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Abstract

We develope a No Response Test for the reconstruction of some polyhedral obstacle
from one or few time-harmonic electromagnetic incident waves in electromagnetics.
The basic idea of the test is to probe some region in space with waves which are
small on some test domain and, thus, do not generate a response when the scatterer
is inside of this test domain.

This is the �rst formulation of the No Response Test for electromagnetics. We
will prove convergence of the method for testing a non-vibrating domain B whether
the far �eld pattern of some scattered time-harmonic �eld is analytically extend-
able into the interior of B. We will describe algorithmical realizations of the No
Response Test. Finally, we will show the feasibility of the method by reconstruction
of polygonal objects in three dimensions.
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1 Introduction

Using electromagnetic waves for probing and investigation of unknown regions
in space is widely employed in the natural sciences, ranging from optics and
microscopy via X-Ray science to radar and electromagnetic tomography. An
introduction into the mathematical theory of inverse problems for acoustic
and electromagnetic waves can be found in (Colton and Kress, 1998). A sur-
vey about several more recent methods is given by (Potthast, 2006) and a
comparative study of some of these methods can be found in (Honda et al.,
2007).

Our goal here is to formulate and analyse the No Response Test �rst suggested
in acoustics by (Luke et al., 2003) for object identi�cation in r



In particular, we will provide a convergence analysis for the reconstruction of
a polygonal perfectly conducting object in three dimensions from the far �eld
pattern of two incident time-harmonic electromagnetic waves.

LetD be a polyhedral domain in R3. We consider the following electromagnetic
scattering problem. The propagation of time-harmonic electromagnetic �elds
in a homogeneous media is governed by the Maxwell equations

curl E � i�H = 0; (1)

curl H + i�E= 0; (2)

in R3 n D where � is the real positive wave number. At the boundary of the
scatterers the total �eld E satis�es the Dirichlet boundary condition

� � E = 0 on @D: (3)

We look for solutions of the form E := Ei +Es, and H = 1
i�

curl E, of (2) and
(3) where the scattered �eld (Es; Hs) is assumed to satisfy the Silver-M�uller
radiation condition

lim
r!1

(Hs � x� rE) = 0; (4)

r = jxj



where (E1(�; d; p); H1(�; d; p)) de�ned on the unit sphere S is called the far
�eld pattern associated to the incident �eld (Ei(�; d; p); H i(�; d; p)).

We will study and solve the shape reconstruction problem for polygonal do-
mains.

Definition 1.1 (Shape reconstruction problem) Given E1(�; d; p) on
S with N directions, N � 1 of incidence di; i = 1; :::; N and polarization
pj; j = 1; :::;M for the scattering problem (2) - (4) reconstruct the obstacle D.

2 The No Response Test in Electromagnetics

2.1 The Idea of the No Response Test

We consider scattering of incident plane waves with direction of incidence d
and with polarization pi for i = 1; 2. We assume that we have

pi?d; i = 1; 2 and p1 and p2 are not co-linear : (7)

For every g 2 L2(S), we set vg(x) :=
R

S e
i���xg(�)ds(�) to be the scalar Herglotz

wave corresponding the density g.

Then we de�ne

I(B) = lim
�!0

n 2X
i=1

��� Z
S

E1(��; d; pi)g(�) ds(�)
��� : jvgjC1(B) � �

o
(8)

for any nonvibrating domain B, i.e. B is in the set

B :=
n
B :

the homogeneous interior Maxwell problem for B does

have at most the trivial solution

o
(9)

The idea of the No Response Test is to test if the unknown obstacle D is
included in some B 2 B by computing I(B). In the next subsection, we show
how this idea can be used to reconstruct the convex hull of D.

2.2 Convergence of the NRT.

Our key goal is to prove the following reconstruction of the convex hull of D.
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theorem 2.1 (No-response characterization) The convex hull of D is
characterized by

CH(D) =
\

B2B;I(B)=0

B: (10)

Further, as a consequence of this results we immediately obtain the following
uniqueness statement.

Corollary 1 The convex hull of a polygonal domain in R3 is uniquely deter-
mined by the scattered �eld for one (N = 1) directions of incidence and M = 2
polarizations.

Definition 2.2 (Admissible vertices) We call a convex vertex of @D ad-
missible if we can continue at least one of the faces of @D to the in�nity without
crossing @D, again.

We call a vertex an exterior convex vertex if it is in the boundary @CH(D)
of the convex hull CH(D) of D.

Remark 2.3 The exterior convex vertices characterize the convex hull of D.

