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Chapter 1

Introduction

1.1 Special functions

Special functions arise in the mathematical sciences as non-elementary solutions of differen-
tial equations, and these solutions can be represented in different ways. Computing these
special functions efficiently is of major interest for scientific applications and we can find
formulas for approximating many of them in Abramowitz and Stegun [2] and Luke [42].
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(1.1) and evaluated effectively using the trapezium rule (1.6): this method of approximation
has been proposed for the incomplete gamma function in [4]; for Bessel functions in [20, 29,
56], for the Airy function in [23], for the gamma function in [53]; and for the error function
in [15, 43, 31, 45].

It is well-known [18] that integrals of the form (1.1) with f is given by (1.2) can be
approximated by the Hermite-Gaussian quadrature rule, denoted by Jy, which is given by

wF(x="1); (1.3)

Qo=

1
JN = ﬁ?
1

|
where wy;::;wy and Xg; i Xy are the weights and abscissae, respectively. The Hermite-
Gaussian quadrature rule is very accurate, and sometimes outperforms the trapezium rule,
when the function F is smooth; but the accuracy deteriorate when F is meromorphic with
simple poles near the real axis. For example, approximating the integral
Zy
L€ ** cos(t) dt (1.4)

using Jy with N = 12 (see http://www.chebfun.org/examples/quad/HermiteQuad gnaés






4 Introduction

before Propositions 1.2.3 and 1.2.4. We assume in the following results that the function F
in (1.2) satisfies the following assumption.

Assumption 1.2.1. ForH> 0and $; = fz2 C:jIm(2j < Hg, we have that
(i) F is meromorphic with simple poles at2 Sy, Im(z;) 6 Oand j= 1;::;;m;
(i) F is continuous orsynfz;2;23;:::;Zmg;
(i) F (2= O(1) asjRe(2)j! ¥ uniformly forjim(z); H.
Given h> 0 and a 2 [0;1), define the function g(2) by

g(2 :=icot p E+ a ; 1.7)

which is a meromorphic function with simple polesat z=(k a)h, k2 Z, which has the
properties that, for z= x+ iy withy> 0,

. . e 2py=h
i1 9(2)] T o 2oy (1.8)
and for z= x+ iy withy < 0,
: . 2Py

We will make use in the following results of the signum function, sign(t), which is defined
by sign(t) = 1 fort> 0, sign(0) = 0 and sign(t) = 1 fort < 0. We will make use also of
the paths G4 and G,O4 in the complex plane which are defined as the lines Im(z) = H and
Im(2) = H, respectively, traversed in the direction of increasing Re(z).

Proposition 1.2.1. If Assumption 1.2.1 holds, théth;a) as de ned in(1.6) exists as the
limit .
lim h § f(k a)h);
n;jl ¥ k=
and has the value
Z Z

f(@9(ddz  , f(29(2dz +pi @ 9(z)R«: (1.10)
G Gy k=1

I(h;a)=

N|

where R = Res(f;z).
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Proof. LetAy=(k a+ %)h for k2 N and define Cy as the positively oriented rectangular
contour with verticesat A; iH and A, iH. Using Cauchy’s residue theorem for Cy
(which encloses j + n+ 1 simple poles of the integrand) we find that

Z n+j+1 m

f(29(dz= 2pi Q@ Res(fg;(k a)h)+ & Res(fg;x
H k=1 k=1
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The following proposition is well-known from many papers. It is in Goodwin [24] for
the case when a = 0 and the integrand is analytic in Sy, in Chiarella and Reichel [15,1.956(Reichef)1( 1.0:
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integrand. For example, in Hunter [29, 30] we find this result for the case where the integrand
is even and analytic in §4 and a = 0; in Hunter and Regan [31] fora = 0 and a = 1=2
with F(t) = 1=(t>+ a?), for some a2 C; in Theorem 2.2 of Bialecki [5] for a = 0 when the
integrand is meromorphic with poles of arbitrary order, in Theorem 2.3.2 of La Porte [38] for
a = 0, and recently in Theorem 5.1 of [60] for the case where a = 0 and the integrand is
analytic in &y.

Proposition 1.2.4. Forh> 0 anda 2 [0;1) letE (h;a) := 1 | (h;a). If Assumption

(2.2.1) holds, then zpan [

JE (h;a)j
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Definition 1.2.2. Forh> 0 anda = 0 or 1=2, we denote byn(h;a) thetruncated trapez-
ium rule de ned by

In(h;0) := h f(0)+ 2h g f(kh) and K(h1=2):= 2h§N_ f((k+ 1=2)h):  (1.22)
k=1 k=0

We denote also by, (h;a) thetruncated modified trapezium rule de ned by
In(ha) == In(hya)+ C(h;a): (1.23)
Note that the truncation of 1(h;a) induces the additional error

¥
Tn(h;a):=2h § f((k+ a)h); (1.24)
k=N+1
which will be considered in the coming chapters. The total error in approximating the integral
I (1.1) by Iy(h;a) will be denoted by Ey(h;a) where

Ex(ha)= E (ha)+ Tu(ha): (1.25)

1.3 Numerical Examples

To give a flavour and preview of the extraordinary efficiency of the modified trapezium rule
we present here two examples that demonstrate the convergence rate of the rule (1.18). In the
first example the integrand is an entire function; and in the second example the integrand is
a meromorphic function. In both examples, we approximate the integral by I (h;a) with
a=0.

