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Abstract

We consider scattering of a time-harmonic acoustic incident plane wave by a sound



u(x) = 0, x ∈ Γ, (2)

together with the Sommerfeld radiation condition

lim
r→∞

r1/2

(
∂us

∂r
− ikus

)
= 0, (3)

on the scattered field us := u−ui, where r := |x| and the limit holds uniformly
in all directions x/|x|. Existence and uniqueness of a solution u ∈ C2(D) ∩
H1

loc(D) to (1)–(3) is well known - see [4, §2] for a full discussion. Using Green’s
theorem we have the representation [5, theorem 3.12]

u(x) = ui(x) −
∫
Γ

Φ(x, y)
∂u

∂n
(y) ds(y), x ∈ D.

Here Φ(x, y) := (i/4)H
(1)
0 (k|x − y|) is the fundamental solution of the two-

dimensional Helmholtz equation and ∂/∂n represents the derivative with re-
spect to the unit outward normal vector n.

Knowledge of the complementary boundary data ∂u/∂n ∈ L2(Γ) thus gives
an expression for the total field at any point. Following the usual coupling
procedure, we obtain the well known second kind boundary integral equation

(I +-319(equa)1(tion)]T.955 Tf 5.244 2n



(the points on the boundary where n.d = 0),

1

k

∂u

∂n
→ Ψ :=


2
k

∂ui

∂n
in the illuminated region, for which n.d < 0,

0 in the shadow region, for which n.d > 0.

Thus writing

1

k

∂u

∂n
(x) = eikx.dw(x), x ∈ Γ, (5)

in (4) leads to a second kind boundary integral equation for a new unknown
function w, which is more amenable to approximation by piecewise polynomi-
als for large k than ∂u/∂n, since it approaches a constant in the illuminated
and shadow regions (away from corners and shadow boundaries) as k → ∞.

This approach was first attempted in [1], for problems of scattering by smooth
convex obstacles, with numerical results and analysis suggesting that the num-
ber of degrees of freedom required to maintain accuracy need only grow with
order k1/3 as k increases (compared to order k for standard schemes). Com-
bining this approach with a mesh refinement, concentrating the degrees of
freedom near the shadow boundary, it appears that the order k1/3 require-
ment can be removed altogether. A rigorous analysis in [6] demonstrates that
increasing the number of degrees of freedom with order k1/9 is sufficient to
maintain accuracy, and numerical results in [2,6,7] (the latter with the advan-
tage of a sparse linear system) suggest that a prescribed level of accuracy can
be achieved with a number of degrees of freedom that is independent of k.

The schemes of [1,2,6,7] all assume smooth Γ and perform poorly if Γ has
corners, since in this case the oscillatory behaviour of the field diffracted by
the corners is not well represented by the function Ψ. The simplest obstacle
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smooth functions v±. These functions decay sufficiently quickly that the num-
ber of degrees of freedom required to maintain the accuracy of their best L2

approximation from a space of piecewise polynomials supported on a specific
graded mesh, with a higher concentration of mesh points closer to the corners
of the polygon, grows only logarithmically with respect to k as k → ∞. This
appears to be the best rigorous numerical analysis result to date for a problem
of scattering by bounded obstacles.

In this paper, we consider the case where the scatterer has curved sides, meet-
ing at corners. In this case, using the formulation (6) directly would not be
appropriate, as the terms v± would still oscillate. Instead, a slightly different
approach is required, combining the ideas of (5) and (6). We now write the
unknown function ∂u/∂n as

1

k

∂u

∂n
(x(s)) = eikx(s).dw(s) + eiksv+(s) + e−iksv−(s), s ∈ [0, L], (7)

where again x(s) denotes arc-length parametrisation on Γ, and now the func-
tions w and v± must each be determined. Our rationale behind this represen-
tation is that the oscillatory behaviour of the “reflected field” (the scattered
field in the absence of diffraction) will be well represented by eikx(s).d, and
the oscillatory behaviour of the “diffracted field” travelling along each side
of the obstacle away from the corners will be well represented by e±iks. We
know, from results in [1,2,6,7], that in the absence of corners the represen-
tation (7) will work well, with v± = 0 and w slowly oscillating away from
shadow boundaries. Further, from results in [4] we know that if the polygon
has straight sides then the representation (7) again works well, with v± and
w(s) = e−ikx(s).dΨ(x(s)) all non oscillatory, and v± highly peaked near the
corners and rapidly decaying away from the corners.

