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Chapter 1

Introduction

1.1 Special functions

Special functions arise in the mathematical sciences as non-elementary solutions of differen-
tial equations, and these solutions can be represented in different ways. Computing these
special functions efficiently is of major interest for scientific applications and we can find
formulas for approximating many of them in Abramowitz and Stegun [2] and Luke [42].
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(1.1) and evaluated effectively using the trapezium rule (1.6): this method of approximation
has been proposed for the incomplete gamma function in [4]; for Bessel functions in [20, 29,
56], for the Airy function in [23], for the gamma function in [53]; and for the error function
in [15, 43, 31, 45].

It is well-known [18] that integrals of the form (1.1) with f is given by (1.2) can be
approximated by the Hermite-Gaussian quadrature rule, denoted by JN, which is given by

JN :=
1

p
r

N

å
i= 1

wi F(xi=
p

r ); (1.3)

where w1; :::;wN and x1; :::;xN are the weights and abscissae, respectively. The Hermite-
Gaussian quadrature rule is very accurate, and sometimes outperforms the trapezium rule,
when the function F is smooth; but the accuracy deteriorate when F is meromorphic with
simple poles near the real axis. For example, approximating the integral

Z ¥

� ¥
e� t2

cos(t) dt (1.4)

using JN with N = 12 (see http://www.chebfun.org/examples/quad/HermiteQuad.html) gives
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before Propositions 1.2.3 and 1.2.4. We assume in the following results that the function F

in (1.2) satisfies the following assumption.

Assumption 1.2.1. For H > 0 and SH = f z2 C : jIm(z)j < Hg, we have that

(i) F is meromorphic with simple poles at zj 2 SH , Im(zj ) 6= 0 and j= 1; :::;m;

(ii) F is continuous onSHnf z1;z2;z3; :::;zmg;

(iii) F (z) = O(1) asjRe(z)j ! ¥ uniformly forjIm(z)j � H.

Given h > 0 and a 2 [0;1), define the function g(z) by

g(z) := i cot
�

p
� z

h
+ a

��
; (1.7)

which is a meromorphic function with simple poles at z= ( k � a )h, k 2 Z, which has the
properties that, for z= x+ iy with y > 0,

j1 � g(z)j �
2e� 2py=h

1 � e� 2py=h
; (1.8)

and for z= x+ iy with y < 0,

j1 + g(z)j �
2e2py=h

1 � e2py=h
: (1.9)

We will make use in the following results of the signum function, sign(t), which is defined
by sign(t) = 1 for t > 0, sign(0) = 0 and sign(t) = � 1 for t < 0. We will make use also of
the paths GH and G

0

H in the complex plane which are defined as the lines Im(z) = H and
Im(z) = � H, respectively, traversed in the direction of increasing Re(z).

Proposition 1.2.1. If Assumption 1.2.1 holds, thenI(h;a ) as de�ned in(1.6) exists as the

limit

lim
n; j ! ¥

h
n

å
k= � j

f ((k � a )h);

and has the value

I(h;a ) =
1
2

� Z

GH

f (z)g(z) dz�
Z

G0
H

f (z)g(z) dz
�

+ pi
m

å
k= 1

g(zk) Rk: (1.10)

where Rk = Res( f ;zk).
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Proof. Let Ak = ( k� a + 1
2 )h for k 2 N and define CH as the positively oriented rectangular

contour with vertices at � A j � iH and An � iH . Using Cauchy’s residue theorem for CH