1.3.1 Examplel

The following integral is a famous example (see Goodwin [24]):
Zy D_
| = e Ydt=" p = 1:7724538509055160273::: : (1.26)

The integrand here is an entire function and hence we have that C(h;0) = 0 so that

¥ N
| (h:0)=I(h;0)=h & e ¥ and Iy(h0):= In(n0)= 1+2h§ e ¥
k= ¥ k=1
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Table 1.1 shows the computed values of In(h;0)
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N | h= 0:7(N+ 1) 22 | In(h;0)

10 0:142 0:910749

20 0:092 0:889598

40 0:059 0.88757706

80 0:037 0.88753706862
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2. To derive completely rigorous and explicit bounds on both the absolute and relative
errors when approximating particular special functions by the truncated modified
trapezium rule. The bounds we obtain justify theoretically the choices that we recom-
mend for the parameters a, H, hand N, and prove exponential (or near exponential)
convergence as N! ¥. These theoretical predictions are supported by systematic and
comprehensive numerical experiments.

The largest part of this thesis is concerned with the application of the truncated modified
trapezium rule (1.23) (with a = 0 or a = 1=2) to the computation of the complex error
function w(2) = e 22erfc( iz) (Chapter 3), and with the related problem of computing
Fresnel integrals (Chapter 2). The application of the modified trapezium rule (1.18) with
a = 0 to compute the complementary error function, denoted by erfc(z) with z= x+ iy,
starting from the integral representation

22y ot
erfc(z) =

0 =y, dt; x> 0; (1.28)

was proposed by Chiarella and Reichel [15] and Matta and Reichel [43] who proposed to use
I (h;0) given by (1.18) with H = p=h, i.e.

he? 2hzeZ ¥ e X" 2H(H X
+ a 2 2 2+ h;
pz P Z,Z+Kh 1 ep=

erfc(2) (1.29)

where H is the Heaviside step function. This proposal was refined later by Hunter and Regan
[31]. In particular, Hunter and Regan [31] noted that (1.29) blows up if the simple poles of
the integrand att = iz coincide with any quadrature point at kh. They proposed to use the
approximation | (h;1=2) with H = p=h, i.e.

2hze? § e (k1% 2H(H X,

+
Q Zi(k 122202 1+ eh

erfc(2) (1.30)

when (1.29) fails or suffers from numerical instability. They proposed precisely the approxi-
mation 8

< .
I (h;0); if 1=4 f(y=h) 34
erfe MO (=) (1.31)
- | (h;1=2); otherwise;
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where f (t) denotes the fractional part of t, i.e. f (t) =t [t]. They also proved, essentially
applying Proposition 1.2.4 with H = p=h, and noting for

Z
F0= v
it holds that o2
My (F) m
that the error in this approximation is
jze Zje P*’

0 _ X 1.32
Tpi¢ p2E(L e ) (32
Clearly this error bound blows up when x= p=h, and so is inadequate as a bound for x  p=h.
This can be fixed by finding an improved version for jx p=hj e, for some e > 0, by taking
H = p=h e in Proposition 1.2.4, but the bounds obtained with this modification are still
unsatisfactory as they don’t imply small absolute and relative errorsas h! 0 uniformly in
z= x+ly.

Mori [45] studied the approximation I (h;0) in (1.29) specifically for z= x> 0. He
bounded the error in this approximation by (1.32) and by another bound obtained from
Proposition 1.2.4 with H = p=h+ 1= 2, namely that the error is

xe ¥Xel?2g p*=
v 5])(2 (p:h-l- 1:P 5)21(1 e 2p=h(p:h+ ]_:H E)) )

(1.33)

Mori [45] used the minimum of the bounds (1.32) and (1.33), i.e. he used (1.32) for x> b,
(2.33) for 0< x b, where b is the value (given by (2.8) and (2.9) in [45], but here we
correct a calculation error in [45])

" W=
2 p 2
+ 1 h ; (1.34)

[EEN

o
1

[N

+

> |
+

Nits

with
1 e B gl

= 1 e 2p=h(p=h+ 1:p§); (1.35)
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for this value of b the two bounds (1.32) and (1.33) coincide. Mori [45] also bounded the
relative error, using that

2e ¥
erfc(X) p— p—; 0: 1.36
0 ps P (1.36)
Mori [45] showed further that the relative error in (1.29) is
b(b+ P b2+ 2)
Pt (1.37)

(bz p2=h2)(l eZpZ:h2)

forallz=x 0.