In the next section we describe our Galerkin boundary element method. The
approximation space we use consists of the products of plane waves eikx(s).d

with piecewise polynomials supported on a uniform mesh on the illuminated
sides (to approximate w in (7)), together with the products of plane waves
e±iks with piecewise polynomials supported on graded meshes on each side of
the polygon, with these meshes graded towards the corners (to approximate v±
in (7)). In §3 we demonstrate via numerical experiments that this approach
only appears to require a logarithmic increase in the number of degrees of
freedom, with respect to k, in order to maintain accuracy as k increases.
Finally in §4 we present some conclusions.

For simplicity we assume that n.d 6= 0, i.e. we assume that the “shadow
boundary” between the illuminated and shadow sides occurs at a corner, with
no grazing incidence. If this were not the case, special care would be needed
in the “transition zone” around the shadow boundary n.d = 0 (see e.g. [2,6]).
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2 The Galerkin boundary element method

We begin by defining some notation, as in Figure 1. We write the boundary

Fig. 1. Scattering by a curvilinear polygon



λ := 2π/k, we begin by defining a graded mesh on a segment [0, A], for A > λ.
This is the same graded mesh as that used in [4] for the case that each Γj is a
straight line. We use a composite mesh, with a polynomial grading on [0, λ],
with the N points accumulating near the origin, and a geometric grading on
[λ, A], with the N̂A,λ,q points becoming more widely spaced away from λ, as

shown in figure 2. For large N , N̂A,λ,q is proportional to N .

Fig. 2. Composite mesh on [0, A]

Definition 1 For A > λ > 0, q > 0, N = 2, 3, . . ., the mesh ΛN,A,λ,q



ΠΓ+
j ,ν := {σ ∈ L2(0, L) : σ|(L̃j−1+ym−1,L̃j−1+ym) is a polynomial of degree ≤ ν,

for m = 1, . . . , N + N̂Lj ,λ,qj
, and σ|(0,L̃j−1)∪(L̃j ,L) = 0},

ΠΓ−j ,ν := {σ ∈ L2(0, L) : σ|(L̃j−ỹm,L̃j−ỹm−1) is a polynomial of degree ≤ ν,

for m = 1, . . . , N + N̂Lj ,λ,qj+1
, and σ|(0,L̃j−1)∪(L̃j ,L) = 0},

where {y0, . . . , yN+N̂Lj ,λ,qj
} and {ỹ0, . . . , ỹN+N̂Lj ,λ,qj+1

} denote the points of the

meshes ΛN,Lj ,λ,qj
and ΛN,Lj ,λ,qj+1

respectively.

Finally we define a uniform mesh on each illuminated side. For j = ns +
1, . . . , n, the mesh Γu

j := {z0, . . . , zNu
j

} consists of the points

zi = L̃j−1 +
i

N u
j

Lj, i = 0, . . . , N u
j .



where ρj is the jth basis function and MN is the dimension of VN,0. For p =

1, . . . , n, we define n±
p to be the number of points of Γ±

p , so n+
p := N +N̂Lp,λ,qp ,

n



Fig. 3. Scattering by a two sided curvilinear polygon

left of the x2-axis. The internal angles at each corner are ϕi = 2 cos−1(a/r),
i = 1, 2, and an arc-length parametrisation of Γ is

x(s) =


(
−a + r cos( s

r
− cos−1 a

r
), r sin( s

r
− cos−1 a

r
)
)

, s ∈ [0, 2r cos−1 a
r
),(

a + r cos( s
r

− 3 cos−1 a
r

+ π), r sin( s
r

− 3 cos−1 a
r

+ π)
)

, s ∈ [2r cos−1 a
r
, 4r cos−1 a

r
).

We choose θ = π/2, r = 3 and a = 1.5, so that each side of the polygon is
of length 2π and the obstacle has boundary length 4π. In our experiments we
take N u

j = N , ν = 0, so that we are approximating by piecewise constants
multiplied by plane wave basis functions on the overlapping meshes, and η =
−k, this choice motivated by a desire to minimise the condition number of the
resulting linear system (see [3] and the references therein for details).

In Figure 4 we plot |φ

In Figure 4 we plot
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>

>



as N increases. For small values of N the effect of multiplying plane wave basis





Fig. 5. Comparison of solutions for various k, each computed with N = 128.

References
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