(which encloses j + n+ 1 simple poles of the integrand) we find that

Z

CH

f (z)g(z) dz= 2pi

 
n+ j+ 1

å
k= 1

Res( f g; (k� a )h)+
m

å
k= 1

Res( f g;zk
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The following proposition is well-known from many papers. It is in Goodwin [24] for
the case when a = 0 and the integrand is analytic in SH , in Chiarella and Reichel [15,1.956(Reichef)1( 1.02 11.9552 Tf 1 0 0 1 144.28 704.876 70538a)]TJ/F102 11.9552 Tf 11.264 0 T82[(=)]TJ/F66 11.9552 Tf 12.016 0 T35[(0)]TJ/F66 11.9552 Tf 1.02 0 0 1 176.65805.082[6 70538a
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integrand. For example, in Hunter [29, 30] we find this result for the case where the integrand
is even and analytic in SH and a = 0; in Hunter and Regan [31] for a = 0 and a = 1=2
with F(t) = 1=(t2 + a2), for some a 2 C; in Theorem 2.2 of Bialecki [5] for a = 0 when the
integrand is meromorphic with poles of arbitrary order, in Theorem 2.3.2 of La Porte [38] for
a = 0, and recently in Theorem 5.1 of [60] for the case where a = 0 and the integrand is
analytic in SH .

Proposition 1.2.4. For h > 0 and a 2 [0;1) let E� (h;a ) := I � I � (h;a ). If Assumption

(1.2.1) holds, then

jE� (h;a )j �
2
pan [
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Definition 1.2.2. For h > 0 anda = 0 or 1=2, we denote byIN(h;a ) thetruncated trapez-
ium rule de�ned by

IN(h;0) := h f(0) + 2h
N

å
k= 1

f (kh) and IN(h;1=2) := 2h
N

å
k= 0

f ((k+ 1=2)h): (1.22)

We denote also by I�
N(h;a ) thetruncated modified trapezium rule de�ned by

I �
N(h;a ) := IN(h;a )+ C(h;a ): (1.23)

Note that the truncation of I (h;a ) induces the additional error

TN(h;a ) := 2h
¥

å
k= N+ 1

f ((k+ a )h); (1.24)

which will be considered in the coming chapters. The total error in approximating the integral
I (1.1) by I �

N(h;a ) will be denoted by E�
N(h;a ) where

E�
N(h;a ) = E� (h;a )+ TN(h;a ): (1.25)

1.3 Numerical Examples

To give a flavour and preview of the extraordinary efficiency of the modified trapezium rule
we present here two examples that demonstrate the convergence rate of the rule (1.18). In the
first example the integrand is an entire function; and in the second example the integrand is
a meromorphic function. In both examples, we approximate the integral by I �

N(h;a ) with
a = 0.

1.3.1 Example 1

The following integral is a famous example (see Goodwin [24]):

I =
Z ¥

� ¥
e� t2

dt =
p

p = 1:7724538509055160273::: : (1.26)

The integrand here is an entire function and hence we have that C(h;0) = 0 so that

I � (h;0) = I (h;0) = h
¥

å
k= � ¥

e� k2h2
and I �

N(h;0) := IN(h;0) = 1 + 2h
N

å
k= 1

e� k2h2
:
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Table 1.1 shows the computed values of IN(h;0)
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N h = 0:7 (N + 1)� 2=3 IN(h;0)
10 0:142 0:910749
20 0:092 0:889598
40 0:059 0.88757706
80 0:037 0.88753706862
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2. To derive completely rigorous and explicit bounds on both the absolute and relative
errors when approximating particular special functions by the truncated modified
trapezium rule. The bounds we obtain justify theoretically the choices that we recom-
mend for the parameters a , H, h and N, and prove exponential (or near exponential)
convergence as N ! ¥ . These theoretical predictions are supported by systematic and
comprehensive numerical experiments.

The largest part of this thesis is concerned with the application of the truncated modified
trapezium rule (1.23) (with a = 0 or a = 1=2) to the computation of the complex error
function w(z) = e� z2

erfc(� iz) (Chapter 3), and with the related problem of computing
Fresnel integrals (Chapter 2). The application of the modified trapezium rule (1.18) with
a = 0 to compute the complementary error function, denoted by erfc(z) with z = x+ iy,
starting from the integral representation

erfc(z) =
ze� z2

p

Z ¥

� ¥

e� t2

z2 + t2 dt; x > 0; (1.28)

was proposed by Chiarella and Reichel [15] and Matta and Reichel [43] who proposed to use
I � (h;0) given by (1.18) with H = p=h, i.e.