The work in this thesis extends and improves significantly, by more sophisticated and
delicate analysis, the previous works. In Chapter 2 we propose methods for computing
Fresnel integrals based on the truncated modified trapezium rule in (1.23) where a = 1=2.
We construct approximations in Sections §2.3 and §2.4 which we prove are exponentially
convergent as a function of N, the number of quadrature points, obtaining completely explicit
error bounds in Theorems 2.3.3 and 2.3.5 which show that accuracies of 10 ° uniformly
on the real line are achieved with N = 12, this confirmed by computations in Section 82.5.
The approximations we obtain are attractive in that they maintain small relative errors for
small and large argument, are analytic on the real axis (echoing the analyticity of the Fresnel
integrals), and are straightforward to implement.

In Chapter 3 we propose a method for computing the complex error function wz)
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Matlab codes are provided (see Listings A.1, A.2, A.3 and A.4) for computing all these
functions, and these codes are easily adaptable to other programming languages.



Chapter 2

Fresnel integrals

2.1 Introduction

Let C(x),
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It also depends on the integral representation [2, (7.1.4)] that



2.1 Introduction
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where the size oN controls the accuracy of the approximatidns 2 N2 and the
coef cients are computed as

1
an .=
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2.2 Summary of the main Results

Based on the truncated modified trapezium rule (1.23) with a = 1=2 and H = Ay (given by
(2.13)), the approximation to F(x) we propose is

1 i . _ o {2
Ry = =+ ~tan AgxelP™ +Aie'(xz+p‘4) q 2= (2.12)

2 2 N o1 X2+ it?

1
exp 2Anxe P=4A
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in modified form into this strip. This implies exponentially convergent error estimates,
presented in §2.3.1 and 8§2.4, for the difference between the coefficients in the Maclau-
rin series of F, C, and Sand those in the corresponding series for Fy, Cy and Sy. In
turn (see §2.4), this implies that the approximations all retain small relative error for
jXj small, and the computations in §2.5 demonstrate this.

These approximations inherit symmetries of the Fresnel integrals. In particular, our



2.3 The proposed approximation and its error bounds

21

< 10 15 From (2.6) we have that, for> 0,

z
F() = ' £(t) dt; wheref(t) := d0¢+P= %
= v y —
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Here
xe P*Y
dl(X) .— Pﬁjp2=h2 X2:2j 1 o 2p2:h2 y (229)
4dhxe p2=h’ P—  pp2
— n ps=h* .
®09 = Y ppjp=h+x= 2j 1 e 2p*=° 1+2 pe ’ (2.30)
15 1op§
withb = ————  0:0536, and
16
ppr:h

Proof. Applying Proposition 1.2.4, for 0 < x< P 2p=h, with H = p=h, and noting for

. x O+ p=4)
2p(C+ i 1 ii66494810.037 Td 978 0 Td [(€)]TI/F92 Ts(ac
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Thus, and applying (1.8), similarly to (2.29) we deduce that

z
o A+ d@)dz p

xe P
D

— = : 2.35
pejp=h+x= 2 1 e 0™ (239

To bound the integral oveywe note that, foz= X + iY = z+ e€d 2 g, (2.34)is true and
Y H. Furtherje Zj= €, where

. P_ p_
P=Y?2 X?=2xesin(q p=4) e?cog2q)< 2xe+e®> 2 2He+(2 2+ 1)

since x:p 2 H < e. From these bounds ar#l.8), de ning a = e=H 2 (0;1), we deduce
that

z

P~ p_ ~
1+ g2)dz  ZXOR(2 2at(2 2+ Da® 2)p*).
g

— 2.36
ejp=h+x= 2 1 e ™ (2.36)

For x:IO 2 H <ewecan bound, using(2.33) (2.35) (2.36) and the triangle inequality,
to get that

2—2
4hxe P
n

p — b 2:h2
— — 1+2 pe °P : 2.37
ppip=h+x= 2 1 e ™ P (230

je  d2(x):=p

where D 0
b=1 2 2a (2 2+1)a* (2.38)
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Proposition 2.3.1. For x> 0,

(th'?l':ﬁ DX o .

jTn(h; 1=2)] —
2ptn+e1 XA+ t|<11+1

Proof.

meN+1 Xt |

2 ?)é 2
g————— 2he '+1+42h J e 'm
2p X+t m= N+ 2
X 2 Zy 2
g—— 2he W1+ 2 e Ydt
2p xA+td, tN+1I
W1 (2htyer+ DX

a X 2he tl%l+l+ €

G n = ——¢€ t'%Hl:
2 X4+t4 N+ 1 2 tN+1 X4+t4
N+1 N+ 1

To arrive at the last line we have used that, for x> 0,

Z¥ exz Z¥et2 exz

(2.40)

