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constant mortality. We note that (independently on the value of the mortality m > 0)
the considered contact model exhibits very strong clustering that is reflected in the
bound (3.5) on the correlation functions at any moment of time t > 0. Note that this
effect on the level of the computer simulation was discovered already in [2] and now it
has the rigorous mathematical formulation and clarification. A direct consequence of
the competition in the model is the suppression of such clustering. Namely, assuming
the strong enough competition and the big intrinsic mortality m, we prove the sub-
Poissonian bound for the solution to the moment equations provided such bound was
true for the initial state. Moreover, we clarify specific influences of the constant and
the density dependent mortality intensities separately. More precisely, the big enough
intrinsic mortality m gives a uniform in time bound for each correlation function and
the strong competition results ensure the regular spatial distribution of the typical
configuration for any moment of time that is reflected in the sub-Poissonian bound.
Joint influence of the intrinsic mortality and the competition leads to the existence
of the unique invariant measure for our model which is just Dirac measure concen-
trated on the empty configuration. The latter means that the corresponding stochastic
evolution of the population is asymptotically exhausting.
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The measure ρµ := K∗µ is called the correlation measure of µ.
As shown in [13] for µ ∈ M1

fm(Γ) and any G ∈ L1(Γ0, ρµ) the series (2.1) is µ-a.s.
absolutely convergent. Furthermore, KG ∈ L(Γ4G
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where

D+
x F (γ) = F (γ ∪ x) − F (γ),

and κ+ > 0 is some positive constant.

The existence of the process associated with L+ can be shown using the same
technique as in [9], [22]. Let µt be the corresponding evolution of measures in time

on M1
fm(Γ). By k

(n)
t , n ≥ 0 we denote the dynamics of the corresponding n-th order

correlation functions (provided they exist). Note, that each of such functions describes
the density of the system at the moment t.

Then, using (2.3), for any continuous ϕ on Rd with bounded support, we obtain

d

dt

Z

Rd

ϕ(x)k
(1)
t (x)dx =

d

dt

Z

Γ

〈ϕ, γ〉dµt(γ) =

Z

Γ

L+〈ϕ, γ〉dµt(γ)

= κ
+

Z

Γ

〈a+ ∗ ϕ, γ〉dµt(γ) = κ
+

Z

Rd

(a+ ∗ ϕ)(x)k
(1)
t (x)dx

= κ
+

Z

Rd

ϕ(x)(a+ ∗ k
(1)
t )(x)dx,

where ∗ denotes the classical convolution on Rd. Hence, k
(1)
t grows exponentially in

t. In particular, for the translation invariant case one has k
(1)
0 (x) ≡ k

(1)
0 > 0 and as a

result

k
(1)
t = eκ

+tk
(1)
0 . (3.1)

One of the possibilities to prevent the density growth of the system is to include
the death mechanism. The simplest one is described by the independent death rate
(mortality) m > 0. This means that any element of a population has an independent
exponentially distributed with parameter m random life time. The independent death
together with the independent creation of new particles by already existing ones de-
scribe the so-called contact model in the continuum, see e.g. [22]. The pre-generator
of such model is given by the following expression:

(LCMF )(γ) = m
X

x∈γ

D−
x F (γ) + (L+F )(γ)

= m
X

x∈γ

D−
x F (γ) + κ

+
X

y∈γ

Z

Rd

a+(x − y)D+
x F (γ)dx,

where

D−
x F (γ) = F (γ \ x) − F (γ).

The Markov process associated with the generator LCM was constructed in [22].
This construction was generalized in [9] for more general classes of functions a+. Let
us note, that the contact model in the continuum may be used in the epidemiology
to model the infection spreading process. The values of this process represent the
states of the infected population. This is analog of the contact process on a lattice. Of
course, such interpretation is not in the spatial ecology concept. On the other hand,
contact process is a spatial branching process with a given mortality rate.

The dynamics of correlation functions in the contact model was considered in [17].
Namely, taking m = 1 for correctness, we have for any n ≥ 1, t > 0 the correlation
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function of n-th order has the following form

k
(n)
t (x1, . . . , xn) = en(κ

+−1)t

"

n
O

i=1

etLi

a+

#

k
(n)
0 (x1, . . . , xn) (3.2)

+ κ
+

Z t

0

en(κ
+−1)(t−s)

"

n
O

i=1

e(t−s)Li

a+

#

×
n
X

i=1

k(n−1)
s (x1, . . . , x̌i, . . . , xn)

X

j: j 6=i

a+(xi − xj)ds,

where

Li
a+k(n)(x1, . . . , xn)

=κ
+

Z

Rd

a+(xi − y)
h

k(n)(x1, . . . , xi−1, y, xi+1, . . . , xn) − k(n)(x1, . . . , xn)
i

dy

and the symbol x̌i means that the i-th coordinate is omitted. Note that Li
a+ is a

Markov generator and the corresponding semigroup (in L∞ space) preservesr
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We consider t ≥ 1. One can prove by induction that for any {x1, . . . , xn} ⊂ B, n ≥ 2

k
(n)
t (x1, . . . , xn) ≥ βnen(κ

+−1)tn! (3.5)

Indeed, for n = 2 this statement has been proved. Suppose that (3.5) holds for n − 1.
Then, by (3.2), one has

k
(n)
t (x1, . . . , xn) ≥ κ

+

Z t

0

en(κ
+−1)(t−s)nβ(n−1)e(n−1)(κ

+−1)s(n − 1)!(n − 1)αds

≥ βnn!en(κ
+−1)t

Z t

0

e−(κ
+−1)sds ≥ βnen(κ

+−1)tn! .

