)) as the
trace σ-algebra of Γ on Γ0 and Γ(n), respectively. For a function G : Γ0 → R,
we define a function (KG)(γ) :=

∑
η⋐γ G(η), γ ∈ Γ, provided the summation

makes sense. Here η ⋐ γ means that η is a finite subset of γ.
Let µ be a probability measure on (Γ,B(Γ)). Then there exists a unique

measure ρ on (Γ0,B(Γ0)) satisfying

∫

Γ

(KG)(γ) µ(dγ) =

∫

Γ0

G(η) ρ(dη)

for each measurable function G : Γ0 → [0,∞). The measure ρ is called the
correlation measure of µ. Further, denote by λ the Lebesgue–Poisson measure
on Γ0, i.e.,

λ = δ∅ +

∞∑

n=1

1

n!
dx1 · · · dxn.

Here δ∅ is the Dirac measure with mass at ∅, and dx1 · · · dxn is the Lebesgue
measure on Γ(n), which is naturally defined on this space. Assume that the
correlation measure ρ of µ is absolutely continuous with respect to λ. Then k :=
dρ
dλ is called the correlation functional of µ. For a given correlation functional k,
the corresponding Ursell functional u : Γ0 → R is defined through the formula
k(η) =

∑
π∈P(η) uπ(η),where P(η) denotes the set of all partitions of η, and

given a partition π = {η1, . . . , ηk} of η, uπ(η) := u(η1) · · ·u(ηk). Recall also
that a function G : Γ0 → R is called translation invariant if, for each x ∈ Rd,
G(ηx) = G(η) for all η ∈ Γ0, where ηx denotes the configuration η shifted by
vector x, i.e., ηx := {y + x | y ∈ η}. Clearly, the correlation functional k
is translation invariant if and only if the corresponding Ursell functional u is
translation invariant.

If k is the correlational functional of a probability measure µ on Γ, we denote

k(n)(x1, . . . , xn) := k({x1, . . . , xn}), n ∈ N,

and analogously we define u(n). The (k(n))∞
n=1 and (u(n))∞

n=1 are called the
correlation and Ursell functions of µ, respectively. Note that, if k is translation
invariant, then k(1) = u(1) is a constant.

For a function f : Rd → R, we define eλ(f, η) :=
∏

x∈η f(x), η ∈ Γ0
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Assume that L is a Markov generator on Γ. Denote L̂ := K−1LK, i.e., L̂ is
the operator acting on functions on Γ0 which satisfies KL̂G = LKG. Denote
by L̂
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Proof. A straightforward calculation (see [8]) shows that

(L̂−
ε

∗k)(η) = −
∑

x∈η

∫

Rd

dy aε(x − y)r(x, y, η \ x)

×

∫

Γ0

λ(dξ) k(ξ ∪ η)eλ(eφ−(x−·)−φ+(y−·) − 1, ξ), (3)

(L̂+
ε

∗k)(η) =
∑

y∈η

∫

Rd

dx aε(x − y)r(x, y, η \ y)

×

∫

Γ0

λ(dξ) k(ξ ∪ (η \ y) ∪ x)eλ(eφ−(x−·)−φ+(y−·) − 1, ξ),

(L̂−
0

∗k)(η) = −
∑

x∈η

exp[Eφ−

(x, η \ x)]

×

∫

Γ0

λ(dξ) eλ(eφ−(x−·) − 1, ξ)k(η ∪ ξ),

(L̂+
0

∗k)(η) =
∑

y∈η

exp[−E
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Fourier transforms so that they are unitary operators in L2(Rd → C, dx).) For
any γ ∈ Θ, consider a dynamics of independent particles which starts at γ
and such that each separate particle moves according to the semigroup pt (i.e.,
independent random walks in Rd). Then, this process has cádlág paths on Γ and
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and initial distribution µ0. This dynamics can be constructed as follows, cf.
[14, 19]. For each γ ∈ Θ, denote by Pγ the law of a process on Θ which is at
γ at time zero, and after this, points of γ randomly die, independently of each
other, so that the probability that at time t > 0 a particle x ∈ γ is still alive is
equal to e−t. Next, let π denote the Poisson point process in R