At this point we make a choice of h to approximately equalise Dy(X) in Theorem 2.3.1 and
the bound on Ty(h; 1=2) in Proposition 2.3.1, choosing h so that p=h= tn+1 = ( N+ 1=2)h,
giving that 0

h=" p=(N+ 1=2); (2.41)

inwhichcasetn+1 = AN = P (N+ 1=2)p, and ty = tx, where ty is defined by (2.13). Making
this choice of h we see that

En(X)= F(X) FuX)= e, 7d [978 0 Td [(2)]2503hshg[(h)]TI/F1021.95544u6

jTNh +
(2h
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Theorem 2.3.2. Forh= P p=(N+ 1=2) so that H= p=h= Ay we have that
. . . 2p + 1)jX 2
EN( () = Duix) + — g ¢ & @42)
2pAN X4+ AL
where
& e A
X
; 0 Bp= A\
% p (A x2—2) 1 e 2 2 *
dxe M 1+ 2ppe bAY X
Dh(X) = . SANS P=< 3A\;  (243)
% pAN(AN+x— 2) 1 e 2\ 2
p_
e A e 2AnX X
+ = P= A\
p(x2—2 AN) 1 e 1 e 2Ax iE)_2 4
Theorem 2.3.3. For x> 0,
. . . e PN
IFO) An()j = JEn()T hn(X) NPT forx2 R; (2.44)
where
P -
20" 2e P=2 P o2 . (2p+1)e P2
CN = 1+2 pe "W 4B7
" 9gp 1 e 2A P 2 2p3=Ay
which decreases as N increases, with
P- -
p=2
¢t 0:825 and lim oy = 20 28 77 .008: (2.45)

Proof. Itis easy to see that D, (X) is increasing on [O; %p 2 An) and decreasing on [%p 2AN:¥).

Further, where Dy(3
since 2A > e AN,

2A,) denotes the limiting value of Dy(X) as x !

p

2e A _
Dh 5p2A = 20 2e 1+ 2" pe b4
N o DAy 1 e 2%
N
P )
20 2e A A2 -
> T+ — = Dy %pZAN :

O PAN 1 e 1 e A

2" 2 Ay from below,
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Similarly, xDn(X) is increasing on [0; §p 2An) and decreasing on [%p 2AN;¥). Thus, for
x> 0,

Dh(x) Dn 3 sP3 2Ay and xDn(X) gp 2ANDy, 2 sP3 2A, (2.46)
Moreover,
X 1 X2
g p and g——=<1; forx> 0: (2.47)
Combining (2.42), (2.46) and (2.47) we reach the result. O

Remark 2.3.1. We have shown the boun{®s42) and (2.44) for x> 0, but the symmetries
(2.17) and(2.18) imply thatEn( X)= En(X), so that(2.42) and(2.44) hold also forx< 0,
and, by continuity, also forx 0 (and in fact & (0) = hy(0) = 0).

The following result from [3, Theorem 4] will be used to bound the relative error of

Fn(X).

Lemma 2.3.4. For the Fresnel integral Ex) we have that

§2+2 forx 0

JF(X)] (2.48)

:

X forx O:

N =

Theorem 2.3.5. For the Fresnel integral [Ex) and its approximation f{x) we have that

8
. . 2 cye PN forx O0;
JFG) Al hn(X) N o DN (2.49)
JF(X)] JF()] > 2cnp——; forx O;
N+ 1=2
where
10°2 4+ 5" oAy 1+ 2° pe & 2p+1) 1 p_
Cy = + 2 D+
N gp peP2Ay 1 e 2A%, peP=2Ay v 2 AN

which decreases as N increases, with ¢10:4 andlimy; ¥ ¢y = 100e P=2=9 2:3.

Proof. Combining (2.42), (2.46), (2.47) and (2.48) we see, for x> 0, that

hn(X) P
JF(X)]

2
2
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This implies (2.49) for x> 0. The bound for x 0 follows immediately from (2.48), (2.44)
and Remark 2.3.1. O

The above estimates use (2.42) and (2.43)
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0 arg(2) p=2; moreover, itis clear from (2.12) that the same holds for Fy(2) and hence
for En(2). Thus (2.52) implies that (2.44) holds for 0 arg(z) p=2, and (2.17) and (2.18)
then imply that (2.44) holds also forp arg(z) 3p=4.