As it was mentioned before, the later bound shows the clustering in the contact model.
All previous consideration may be extended for the case m 6= 1: we should only replace
1 by m in the previous calculations.

As a conclusion we have: the presence of mortality (m > κ+) in the free growth
model prevents the growth of density, i. e. the correlation functions of all orders decay
in time. But it doesn’t influence on the clustering in the system. One of the possibilities
to prevent such clustering is to consider the so-called density dependent death rate.
Namely, let us consider the following pre-generator:

(LF )(γ) =
X

x∈γ

2
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Proof. It is not difficult to show that L0 is a densely defined and closed operator in
LC .

Let 0 < ω < π
2

be arbitrary and fixed. Clear, that for all ζ ∈ Sect
`

π
2

+ ω
´

˛

˛m|η| + κ
−Ea−

(η) + ζ
˛

˛ > 0, η ∈ Γ0.

Therefore, for any ζ ∈ Sect
`

π
2

+ ω
´

the inverse operator (L0 − ζ11)−1, the action of
which is given by

[(L0 − ζ11)−1G](η) = −
1

m|η| + κ−Ea−(η) + ζ
G(η), (4.6)

is well defined on the whole space LC . Moreover, it is a bounded operator in this space
and

||(L0 − ζ11)−1|| ≤

8

<

:

1
|ζ| , if Re ζ ≥ 0,

M
|ζ| , if Re ζ < 0,

(4.7)

where the constant M does not depend on ζ.
The case Re ζ ≥ 0 is a direct consequence of (4.6) and inequality

m|η| + κ
−Ea−

(η) + Re ζ ≥ Re ζ ≥ 0.

We prove now the bound (4.7) in the case Re ζ < 0. Using (4.6), we have

||(L0 − ζ11)−1G||C =

‚

‚

‚

‚

‚

1
˛

˛m| · | + κ−Ea−(·) + ζ
˛

˛

G(·)

‚

‚

‚

‚

‚

C

=

=
1

|ζ|

‚

‚

‚

‚

‚

|ζ|
˛

˛m| · | + κ−Ea−(·) + ζ
˛

˛

G(·)

‚

‚

‚

‚

‚

C

.

Since ζ ∈ Sect
`

π
2

+ ω
´

,

|Im ζ| ≥ |ζ|
˛

˛

˛sin
“π

2
+ ω

”˛

˛

˛ = |ζ| cos ω.

Hence,
|ζ|

˛

˛m|η| + κ−Ea−(η) + ζ
˛

˛

≤
|ζ|

|Im ζ|
≤

1

cos ω
=: M

and (4.7) is fulfilled.
The rest of the statement of the lemma follows directly from the theorem of Hille—

Yosida (see e.g., [12]).

We define now

(L1G)(η) := κ
−
X

x∈η

X

y∈η\x

a−(x − y)G(η \ y), G ∈ D(L1) := D(L0).

The lemma below implies that the operator L1 is well-defined.

Lemma 4.3. For any δ > 0
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Proof. By modulus property

||L1G||C =

Z

Γ0

|L1G(η)| C|η|λ(dη) (4.9)

can be estimated by

κ
−

Z

Γ0

X

x∈η

X

y∈η\x

a−(x − y)|G(η \ y)|C|η|λ(dη). (4.10)

By Minlos lemma, (4.10) is equal to

κ
−

Z

Γ0

Z

Rd

X

x∈η

a−(x − y)|G(η)|C|η|+1dyλ(dη) =

= κ
−

Z

Γ0

C|η||G(η)|C|η|λ(dη) ≤
κ−

m
C||L0G||C .

Therefore, (4.8) holds with

a =
κ−C

m
.

Clear, that taking

C0 =
δm

κ−

we obtain that a < δ for C < C0.

We set now

(L2G)(η) := (L2, κ+G)(η) = κ
+

Z

Rd

X

y∈η

a+(x − y)G((η \ y) ∪ x)dx,

G ∈ D(L2) := D(L0).
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The operator defined as:

(NG)(η) = |η|G(η), G ∈ D(L0) (4.14)

is called the number operator.

Remark 4.2. We proved, in particular, that for G ∈ D(L0) = D(L1) = D(L2)

||L1G||C ≤ κ
−C||NG||C ,

||L2G||C ≤ κ
+||NG||C .