We will need the following identity

E1(�; d; p) =
i�

4�

Z
@D

n
�(y)� Es(y; d; p) + [�(y)�Hs]� �

o
e�i���yds(y)(11)

given by using the Straton-Shu formula in R3 n D for Es(�; d; p), Hs(�; d; p)
and �(�; y) and their asymptotic behavior at in�nity (see (Colton and Kress,
1998), Theorem 6.8) where � is the outward normal of @D. Let g 2 L2(S),
then

Z
S

E1(��; d; p)g(�)ds(�) =
1

4�

Z
@D

n
� �(y)� Es(y; d; p)� curl vg

+
1

i�
[�(y)�Hs]� curl curl vg

o
ds(y) (12)

Let B � R3 be a convex non-vibrating domain for the Maxwell equation, i.e.
let the interior homogeneous boundary value problem with boundary condition
� � E = 0 be uniquely solvable. We consider two cases:

(A) D � B. Suppose that jvgj � �, then from (12), we have , for d = di and
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p = pji ,

j
Z
S

E1(��; d; p)g(�)ds(�)j � C�

with a uniform constant C. This implies that I(B) = 0.
(B) D 6� B. In this case, we can �nd at least one exterior convex point of @D

which is not in B. We denote by z0 one of these points. We consider a
sequence of points zq included in R3 nD tending to z0.

We consider the multipole �elds

 q :=
�

2�(zq; �q)
(hq � rz)

�q�(x; zq) (13)

where hq is a unit vector, �q is a multi-integer and

�(zq; �q) := sup
y2B
fj(hq � rz)

�q�(x; zq)jg:

For every q we take gqn 2 L2(S) such that v[gqn] tends to  q in C1(B [D).

From (12), we get:

lim
n!1

Z
S

E1(��; d; p)gqn(�)ds(�) =
1

4�

Z
@D

n
� �(y)� Es(y; d; p)� curl  q

+
1

i�
[�(y)�Hs]� curl curl  q

o
ds(y)(14)

Using the Stratton-Chu formula and due to the form of  q, we have:

lim
n!1

Z
S

E1(��; d; p)gqn(�)ds(�) =
�

2�(zq; �q)
(hq � rz)

�pEs(zq; d; p)+

Z
@ΩR

�
��(y)� Es(y; d; p)� curl  q +

1

i�
[�(y)�Hs]� curl curl  q

�
ds(y)

where 
R is a ball of radius R



is uniformly bounded in a compact set V , where here the boundedness is under-
stood componentwise. Then Es(z; d; p) is analytically extensible into an open
neighbourhood V� = fx : d(x; V ) < �g of V .

Proof of Lemma 2.4. The basic result can be found in (Honda et al., 2007) or
(Potthast, 2007). The authors use (16) as a bound for the Taylor coe�cients of
the function and construct an analytic extension into the open neighbourhood
of V by multi-dimensional Taylor series. 2

Lemma 2.5 Consider the scattered �elds Es(�; d; pi) for i = 1; 2 in a neig-
bourhood of an exterior c. Then there exists at least one pair (d; pi) such that
Es(z; d; pi) is not analytically extensible into an open neighbourhood of the
point z0.

Proof of Lemma 2.5. By de�nition of the exterior vertex, there exists at least
one face around z0 which can be extended to in�nity without crossing again
@D. On this face we have � � E = 0. Since E is extendable near z0 then it
satis�es, with H, the Maxwell equations around z0. Hence it is real analytic
near z0. This means that � � E = 0 on an in�nite part of the plan having
as a normal



>From (15) and Corollary 2, we have

lim
q!1

lim
n!1

j
Z
S

E1(��; d; p)gqn(�)ds(�)j =1:

For � > 0 �xed, we can take q; n large enough such that

kvgq
n
kC1(B) � kvgq

n
�  qkC1(B) + k qkC1(B) � �:

This implies that I(B) =1. 2

3 The Realization of the No Response Test

The basic goal of this chapter is to develop the numerical realization of the
No Response Test. We will �rst describe general preparation steps which are
uniform for all subsequent realizations of the No Response Test. Then, we will
describe an e�cient approach to realize the No Response Test numerically.

We consider an electromangetic Herglotz wave function

V [a](x) :=
i

�
curl curl

Z
S

ei�x��a(�) ds(�); x 2 R3 (18)

with density a 2 T (S), where T (S) denotes the set of all vector �elds a 2 L2(S)
with �(x̂) � a(x̂) = 0 for all x̂ 2 S



With curl x(’(x)a) = grad x’� a when a does not depend on x we obtain

(Ha)(x) = i�
Z
S

ei�x��(� � a(�))� � ds(�); x 2 @B; (22)

and for tangential �eld a(�) 2 T (S) this reduces to

(Ha)(x) = i�
Z
S

ei�x��a(�) ds(�); x 2 @B; (23)

First, we note important properties of equation (21).