It is clear from the derivations above that, if h is given by (2.41), then | (h;1=2) also
satisfies the bound (2.44), i.e,,

F) 1 (h:1=2)] p (2.53)
N+ 1=2
this holding in the first instance for real z, then for imaginary z, and finally for all zin the
first and third quadrants. The bound (2.44) cannot hold in the second or fourth quadrant
because En(2) = F(2) Fn(2) has poles there. This issue does not hold for F(z) | (h;1=2),
which is an entire function, but (2.53) cannot hold in the whole compleW 0 0 12Tf 7.531 0 Td [(tcomple).8n7
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Thus, forz= x+ iy in the second and fourth quadrants wih AN=(2p 2),

pN
F) Fu@i e Yp————; (2.55)
N+ 1=2
where p_
2(2 1
Gy = oy (2p 41 (2.56)

p32exp(p=2)’ N+ 1=2'
The sequencey’is decreasing witls;” 1:14 and limy y €y = limy y oy 0:208.

We observe above that the bouf@44)onEn(2) = F(2) (2 holds for all complex

in the rst and third quadrants of the complex plane, and on the boundaries of those quadrants,
the real and imaginary axes, while the bo@db5)holds in the second and fourth quadrants
forjlm(z2j An=(2 2). A signi cant implication of these bounds is that they imply that

the coef ciengs in the Maclaurin series Bf;(2) are close to those &f(2). Precisely, at least
forjz < An= 2,

¥ ¥
F(2= & an?" and (2= & bo?
n=0 n=0

with ang
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and are given explicitly ifi2.14)and(2.15) We note the similarity betwedR.14)and(2.15)
and the formulae [46, (7.5.3)-(7.5.4)]

C(x) =
Sx) =

+ f(x)sin 3px?  g(x)cos 3px? ; (2.60)

NI~ NI

f(x)cos 3px%  g(X)sin 3px? ; (2.61)

which expres€(x) andS(x) in terms of the auxiliary functiond,(x) andg(x), for the Fresnel
integrals @6, 87.2(iv)]. Indeed, it follows from46, (7.7.10)-(7.7.11)] that, fax> O, f(x)
andg(x) have the integral representations

f= _P¥ € dtandg= pr  —° 4
2 o bx2 24 t4 P o Bx 2y th

and, recalling tha#y is linked to the quadrature step-size throgttl) it is clear that, for
x>0, pxan Zx% =Ayand pxby 5x? =Ay can be viewed as quadrature approxima-
tions to these integrals.

The approximation§2.14)and(2.15)inherit the accuracy diy(x) on the real line: from
(2.58) and (2.59) we see, farR R, that

iC00 v " ZiEn( p=2xj andjS) S\ | ZiEn PN (2.62)

whereEn(X) = F(X) F(X). Thus the error bounds of the previous section can be applied.
In particular, from(2.44)and(2.50)it follows that bothjC(x) Cn(X)j andjS(x) Su(X)j
are

e PN
2Np——; forx2R; 2.63
NP (2.63)
and oN o
p—_...e . .. Ny
p EnjX N+ L' for jx| N+ 1=2: (2.64)

Herecy < 0:83andéy < 0:18 are the decreasing sequences of positive numbers de ned by
(2.14) and (2.51), respectively.

These bounds show th@g(x) andSy(x) are exponentially convergent Bid ¥, uni-
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the power series [46, §7.6(i)]

¥ n 1, 2N 4n+1 ¥ n 1, 21 4n+3
coo= § LU oP x* g § (D" xS,

2y (2n!(@n+1) - % (2n+ 1)!(4n+ 3)

(2.65)

It follows from the analyticity ofy(x) inF6603J/F6r[(a)]TJ/F69 8.9664 t Cdgscussed TJ/F65
C =><>»
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equally spaced numbers between 0 and 1,000. The average elapsed times were 11.1 and 15.6
seconds, respectively, so that F(x,12) is almost 50% faster.

In Figure 2.2 we see that the theoretical error bounds are upper bounds as claimed, and
that these bounds appear to capture the x-dependence of the errors fairly well, for example
that En(X) = O(x) as x! 0, = O(x 1) asx! ¥, and that Ex(X) reaches a maximum at
aboutx=" 2Any= p(2N+1)( 7:7whenN=09).

Turning to C(x) and §x), in Figure 2.3 we have plotted the maximum values of the
absolute and relative errors in Sy(x) and Cn(X), computed using fresnelCS in Table A.2. As
accurate values for C(x) and S(x) we use Cyo(X) and So(x) for x> 1:5 while, for 0 < x< 1:5
(following [52]) we approximate by the series (2.65) truncated after 15 terms, evaluated by
the Horner algorithm. Exponential convergence is seen in Figure 2.3: the absolute errors
are 45 10 1 for N 11, the maximum relative error in Cy(x) is  3:6 10 1 for
N = 11 but that in Sy(x) as large as 2:7 10 3. These errors may be entirely acceptable,
but the truncated power series (2.65) must achieve smaller errors for small x and is cheaper to
evaluate. (Evaluating at 107 equally spaced points between 0 and 1:5 takes 2.9 times longer
in Matlab with fresnelCS than evaluating 15 terms of both the series (2.65) via Horner’s
algorithm.)
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Fresnel integrals