Finally, we consider the last part of the operator bL:

(L3G)(η) := κ
+

Z

Rd

X

y∈η

a+(x − y)G(η ∪ x)dx, D(L3) := D(L0).

Lemma 4.5. For any δ > 0 and any κ+ > 0, C > 0 such that

κ
+Ea+

(η) < δC
“

κ
−Ea−

(η) + m|η|
”

(4.15)

the following estimate holds

||L3G||C ≤ a||L0G||C , G ∈ D(L3), (4.16)

with a = a(κ+, C) < δ.

Proof. Using the same tricks as in the two previous lemmas we have

||L3G||C =

Z

Γ0

|L3G(η)| C|η|λ(dη)

≤ κ
+

Z

Γ0

Z

Rd

X

y∈η

a+(x − y)|G(η ∪ x)|C|η|dxλ(dη). (4.17)

By Minlos lemma, (4.17) is equal to

κ+

C

Z

Γ0

Ea+

(η)|G(η)|C|η|λ(dη).

The assertion of the lemma is now trivial.

Theorem 4.6. Assume that the functions a−, a+ and the constants κ−, κ+ > 0,
m > 0 and C > 0 satisfy

Cκ
−a− ≥ 2κ

+a+, (4.18)

m > 2
`

κ
−C + κ

+
´

.

Then, the operator bL is a generator of a holomorphic semigroup Ût, t ≥ 0 in LC.

Proof. The statement of the theorem follows directly from Remark 4.2, Lemma 4.5
and the theorem about the perturbation of holomorphic semigroup (see, e.g. [12]).
For the reader’s convenience, below we give its formulation:

For any T ∈ H(ω, θ) and for any ε > 0 there exists positive constants α, δ such
that if the operator A satisfies

||Au|| ≤ a||T u|| + b||u||, u ∈ D(T ) ⊂ D(A),
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with a < δ, b < δ, then T
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Let us denote for η 6= ∅

(Sk) (η) = −
κ−

m |η| + κ−Ea− (η)

X

x∈η

Z

Rd

k (y ∪ η) a− (x − y) dy +

+
κ+

m |η| + κ−Ea− (η)

X

x∈η

X

y∈η\x

a+(x − y)k(η \ x) +

+
κ+

m |η| + κ−Ea− (η)

Z

Rd

X

y∈η

a+(x − y)k((η \ y) ∪ x)dx

and
(Sk) (∅) = 0.

Let

‖k‖
C

= ess sup
η∈Γ0

|k (η)|

C|η|
,

then

‖Sk‖
C

≤ ‖k‖
C

ess sup
η∈Γ0\{∅}

κ−C

m |η| + κ−Ea− (η)

X

x∈η

Z

Rd

a− (x − y) dy

+
‖k‖C

C
ess sup

η∈Γ0\{∅}

κ+

m |η| + κ−Ea− (η)

X

x∈η

X

y∈η\x

a+(x − y)

+‖k‖
C

ess sup
η∈Γ0\{∅}

κ+

m |η| + κ−Ea− (η)

Z

Rd

X

y∈η

a+(x − y)dx

≤ ‖k‖
C

Cκ−

m
+ ‖k‖

C

κ+
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Then

(bLG)(η) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

κ+
R

Rd

P

y∈η

a+(x − y)G(n)(η ∪ x)dx, |η| = n − 1

−κ− P

x∈η

P

y∈η\x

a−(x − y)G(n)(η \ y), |η| = n + 1
“

L̂diagG(n)
”

(η) , |η| = n

0, otherwise

.

Note that sgn (G (η)) ≡ 0 if |η| 6= n.

Therefore, for arbitrary n ≥ 1

0 ≥ In :=

Z

Γ0

sgn (G (η)) ·
“

`

L̂ − b11
´
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Since Ea−

(η) = 0 for |η| ≤ 1 we get

0 ≥
∞
X

n=1

In = −m

∞
X

n=1

n
tnCn

n!
|Λ|n − κ

−
∞
X

n=1

tnCn

n!

Z

Λn

Ea−`

x(n)
´

dx(n)

+ κ
+

∞
X

n=1

tnCn

n!
n |Λ|n−1

Z

Λ

Z

Λ

a+(x − y)dxdy − b

∞
X

n=1

tnCn

n!
|Λ|n

= −mtC |Λ| eCt|Λ| − κ
−

Z

ΓΛ

Ea−

(η) dλCt (η) + κ
+CteCt|Λ|

Z

Λ

Z

Λ

a+(x − y)dxdy

− b
“

eCt|Λ| − 1
”

= −mtC |Λ| eCt|Λ| − κ
−C2t2

Z

ΓΛ

Z

Λ

Z

Λ

a− (x − y) dxdydλCt (η)

+ κ
+CteCt|Λ|

Z

Λ

Z

Λ

a+(x − y)dxdy
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