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Abstract

We consider a class of functional equations representing nonlinear dilation maps of
the real line having an invariant interval bounded above by a fixed point. Necessary
and sufficient conditions for the existence of periodic solutions demand that the
maps satisfy an eigenproblem, with integer eigenvalues, for a certain nonlinear gen-
eralisation of Chebyschev’s ordinary differential equation. Hence we obtain gener-
alisations of Chebyschev polynomials, where the associated functional equation has





λ = λ1 = λ
1/s
0 . So setting s = 2/(q + 1) we see that φ′1(x) ∼ x for small x,

and hence φ′′1(0) 6= 0, and is therefore strictly negative (since one is an upper
bound).

Conversely if φ1(x) is a solution of (1), for which λ = λ1



Proof It is straightforward to show by induction that φn(0) = 1, φ′n(0) = 0,
φ′′n(0) = −1, and φn is even for all n. Therefore we show that the sequence
converges: the rest follows immediately. Applying the mean value theorem

|φk+1(x) − φk(x)| = |F (k)(F (φ0(
x

λk+1
))) − F k(φ0(

x

λk
))|

= |dF (k)

dx
(θ)||F (φ0(

x

λk+1
)) − φ0(

x

λk
)|,

for some θ between φ0(x/λk) = 1 − x2

2λ2k and F (1 − x2

2λ2(k+1) ). The first fac-
tor behaves like F ′(1)k = λ2k as k → ∞; and second factor behaves like
F ′′(1)x4/4λ4(k+1) as k → ∞. Hence

|φk+1(x) − φk(x)| → 0

uniformly on [-1,1] and the result follows.

The curve (y, F (y)) remains within the box [−1, 1] × [−1, 1]: yet φ(x) may be
periodic or wandering. For example if F (n) = Tn(y) then φ(x) = cos(x) is 2π
periodic. However next we show that cases such as these are nongeneric.

Suppose the solution φ is P -periodic, satisfying φ(x + P ) = φ(x) for all x ∈
[0, P ], with some minimal period P (φ is not periodic for any smaller period,
P ′). Then we have, for all x,

φ(λP + x) = F (φ(P + x/λ



(1) and (2). For such a periodic solution, φ(x), this requires that

F (y) = φ(nφ−1(y))

is well defined considering all branches of φ−1. Next we give a sufficient con-
dition on F .

Theorem 3 Let φ(x) be a twice continuously differentiable periodic function
with range [β, 1] (for some constant β < 1), satisfying

φ(0) = 1, and φ′(0) = 0

together with the equation

φ′′(x) = Ġ(φ(x))/2, (4)

for some smooth nonnegative function G : [β, 1] → R+, where Ġ(w) denotes
the derivative of G(w) at w, and satisfying Ġ(1) = −2, G(β) = G(1) = 0.

Then for any integer n, if F and φ also satisfy (1), for λ = n, (and (2)) then
F is the solution of the differential equation

n2



through by dF
dy

(y), we obtain

n2G(F (y)) = G(y)

(
dF

dy

)2

.

If we write F (y) = f(x) where y = φ(x), this last becomes

n2G(f) =

(
df

dx

)2

.:
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