d×(0,∞) with the

intensity measure k
(1)
0 dx dt. The measure π is concentrated on configurations

γ̂ = {(xn, tn)}∞
n=1 in Rd× (0,∞) such that {xn}

∞
n=1 ∈ Θ, 0 < t1 < t2 < · · · , and

tn → ∞ as n → ∞. For any such configuration, we denote by P bγ the law of a
process on Θ such that at time t = 0, the configuration is empty, and then at
each time tn, n ∈ N, a new particle is born at xn, and after time tn this particle
randomly dies, independently of the other particles, so that at time s > tn the
probability that the particle is still alive is e−(s−tn). Finally, the law of the
process with generator (7) and initial distribution µ0 is given by

∫
µ0(dγ)Pγ ∗

∫
π(dγ̂)P bγ .

Here ∗ stays for convolution of measures, see [14] for details.
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group (4) scaled by ε. Set

gε(x) := ef0(x)

∫

Rd

pε
t1(x, dx1)

∫

Rd

pε
t2−t1(x1, dx2)

× · · · ×

∫

Rd

pε
tn−tn−1

(xn−1, dxn)

n∏

i=1

efi(xi), x ∈ R
d.

Then, by (1) and the construction of the process, the first integral in (8) (with
ε > 0) is equal to

∫

Θ

∏

x∈γ

gε(x) µ0(dγ)

= 1 +

∞∑

n=1

1

n!

∫

(Rd)n

n∏

i=1

(gε(xi) − 1)k
(n)
0 (x1, . . . , xn) dx1 · · · dxn.

In the above integrals, one represents the correlation functions through the
Ursell functions, makes a change of variables under the sign of integral, and
after a careful analysis of the obtained expression, one takes its limit as ε → 0.
Finally, one shows that the obtained limit is indeed equal to the second integral
in (8).

4 Convergence of equilibrium Kawasaki dyna-

mics of interacting particles

In this section, we will consider equilibrium dynamics of interacting particles
having a Gibbs measure as an equilibrium measure. Our result will extend that
of [7], where just one special case of such a dynamics was considered (see also
[15]). We start with a description of the class of Gibbs measures we are going
to use.

A pair potential is a Borel-measurable function φ : R
d → R ∪ {+∞} such

that φ(−x) = φ(x) ∈ R for all x ∈ Rd\{0}. For γ ∈ Γ and x ∈ Rd\γ, we define a
relative energy of interaction between a particle at x and the configuration γ as
E(x, γ) :=

∑
y∈γ φ(x−y), provided that the latter sum converges absolutely, and

otherwise it is set to be = ∞
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In particular, we then have φ(x) ≥ −2B, x ∈ Rd. Next, we say that the
condition of low activity–high temperature regime is fulfilled if

∫

Rd

|e−φ(x) − 1|z dx < (2e1+2B)−1, (11)

where B is as in (10). A classical result of Ruelle [17, 18] says that, under the
assumption of stability and low activity–high temperature regime, there exists
a Gibbs measure µ corresponding to φ and z, and this measure has correlation
functional which satisfies conditions i)–iii) of Theorem 1, with s = 0 in condition
i) (which is then called the Ruelle bound). Furthermore, the corresponding
Ursell functions satisfy u(n)(0, ·, . . . , ·) ∈ L1((Rd)n−1, dx1 · · · dxn) for each n ≥ 2.
In what follows, we will assume that the potential φ is also bounded from above
outside some finite ball in Rd (which is always true for any realistic potential,
since it should converge to zero at infinity).
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paths whose generator is (LK, D(LK)). If we consider this process with initial
distribution µ, then it is an equilibrium process, i.e., it has distribution µt = µ
at any moment of time t ≥ 0. Thus, for each t ≥ 0, µt = µ has correlation
function which satisfies conditions i)–iii) of Theorem 1.
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respect to µ, as well as integrals over Rd with respect to Lebesgue measure. As
a result one gets rid of all summations

∑
x∈γ . Then, one makes a change of
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