Maximum relative er
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10—13

10—16

Fig. 2.2 Left hand side: Absolute error, jF(x) Fn(X)j (), and its upper bound hy(X) given by (2.42)
( ) plotte% against x. Right hand side: Relative error, jF(X) Fu(X)j5F(X)j ( ), and its upper
bound 2(1+ " pxX)hn(X) (), plotted against x. In both figures N = 9 and the exact value for F(x)
is approximated by FdN






Chapter 3

The Faddeeva function

3.1 Introduction

The complex error function is defined by [46, (7.2.1)]
Z z
erf(2) = p2—_ e Ydt;
p o
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quadrants can be obtained using the symmetries [50, (3.1) and (3.2)]

Z

w( 2=¢e w(z) and w(2)=w( 2): (3.5

Chiarella and Reichel [15] and Matta and Reichel [43] first proposed to compute erfc(2)
for complex zby I (h;0) given by (1.18) with H = p=h starting from the integral representa-
tion, which follows from (3.4), that

22y ot

erfc(2) = ZTO Lzt Re@>0 (3.6)

Hunter and Regan [31] discussed the stability of these approximations when zis near one
of the quadrature points, and proposed to use the formula | (h;0), if jf (y=h) 0:5] 0:25,
otherwise to use formula | (h;1=2) given by (1.18) with H = p=h, where y= Im(2) and

f=t []2][0;1) (3.7)

is the function that gives the fractional part of t. This criterion and proposal is our main
starting point for the methods developed in this chapter to approximate w(z).

There are a number of other effective schemes for computation of w(z), and we briefly
summarise here the best of these. Gautschi [22] proposed an approximation for complex z
based on continued fractions and this approximation is the basis of ACM TOM Algorithm 680
in Poppe and Wijers [50] which achieves a relative error of 10 14 over nearly all the complex
plane by Taylor expansions of degree up to 20 in an ellipse around the origin, convergents of
up to order 20 of continued fractions outside a larger ellipse, and a more expensive mix of
Taylor expansion and continued fraction calculations in between.

Weideman [62] proposed a rational approximation (the derivation starts from the integral
representation (3.4)) to compute w(2), for Im(z) > 0. The approximation proposed is
2 N1 L+iz "

G TR R (R T P

(3.8)

where the size of N controls the accuracy of the approximation, L = 2 N2 and the
coefficients are computed as

_ 1 Mot 2. +2\a 24 ing;. Qe
J:
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withM = 2N, t; = Ltan(gj=2) and q; = pj=Mfor j= M+ 1;::5;M

argued that, for intermediate values of jz, and as measured by operat’

required to compute w(2) to 10 1* relative accuracy is much smalle
(3.8) than for ACM TOMS Algorithm 68in [50].

Remark 3.1.1. Weideman 2] also compared his
proximation developed i3, 31] and commentec
provided for given zand N the optimal step-siz:
to determine this optimal h a priori."afzce+&/

77

”

g - -
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erfex(y) = eyzerf(y) and

¥
1 212 2
S = 2 e (acke+x );
¥
1 2
S = 2 e (ak+x) :
2—1 a2k2 + y2
= 3 L e 3.14
= kel 2Kty , (3.14)
¥
a.k k+ 2
S= a4 0 e @5
1 a2k2+ y2
¥
ak 2
S=3 ——— e @X%
2—1 2k2+ y2

The authors have supplied us with thilatlab implementation of this metho®#4] in the
form of a Matlab function Faddeyeva_v2(z,M), where the parameté is the number

of accurate signi cant gures required, and the code enforces a choitkiofthe range

4 M 13 In this Matlab implementation the choica= 1=2 is made and the sums in
(3.14)are truncated, the number of terms retained depending in a complicated Wway on
Zagloul and Ali B3] argued, using numerical calculations, that the approximg8ati),
with appropriate choices fa and truncation of (3.14)
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p_
p(2m 1) & @24 g, P(m 1)(nh+ a=2)

= A1
Am 22Mp - G 2Mh ’ (3.19)
and
i N _ 2m 1)(nh+ a=2
B = p_liMl § ™ Mo p(2m 2),\({;] a=2) (3.20)

p2 n= N

Abrarov and Quine [1] argued, based on numerical calculations, that the approximation
(3.16) is more accurate and faster (using the same number of summation terms in (3.16) as
in (3.8)) than the approximation (3.8). We will be investigating these claims in Section §3.4
and we will be comparing the efficiency (accuracy and speed) of wy(2) given in (3.21) with
the approximations (3.8), (3.11) and (3.16).