erfc(z) �
he� z2

pz
+

2hz e� z2

p

¥

å
k= 1

e� k2h2

z2 + k2h2 +
2H (H � x)
1 � e2pz=h

; (1.29)

where H is the Heaviside step function. This proposal was refined later by Hunter and Regan
[31]. In particular, Hunter and Regan [31] noted that (1.29) blows up if the simple poles of
the integrand at t = � iz coincide with any quadrature point at kh. They proposed to use the
approximation I � (h;1=2) with H = p=h, i.e.

erfc(z) �
2hz e� z2

p

¥

å
k= 1

e� (k� 1=2)2h2

z2 + ( k� 1=2)2h2 +
2H (H � x)
1 + e2pz=h

; (1.30)

when (1.29) fails or suffers from numerical instability. They proposed precisely the approxi-
mation

erfc(z) �

8
<

:
I � (h;0); if 1=4 � f (y=h) � 3=4

I � (h;1=2); otherwise;
(1.31)
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where f (t) denotes the fractional part of t, i.e. f (t) = t � [t]. They also proved, essentially
applying Proposition 1.2.4 with H = p=h, and noting for

F(t) =
ze� z2

p(z2 + t2)

it holds that

MH(F) �
jze� z2

j
pjx2 � p2=h2j

;

that the error in this approximation is

�
jze� z2

j e� p2=h2

p
pjx2 � p2=h2j(1 � e� 2p2=h2)

: (1.32)

Clearly this error bound blows up when x = p=h, and so is inadequate as a bound for x � p=h.
This can be fixed by finding an improved version for jx� p=hj � e, for some e > 0, by taking
H = p=h� e in Proposition 1.2.4, but the bounds obtained with this modification are still
unsatisfactory as they don’t imply small absolute and relative errors as h ! 0 uniformly in
z= x+ iy.

Mori [45] studied the approximation I � (h;0) in (1.29) specifically for z = x > 0. He
bounded the error in this approximation by (1.32) and by another bound obtained from
Proposition 1.2.4 with H = p=h+ 1=

p
2, namely that the error is

�
xe� x2

e1=2 e� p2=h2

p
pjx2 � (p=h+ 1=

p
2)2j(1 � e� 2p=h(p=h+ 1=

p
2))

: (1.33)

Mori [45] used the minimum of the bounds (1.32) and (1.33), i.e. he used (1.32) for x > b ,
(1.33) for 0 < x � b , where b is the value (given by (2.8) and (2.9) in [45], but here we
correct a calculation error in [45])

b :=

"
1

1 + l

 �
p
h

+
1

p
2

� 2

+ l
� p

h

� 2
!# 1=2

; (1.34)

with

l :=

�
1 � e� 2p2=h2

�
e1=2

1 � e� 2p=h(p=h+ 1=
p

2)
; (1.35)
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for this value of b the two bounds (1.32) and (1.33) coincide. Mori [45] also bounded the
relative error, using that

erfc(x) �
2e� x2

p
p(x+

p
x2 + 2)

; x � 0: (1.36)

Mori [45] showed further that the relative error in (1.29) is

�
b (b +

p
b 2 + 2)

(b 2 � p2=h2)(1 � e� 2p2=h2)
e� p2=h2

; (1.37)

for all z= x � 0.

The work in this thesis extends and improves significantly, by more sophisticated and
delicate analysis, the previous works. In Chapter 2 we propose methods for computing
Fresnel integrals based on the truncated modified trapezium rule in (1.23) where a = 1=2.
We construct approximations in Sections §2.3 and §2.4 which we prove are exponentially
convergent as a function of N, the number of quadrature points, obtaining completely explicit
error bounds in Theorems 2.3.3 and 2.3.5 which show that accuracies of 10� 15 uniformly
on the real line are achieved with N = 12, this confirmed by computations in Section §2.5.
The approximations we obtain are attractive in that they maintain small relative errors for
small and large argument, are analytic on the real axis (echoing the analyticity of the Fresnel
integrals), and are straightforward to implement.