Lemma 3.1 The equation (21) does not have a solution a 2 L2(S).

Proof. Assume that there is a solution a 2 L2(S) of equation (21). Then
both �elds V [a] and 	(�; z) solve the Maxwell equations in B with identical
boundary values. By the well-posedness of the interior Dirichlet problem in
B the two �elds will coincide in B



and Kress, 1998) the function

W [ ](x) := curl curl
Z
@B

�(x; y) (y) ds(y); x 2 R3 (25)

has far�eld 1=4� � H� = 0. According to Rellichs lemma Theorem 6.9 of
(Colton and Kress, 1998) the �eld W [a] vanishes in R3 n



scalar equation

Hg = �(�; z) on @B� (30)

with some parameter � > 0, B� := fx 2 R3 : d(x;B) � �g and

(Hg)(x) :=
Z
S

ei�x��g(�) ds(�); x 2 Rm: (31)

Then, the a := p � g(x) is a solution to (21). >From a algorithmical point of
view to solve a scalar equation is clearly much more e�cient. With the same
arguments as above we can employ Tikhonov regularization for its solution,
i.e. we calculate

gz;� := (�I +H�H)�1H��(�; z) on @B (32)

for � > 0. Also, it has been shown in (Ben Hassen et al, 2006) that by
inserting the approximation of �(�; z) into the Stratton-Chu formula we obtain
an approximationZ

S

E1(x̂)gz;�(x̂) ds(x̂)! Es(z); �! 0 (33)

in the sense that given � > 0 there is gz 2 L2(S) such that���Es(z)�
Z
S

E1(x̂)gz(x̂) ds(x̂)
��� � � (34)

which holds under the condition that the �eld Es can be analytically extended
into R3 nB.

We now describe a direct realization of the No Response Test via the functional

I(B; d; p; �) := sup
n��� Z

S

E1(� Tf 7.55 -4.338 F230(No)-230((No)-2305l8 re)-338(4(No)-2305l8 re)-338(4(No)3x050348-338(4(No)l8.227/F18 11.9552 Tf 4.552 0 Td [(g)]TJ/F19 7.9701 Tf 5.6034 0 Td [(()]TJ/F18 11.9552 Tf 4.553 0 Td [(x)]TJ/F1 Tf 8.634 4.338 Td [(3)]TJ/F27 11.9552 Tf 8.054 -4.338 Td [(:)]TJ/F18 Tf 111.922 0 52 Tf 11.596 0 Td [(()-61(^)]TJ/F18 11.9552 Tf 0 Td [(�)]TJ/F27 11.9552 Tf 5.78 0 Td [())]TJ/F18 11.9552 Tf 7.873 0 Td [d [(�)]TJ 0 -5.978 Td [(�)]TJ 0 -5.978 Td [(�)]TJ/F21 11.9552 Tf 6.642 0 Td [7�)]TJ/F18 11.9552 Tf 13 0 Td [(d)]TJ/F27 11.9552 Tf 6.08g 0 Td [(2)]TJ/F43 11.9356 Tf 11.291 43.1G14.059 Td [(Z)]TJ/F9.1110.399 Td [(�o 0 Td [7�)]TJ/F18 3.851ew)-99 Td [(�.2425Td [(whic)27(h)-262(holds)-262n,)]TJ





(a) (b)

(c) (d)

Fig. 2. In (a) we demonstrate the behaviour of the indicator function of the No
Response Test for one electromagnetic wave only. Here, every image point z corre-
sponds to a test domain G(z) with z 2 @G�(z) and G(z) �

�
y 2 R3 : y1 < z1

	
. The

blue area clearly indicates all such domains for which D � G(z), i.e. it indicates
a successfull No Response Test for the location of the domain. A second step is
then to build the intersections (38). Figure (b) - (d) show reconstructions of some
polygonal domain from the far �eld pattern of one wave via the No Response Test
functional with balls as test domains. Here, we show a slice of the mask on a plane
intersecting the scatterer. The results here have not been optimized to yield good
shape reconstructions, but we worked on a grid with cells of size h = 0:5. Clearly,
we can easily identify the location and size of the scatterer and prove the feasibility
of the ideas described above.
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