We end this introduction by outlining the remainder of this chapter. Section 3.2 gives
summary of the main results; §3.3 is concerned with the proposed approximation and its error
bounds and 83.4 explores, using the theoretical and numerical calculations, the accuracy of
our approximation in comparison with the approximations (3.8), (3.11) and (3.17).

3.2  Summary of the main results

The main contributions of this chapter are: (i) to propose a family of approximations to
w(2), based on the truncated modified trapezium rules defined in (1.22) adopting (at least for
0 arg(2) < p=4) the proposals of Hunter and Regan [31], but making explicit the choice of
the step-size h as a function of N, the number of quadrature points addressing the criticism in
Remark 3.1.1 by Weideman [62]; (ii) to prove completely explicit and rigorous bounds on
both the absolute and relative errors as a function of N, uniform in z= x+ iy, with x;y  0;
and (iii) to demonstrate through the bounds and numerical experiments the high accuracy
and efficiency of our approximation in comparison with the approximations (3.8), (3.12),
(3.13) and (3.17).
The proposed approximation to w(z) for z= x+ iy, withx;y 0, is
8
2In(h1=2); 'y max(xp=h);
WN(Z) = _ Iy(h;0); y<x and jf (x=h) 1=2j 1=4; x 0 Td[(;)]T90 G [-2

2
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where f is defined by (3.7),

. 2
2ihz Y e &

In(h;1=2) = X
N : P 2022 t
IN( 11_2) 1+ e 2ipz=h+ IN( !1_ )1
2¢ 7 ih 2ihz Y e &
" = e — — + .
In(h:0) 1 e pzt p A7t
r
P
= — =(k+ 1= ty ;= kh:
N+l t ;= (k+ 1=2)h and ty

The main error estimate that we prove is

(3.22)

(3.23)

(3.24)

(3.25)

Theorem 3.2.1. Supposevn(2) is given by(3.21). Then, forz= x+ iy with
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The approximation wy is proven in Theorem 3.2.1 (where we give completely explicit
error bounds) to converge exponentially, uniformly in the first quadrant with respect to
both absolute and relative errors, and this predicted rate of exponential convergence is
observed in numerical experiments in Section 83.4 below (we know of no other rigorous

error bounds for approximations for w(z) in the whole quadrant Re(2);Im(2)

0).

This approximation is straightforward to code. Listing A.3 shows the Matlab code

used to evaluate wy for all the computations in this paper.

The approximation wy is very competitive in accuracy and operation counts with other

methods, as discussed in Section §3.4.

3.3 The proposed approximation and its error bounds

In this section we derive the approximation wy(2) given by (3.21) and its error bounds which
demonstrate that the absolute and relative errors are both converging exponentially as N (the

number of quadrature points) increases.

We can rewrite (3.4) as
Zy
w(2) = f(t) dt;
¥

where

iz

f(t)= e YF(t) and F(t)= SZ

Note that the function e t2F(t) is even and meromorphic with simple poles att =
residues at these two simple poles are

Z
Ry = Res(f;2) = 2 and Ry=Res(f; 2= Ry
Using (1.16) and Remark 1.2.2, we have
Z 2py=h
L 2e . 2e PY 2.
C(h,a)— 1 e Zp@a+zh so that JC(h,a)J W

Applying the trapezium rule (1.6) to the integral in (3.32) leads to

\(hia)= h3 ize (k @)%
’ oz P(Z (k a)?h?)’

(3.32)

(3.33)

z The

(3.34)

(3.35)

(3.36)
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Let
I (h;a) = I(h;a)+ C(h;a); for a = 0;1=2; (3.37)

where C(h;a) and I(h;a) are given by (3.35) and (3.36)
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we have
p_— 2 _
| 2 pMy(F) et 2oH=
w2 | (ha)j P 1H(e )Zszh ' (3.44)
where F is given by (3.33) and
My (F) := supjF(t+ iH)j: (3.45)
t2R
ForH> 0andz = t+ iH, we have
7 z%=jz zjjz+zj j y Hjjy+Hj=H* ¥}
and hence we have, for H = p=h, that
P 22
. . 2 2ye P
W@ 1 (ha)i )= p Y : (3.46)

Tp(p2? yY) 1 e B
Similarly and using the bound in (3.35) for C(h;a), we have for y %H, that
iw@ I (ha)j di(y)+ jC(h;a)j da(y): (3.47)
Select e in the range (0; H) and consider the case thatjy Hj < e. We can easily show that
z

w2 | (ha)=  f(z)(1 9(z))dz; (3.48)

H
where f is given by (3.33), g(z) = icot(pz=h+ ap) and the contour Cy, passing above the
poleof f atz = z isthe unionof C, and g, whereC; = ft+iH :t2 Randj(t+iH) 2z > eg
andg=fz+ee9:qp q p 0og whereqgo=sin (H y)=e)2( p=2;p=2).