In Chapter 3 we propose a method for computing the complex error function wz)

1.23)
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Matlab codes are provided (see Listings A.1, A.2, A.3 and A.4) for computing all these
functions, and these codes are easily adaptable to other programming languages.



Chapter 2

Fresnel integrals

2.1 Introduction

Let C(x),



16 Fresnel integrals

It also depends on the integral representation [2, (7.1.4)] that

w(z) =
i
p

Z ¥

� ¥

e� t2

z� t
dt =

iz
p

Z ¥

� ¥

e� t2

z2 � t2 dt; Im(z) > 0: =2

2
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where the size ofN controls the accuracy of the approximation,L = 2� 1=4N1=2 and the

coef�cients are computed as

an :=
1
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2.2 Summary of the main Results

Based on the truncated modified trapezium rule (1.23) with a = 1=2 and H = AN (given by
(2.13)), the approximation to F(x) we propose is

FN(x) :=
1
2

+
i
2

tan
�

ANxeip=4
�

+
x

AN
ei(x2+ p=4)

N

å
k= 1

e� t2
k

x2 + it2
k

(2.11)

=
1

exp
�
2ANxe� ip=4A
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in modified form into this strip. This implies exponentially convergent error estimates,
presented in §2.3.1 and §2.4, for the difference between the coefficients in the Maclau-
rin series of F , C, and Sand those in the corresponding series for FN, CN and SN. In
turn (see §2.4), this implies that the approximations all retain small relative error for
jxj small, and the computations in §2.5 demonstrate this.

� These approximations inherit symmetries of the Fresnel integrals. In particular, our
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< 10� 15. From (2.6) we have that, forx > 0,

F(x) :=
Z ¥

� ¥
f (t) dt; where f (t) := ei(x2+ p=4) x
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Here

d1(x) :=
x e� p2=h2

p
p jp2=h2 � x2=2j

�
1 � e� 2p2=h2 � ; (2.29)

d2(x) :=
4hxe� p2=h2

p
p pjp=h+ x=

p
2j

�
1 � e� 2p2=h2 �

�
1 + 2

p
p e� bp2=h2

�
; (2.30)

with b =
15 � 10

p
2

16
� 0:0536, and

d3(x) := d1(x)+
e�

p
2px=h

1 � e�
p

2px=h
: (2.31)

Proof. Applying Proposition 1.2.4, for 0 < x <
p

2p=h, with H = p=h, and noting for

F(t) =
xei(x2+ p=4)

2p(x2 + ith2
�
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Thus, and applying (1.8), similarly to (2.29) we deduce that

�
�
�
�

Z

G0
f (z)(1+ g(z)) dz

�
�
�
� �

x e� p2=h2

p
p ejp=h+ x=

p
2j

�
1� e� 2p2=h2� : (2.35)

To bound the integral overg we note that, forz= X + iY = z0 + eeiq 2 g, (2.34)is true and

Y � H. Further,je� z2
j = eP, where

P = Y2 � X2 = 2xesin(q � p=4) � e2cos(2q) < 2xe+ e2 � 2
p

2He+ ( 2
p

2+ 1)e2;

since
�
�
�x=

p
2� H

�
�
� < e. From these bounds and(1.8), de�ning a = e=H 2 (0;1), we deduce

that
�
�
�
�

Z

g
f (z)(1+ g(z)) dz

�
�
�
� �

2x exp((2
p

2a + ( 2
p

2+ 1)a 2 � 2)p2=h2)

ejp=h+ x=
p

2j
�
1� e� 2p2=h2� : (2.36)

For
�
�
�x=

p
2� H

�
�
� < e we can bounde�

h using(2.33), (2.35), (2.36), and the triangle inequality,

to get that

je�
hj � d2(x) :=

4hxe� p2=h2

p
p pjp=h+ x=

p
2j

�
1� e� 2p2=h2�

�
1+ 2

p
p e� bp2=h2

�
; (2.37)

where

b = 1� 2
p

2a � (2
p

2+ 1)a 2: (2.38)
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Proposition 2.3.1. For x > 0,

jTN(h;1=2)j �
(2ht N+ 1 + 1)x

2pt N+ 1

q
x4 + t 4

N+ 1

e� t 2
N+ 1:

Proof.

jTN(h;1=2)j �
hx
p

¥

å
m= N+ 1

e� t 2
m

p
x4 + t 4

m

�
x

2p
q

x4 + t 4
N+ 1

 

2he� t 2
N+ 1 + 2h

¥

å
m= N+ 2

e� t 2
m

!

