Periodic solutions for nonlinear dilation equations

Peter Grindrod

Department of Mathematics and Centre for Advanced Computing and Emerging Technologies, University of Reading, Whiteknights PO Box 220, Reading, RG6 6AX UK.

Abstract

We consider a class of functional equations representing nonlinear dilation maps of the real line having an invariant interval bounded above by a fixed point. Necessary and su cient conditions for the existence of periodic solutions demand that the maps satisfy an eigenproblem, with integer eigenvalues, for a certain nonlinear generalisation of Chebyschev's ordinary di erential equation. Hence we obtain generalisations of Chebyschev polynomials, where the associated functional equation has

 $= 1 = \frac{1}{s}$ $\int_0^{1/s}$. So setting $s = 2/(q + 1)$ we see that $\int_1^{1/s} x$ for small x, and hence $\gamma_1(0) = 0$, and is therefore strictly negative (since one is an upper bound).

Conversely if $_1(x)$ is a solution of (1), for which = $_1$

Proof It is straightforward to show by induction that $n(0) = 1$, $n'(0) = 0$, $C_n(0) = -1$, and $n \geq n$ is even for all n. Therefore we show that the sequence converges: the rest follows immediately. Applying the mean value theorem

$$
| k_{k+1}(x) - k(x)| = |F^{(k)}(F(\sigma(\frac{x}{k+1}))) - F^{k}(\sigma(\frac{x}{k}))|
$$

=
$$
|\frac{dF^{(k)}}{dx}(\sigma)|F(\sigma(\frac{x}{k+1})) - \sigma(\frac{x}{k})|,
$$

for some between $_0(x/ k) = 1 - \frac{x^2}{2}$ $\frac{x^2}{2^{-2k}}$ and $F(1-\frac{x^2}{2^{-2(kk)}})$ $\frac{X^2}{2^{-2(k+1)}}$). The first factor behaves like $F'(1)^k = \frac{2k}{3}$ as k , and second factor behaves like F ⁰⁰(1)x ⁴/4 4(k+1) as k → ∞. Hence

$$
k_{k+1}(x) - k(x) / 0
$$

uniformly on [-1,1] and the result follows.

The curve $(y, F(y))$ remains within the box $[-1, 1] \times [-1, 1]$: yet (x) may be periodic or wandering. For example if $F(n) = T_n(y)$ then $(x) = \cos(x)$ is 2 periodic. However next we show that cases such as these are nongeneric.

Suppose the solution is P-periodic, satisfying $(x + P) = (x)$ for all x $[0, P]$, with some minimal period P (is not periodic for any smaller period, P'). Then we have, for all x ,

$$
(P + x) = F((P + x/
$$

(1) and (2). For such a periodic solution, (x) , this requires that

$$
F(y) = (n^{-1}(y))
$$

is well defined considering all branches of -1 . Next we give a su cient condition on F.

Theorem 3 Let (x) be a twice continuously di erentiable periodic function with range $[$, 1] (for some constant \lt 1), satisfying

$$
(0) = 1
$$
, and $'(0) = 0$

together with the equation

$$
^{\prime\prime}(x) = G(\quad (x)) \angle 2, \tag{4}
$$

for some smooth nonnegative function G : [,1] R⁺, where $G(w)$ denotes the derivative of $G(w)$ at w, and satisfying $G(1) = -2$, $G() = G(1) = 0$.

Then for any integer n, if F and also satisfy (1), for $= n$, (and (2)) then F is the solution of the dievential equation

 n^2

 $(4)(W)$

The711.955Tf8.690Td[())]T/F6011.95506-25.293TdJ[(is)-350(w)27(e)-1(II)-35

 $\left(\cdot \right)$

through by $\frac{dF}{dy}(y)$, we obtain

$$
n^2 G(F(y)) = G(y) \left(\frac{dF}{dy}\right)^2.
$$

If we write $F(y) = f(x)$ where $y = (x)$, this last becomes

$$
n^2 G(f) = \left(\frac{df}{dx}\right)^2.
$$

:

References

- [1] Aczel, J., Lectures on Functional Equations and their Applications, Academic Press, New York, 1966; and Dover, New York, 2006.
- [2] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations. Encyclopedia of Mathematics and its Applications, Vol. 32, Cambridge University Press, Cambridge 1990.
- [3] S. Mann, Comparametric equations with practical applications in quatigraphic image processing, IEEE Trasactions on Image Processing, 9, No. 8, pp 1389- 1406, 2000.
- [4] Jaynes, E.T. Probability Theory: The Logic of Science, Cambridge, 2003.
- [5] Feigenbaum, M. J. Quantitative universality for a class of non-linear transformations, J. Stat. Phys. 19, 25-52, 1978.
- [6] Strang, G., Wavelets and Dilation Equations: A Brief Introduction, SIAM Review, Vol. 31, No. 4, pp. 614-627, 1989.
- [7] Abramowitz, M., and Stegun, I.A., eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1965.
- [8] Weisstein, E.W. "Chebyshev Polynomial of the First Kind." From MathWorld– A Wolfram Web Resource. http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
- [9] Li, T. Y., and J. Yorke, Period three implies chaos, American Mathematical Monthly, LXXXII, 985-92, 1975.
- [10] Stefan, P., A theorem of Sharkovsky on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54, 237-248, 1977.