Forz 2 C,, it holds that
iZ z%=jz zjjz+zj ejy+Hj: (3.49)

Thus, using (1.8), similarly to (3.46) we deduce that

Z p 242

2 2yeP
f(z)(1 z)) dz B— :
o @0 g@ydz  pe e —

(3.50)

To bound the integral over g we note, for z = X+ iY 2 g, that (3.49) istrueand Y H.

Further,

je ’j= e
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where
P = Y2 X? )
v X2 e?coq2q)+ 2e y2+ x2sin(q tan (y=
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where

4p§h 1+ 2P pe bp=?

p3:2 1 e 2p2:h2

D,

> |

; (3.56)

andb is given by(3.43).

Proof. It is easy to show, using (3.39) , that Dy(y) and yDn(y) are increasing functions of y
for0 y< p=h,inparticular

3p 3P 7 o 420 1+ 2P pe be
Dh o+ = I Dh &+ = — 22 : (3.57)
4h 14p(1 e 2p%) h p3=2 1 e 2p%h
Also we have, using (3.53), that
w2 | (ha)j P— ... .
- - 1+ w2 | (ha
WD) ( ; ﬂzm (2 1 (ha)j
1+ 2py)iw(z) 1 (h;a)j; (3.58)
and the two results follow. O

In the following proposition we bound jw(z) I(h;a)j and jw(z) 1(h;a)j5w(2)j.

Proposition 3.3.3. Suppose that(h;a) is given by(3.36). Then, for
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where
piy
My (F) := supjF(t+ iH)] ———-: 3.63
(F) tzgl ( )] YATE) (3.63)
y y
Since — 2 and — 2 are both decreasing functions of y on (H;¥), we have
y H+e H+e 5 y2 25
y2 H2 e2+2eH 2eH 8e and y2  H2 32eH (3.64)
Thus, we have
5° 7

w(2) I(h;a)j 4p —
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2py=h
Similarly, using (3.53) and since yDy(y) and Zyeyz

1 e 2oy are both increasing functions of y

forH y< e, we have that
w(z) I(h;a)j

P o
W] 1+ 2py)(jw(2 | (h;a)j+ jC(h;a)j)

p

532
1+ > 2p
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whereDy, is given by(3.61)

5

Proof. De ne
En(2=w(@ | (hja) and en(2= En(2=W(2);

onG:=fz2 C:0< arg2) < p=4g. Sincew(z) andl (h;a) are both entire functions af
and, using3.53) w(2) 6 Ofor all z2 G, En(2) andey(2) are analytic orG and continuous
on its closure. From the asymptotic expansiomv(d) in the complex plane (se22, (2.6)])
it follows thatw(z) ! 0Oasjz! ¥, uniformly forO< argz) < p=4. Moreover it follows
from (3.37)and(3.35)that the same holds fdor(h;a) and hence foE,(2). Thus we have,
using Lemma 3.3.1, that

supiEn(2)j = supjEn(2)j:
2G 216G

Letz= réP™ withr 0. Then, using Proposition 3.3.1, we have that
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Now, for z2 G, using (3.53) and (3.71),
. : P— ... . -
jn(@j  (1+ pjz)iEn(2] P

where P:= MD, 3 e P** and M := max(1+ P pjz)e! 3, for z2 G. Thus we have,
using Lemma 3.3.1, that

supjen(2)j = sup jen(2)j: (3.75)
2G 216G

Let z= rel®™ with r 0. Then, we have, using Proposition 3.3.1, that yDy(y) is
increasing on 0;%% and decrelasing on %%;¥ with Dy %% > Dy, %% ; thus we have
5IO 2p32

D 0P g et (3.76)

jen(2)j 1+ ah

Let z= x+ ie with 0 < e < p=h. Then we have, using (3.53) and Proposition 1.2.4, that

. : P—. ... .

jen(2] (1+ pJSJ)JEh(Z)J

.. — . 2
2j7(1+ " pjz)e P e qt:
p(l1 e 2P*) ¥ 22 (t+ip=h)?3
Taking the limite! 0%, since both sides in the above bound are continuous for 0 < e < p=h,
we obtain

=h2 Z ¥ t2

p — 22 Z
. . 2X(1+ " px)eP ¥
X G(t)dt; x O0; 3.77
jen(X)] o(1 e 2p2=h2) v t) ( )
where
e
R =0k
Note
Zy Z v Zy= Z 3y Zy
G(t) dt = G)ydt+  G()dt+ G)ydt+  G(t)dt (3.78)
¥ ¥ x=2 X=2 3x=2
Since, forx Oandt2 R,
pq -
pEé (t+ip=h)%j = jx t i(p=h)jjx+t+i(p=h)j h X2+ (p=h)?
we have
Z 3x=2 Z 3x=2 