�
x

2p
q

x4 + t 4
N+ 1

�
2he� t 2

N+ 1 + 2
Z ¥

t N+ 1

e� t2
dt

�

�
x

2p
q

x4 + t 4
N+ 1

 

2he� t 2
N+ 1 +

e� t 2
N+ 1

t N+ 1

!

=
(2ht N+ 1 + 1)x

2pt N+ 1

q
x4 + t 4

N+ 1

e� t 2
N+ 1:

To arrive at the last line we have used that, for x > 0,

2
Z ¥

x
e� t2

dt =
e� x2

x
�

Z ¥

x

e� t2

t2 dt <
e� x2

x
: (2.40)

At this point we make a choice of h to approximately equalise Dh(x) in Theorem 2.3.1 and
the bound on TN(h;1=2) in Proposition 2.3.1, choosing h so that p=h = t N+ 1 = ( N + 1=2)h,
giving that

h =
p

p=(N + 1=2); (2.41)

in which case t N+ 1 = AN =
p

(N + 1=2)p , and t k = tk, where tk is defined by (2.13). Making
this choice of h we see that

EN(x) = F(x) � FN(x) = e�
h
 Td [978 0 Td [(2)]2503h-h [(h)]TJ/F1021.95544u64 T]TJ�81t2

N For x > 0,

jTN(h

=
(2h

�+
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Theorem 2.3.2. For h =
p

p=(N + 1=2) so that H= p=h = AN we have that

jEN(x)j � hN(x) := Dh(jxj) +
(2p + 1)jxj

2pAN

q
x4 + A4

N

e� A2
N ; (2.42)

where

Dh(x) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

xe� A2
N

p
p (A2

N � x2=2)
�

1 � e� 2A2
N

� ; 0 �
x

p
2

� 3
4AN;

4xe� A2
N

�
1 + 2

p
p e� bA2

N

�

p
p AN(AN + x=

p
2)

�
1 � e� 2A2

N

� ; 3
4AN <

x
p

2
< 5

4AN;

x e� A2
N

p
p (x2=2 � A2

N)
�

1 � e� 2A2
N

� +
e�

p
2ANx

1 � e�
p

2ANx
;

x
p

2
� 5

4AN:

(2.43)

Theorem 2.3.3. For x > 0,

jF(x) � FN(x)j = jEN(x)j � hN(x) � cN
e� pN

p
N + 1=2

; for x 2 R; (2.44)

where

cN =
20

p
2e� p=2

9p
�

1 � e� 2A2
N

�
�

1 + 2
p

p e� bA2
N

�
+

(2p + 1)e� p=2

2
p

2p3=2AN
;

which decreases as N increases, with

c1 � 0:825 and lim
N! ¥

cN =
20

p
2e� p=2

9p
� 0:208: (2.45)

Proof. It is easy to see that Dh(x) is increasing on [0; 5
4

p
2AN) and decreasing on [5

4

p
2AN;¥ ).

Further, where Dh( 5
4

p
2A�

N) denotes the limiting value of Dh(x) as x ! 5
4

p
2AN from below,

since 2A� 1
N > e� A2

N ,

Dh

�
5
4

p
2A�

N

�
=

20
p

2e� A2
N

9
p

p AN

�
1 � e� 2A2

N

�
�

1 + 2
p

p e� bA2
N

�

>
20

p
2 e� A2

N

9
p

p AN

�
1 � e� 2A2

N

� +
e� 5A2

N=2

1 � e� 5A2
N=2

= Dh

�
5
4

p
2AN

�
:
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Similarly, xDh(x) is increasing on [0; 5
4

p
2AN) and decreasing on [5

4

p
2AN;¥ ). Thus, for

x > 0,
Dh(x) � Dh

�
5
4

p
2A�

N

�
and xDh(x) � 5

4

p
2ANDh

�
5
4

p
2A�

N

�
: (2.46)

Moreover,
x

q
x4 + A4

N

�
1

p
2AN

and
x2

q
x4 + A4

N

< 1; for x > 0: (2.47)

Combining (2.42), (2.46) and (2.47) we reach the result.

Remark 2.3.1. We have shown the bounds(2.42) and (2.44) for x > 0, but the symmetries

(2.17) and(2.18) imply thatEN(� x) = � EN(x), so that(2.42) and(2.44) hold also forx < 0,

and, by continuity, also for x= 0 (and in fact EN(0) = hN(0) = 0).

The following result from [3, Theorem 4] will be used to bound the relative error of
FN(x).

Lemma 2.3.4. For the Fresnel integral F(x) we have that

jF(x)j �

8
>>>><

>>>>:

1
2 + 2

p
px

; for x � 0

1
2

; for x � 0:

(2.48)

Theorem 2.3.5. For the Fresnel integral F(x) and its approximation FN(x) we have that

jF(x) � FN(x)j
jF(x)j

�
hN(x)
jF(x)j

�

8
><

>:

c�
Ne� pN; for x � 0;

2cN
e� pN

p
N + 1=2

; for x � 0;
(2.49)

where

c�
N =

10
p

2
�
4 + 5

p
2pAN

� �
1 + 2

p
pe� bA2

N

�

9
p

p ep=2 AN

�
1 � e� 2A2

N

� +
(2p + 1)
pep=2AN

�
1

p
2AN

+
p

p
�

:

which decreases as N increases, with c�
1 � 10:4 andlimN! ¥ c�

N = 100e� p=2=9 � 2:3.

Proof. Combining (2.42), (2.46), (2.47) and (2.48) we see, for x > 0, that

hN(x)
jF(x)j

�
�
2 + 5

2

p
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This implies (2.49) for x > 0. The bound for x � 0 follows immediately from (2.48), (2.44)
and Remark 2.3.1.

The above estimates use (2.42) and (2.43)
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0 � arg(z) � p=2; moreover, it is clear from (2.12) that the same holds for FN(z) and hence
for EN(z). Thus (2.52) implies that (2.44) holds for 0 � arg(z) � p=2, and (2.17) and (2.18)
then imply that (2.44) holds also for p � arg(z) � 3p=4.

It is clear from the derivations above that, if h is given by (2.41), then I � (h;1=2) also
satisfies the bound (2.44), i.e.,

jF(z) � I � (h;1=2)j � cN
e� pN

p
N + 1=2

; (2.53)

this holding in the first instance for real z, then for imaginary z, and finally for all z in the
first and third quadrants. The bound (2.44) cannot hold in the second or fourth quadrant
because EN(z) = F(z) � FN(z) has poles there. This issue does not hold for F(z) � I � (h;1=2),
which is an entire function, but (2.53) cannot hold in the whole compleW 0 0 12Tf 7.531 0 Td [(tcomple).8n7ich is 1
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Thus, forz= x+ iy in the second and fourth quadrants withjyj � AN=(2
p

2),

jF(z) � FN(z)j � ĉNe� xy e� pN
p

N + 1=2
; (2.55)

where

ĉN := cN +

p
2(2p + 1)

p3=2exp(p=2)
p

N + 1=2
: (2.56)

The sequence ˆcN is decreasing with ˆc1 � 1:14 and limN! ¥ ĉN = limN! ¥ cN � 0:208.

We observe above that the bound(2.44)onEN(z) = F(z) � FN(z) holds for all complexz

in the �rst and third quadrants of the complex plane, and on the boundaries of those quadrants,

the real and imaginary axes, while the bound(2.55)holds in the second and fourth quadrants

for jIm(z)j � AN=(2
p

2). A signi�cant implication of these bounds is that they imply that

the coef�cients in the Maclaurin series ofFN(z) are close to those ofF(z). Precisely, at least

for jzj < AN=
p

2,

F(z) =
¥

å
n= 0

anzn and FN(z) =
¥

å
n= 0

bnzn;

with an(1
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and are given explicitly in(2.14)and(2.15). We note the similarity between(2.14)and(2.15)

and the formulae [46, (7.5.3)-(7.5.4)]

C(x) = 1
2 + f (x) sin

� 1
2px2

�
� g(x) cos

� 1
2px2

�
; (2.60)

S(x) = 1
2 � f (x) cos

� 1
2px2

�
� g(x) sin

� 1
2px2

�
; (2.61)

which expressC(x) andS(x) in terms of the auxiliary functions,f (x) andg(x), for the Fresnel

integrals [46, §7.2(iv)]. Indeed, it follows from [46, (7.7.10)-(7.7.11)] that, forx > 0, f (x)

andg(x) have the integral representations

f (x) =
p

p x3

2

Z ¥

0

e� t2

� p
2x2

� 2 + t4
dt and g(x) =

x
p

p

Z ¥

0

t2e� t2

� p
2x2

� 2 + t4
dt;

and, recalling thatAN is linked to the quadrature step-size through(2.41), it is clear that, for

x > 0,
p

p xaN
� p

2x2
�

=AN and
p

p xbN
� p

2x2
�

=AN can be viewed as quadrature approxima-

tions to these integrals.

The approximations(2.14)and(2.15)inherit the accuracy ofFN(x) on the real line: from

(2.58) and (2.59) we see, forx 2 R, that

jC(x) � CN(x)j �
p

2jEN(
p

p=2x)j and jS(x) � SN(x)j �
p

2jEN(
p

p=2x)j: (2.62)

whereEN(x) = F(x) � FN(x). Thus the error bounds of the previous section can be applied.

In particular, from(2.44)and(2.50)it follows that bothjC(x) � CN(x)j andjS(x) � SN(x)j

are

� 2cN
e� pN

p
2N + 1

; for x 2 R; (2.63)

and

�
p

p c̃Njxj
e� pN

2N + 1
; for jxj �

p
N + 1=2: (2.64)

HerecN < 0:83andc̃N < 0:18are the decreasing sequences of positive numbers de�ned by

(2.14) and (2.51), respectively.

These bounds show thatCN(x) andSN(x) are exponentially convergent asN ! ¥ , uni-



2.4 The approximations ofC(x) andS(x) 31

the power series [46, §7.6(i)]

C(x) =
¥

å
n= 0

(� 1)n
� 1

2p
� 2n

x4n+ 1

(2n)!(4n+ 1)
; S(x) =

¥

å
n= 0

(� 1)n
� 1

2p
� 2n+ 1

x4n+ 3

(2n+ 1)!(4n+ 3)
: (2.65)

It follows from the analyticity ofFN(x) inF6603J/F6r[(å)]TJ/F69 8.9664 t 0 9ediscussed TJ/F65
(x)
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equally spaced numbers between 0 and 1,000. The average elapsed times were 11.1 and 15.6
seconds, respectively, so that F(x,12) is almost 50% faster.

In Figure 2.2 we see that the theoretical error bounds are upper bounds as claimed, and
that these bounds appear to capture the x-dependence of the errors fairly well, for example
that EN(x) = O(x) as x ! 0, = O(x� 1) as x ! ¥ , and that EN(x) reaches a maximum at
about x =

p
2AN =

p
p(2N + 1) (� 7:7 when N = 9).

Turning to C(x) and S(x), in Figure 2.3 we have plotted the maximum values of the
absolute and relative errors in SN(x) and CN(x), computed using fresnelCS in Table A.2. As
accurate values for C(x) and S(x) we use C20(x) and S20(x) for x > 1:5 while, for 0 < x < 1:5
(following [52]) we approximate by the series (2.65) truncated after 15 terms, evaluated by
the Horner algorithm. Exponential convergence is seen in Figure 2.3: the absolute errors
are � 4:5 � 10� 16 for N � 11, the maximum relative error in CN(x) is � 3:6 � 10� 15 for
N = 11 but that in SN(x) as large as 2:7 � 10� 13. These errors may be entirely acceptable,
but the truncated power series (2.65) must achieve smaller errors for small x and is cheaper to
evaluate. (Evaluating at 107 equally spaced points between 0 and 1:5 takes 2.9 times longer
in Matlab with fresnelCS than evaluating 15 terms of both the series (2.65) via Horner’s
algorithm.)
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Fig. 2.2 Left hand side: Absolute error, jF(x) � FN(x)j (� ), and its upper bound hN(x) given by (2.42)
(�� ), plotted against x. Right hand side: Relative error, jF(x) � FN(x)j=jF(x)j (� ), and its upper
bound 2(1 +

p
p x)hN(x) (�� ), plotted against x. In both figures N = 9 and the exact value for F(x)

is approximated by F20N(





Chapter 3

The Faddeeva function

3.1 Introduction

The complex error function is defined by [46, (7.2.1)]

erf(z) =
2

p
p

Z z

0
e� t2

dt;

erf(z
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quadrants can be obtained using the symmetries [50, (3.1) and (3.2)]

w(� z) = e� z2
� w(z) and w(z) = w(� z): (3.5)

Chiarella and Reichel [15] and Matta and Reichel [43] first proposed to compute erfc(z)

for complex z by I � (h;0) given by (1.18) with H = p=h starting from the integral representa-
tion, which follows from (3.4), that

erfc(z) =
ze� z2

p

Z ¥

� ¥

e� t2

z2 + t2 dt; Re(z) > 0: (3.6)

Hunter and Regan [31] discussed the stability of these approximations when z is near one
of the quadrature points, and proposed to use the formula I � (h;0), if jf (y=h) � 0:5j � 0:25,
otherwise to use formula I � (h;1=2) given by (1.18) with H = p=h, where y = Im(z) and

f (t) = t � [t] 2 [0;1) (3.7)

is the function that gives the fractional part of t. This criterion and proposal is our main
starting point for the methods developed in this chapter to approximate w(z).

There are a number of other effective schemes for computation of w(z), and we briefly
summarise here the best of these. Gautschi [22] proposed an approximation for complex z

based on continued fractions and this approximation is the basis of ACM TOM Algorithm 680

in Poppe and Wijers [50] which achieves a relative error of 10� 14 over nearly all the complex
plane by Taylor expansions of degree up to 20 in an ellipse around the origin, convergents of
up to order 20 of continued fractions outside a larger ellipse, and a more expensive mix of
Taylor expansion and continued fraction calculations in between.

Weideman [62] proposed a rational approximation (the derivation starts from the integral
representation (3.4)) to compute w(z), for Im(z) > 0. The approximation proposed is

w(z) �
1

p
p(L � iz)

+
2

(L � iz)2

N� 1

å
n= 0

an+ 1

�
L + iz
L � iz

� n

; (3.8)

where the size of N controls the accuracy of the approximation, L = 2� 1=4N1=2 and the
coefficients are computed as

an :=
1

2M

M� 1

å
j= � M+ 1

(L2 + t2
j )e

� t2
j e� inq j ; n = 1; ::;N; (3.9)
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with M = 2N, t j = L tan(q j=2) and q j = p j=M for j = � M + 1; :::;M � 1. Weideman [62]
argued that, for intermediate values of jzj, and as measured by operation counts, the work
required to compute w(z) to 10� 14 relative accuracy is much smaller for the approximation
(3.8) than for ACM TOMS Algorithm 680in [50].

Remark 3.1.1. Weideman [62] also compared his method to the modi�ed trapezium rule ap-

proximation developed in [43, 31] and commented that the trapezium rule "is very accurate,
provided for given z and N the optimal step-size h is selected. It is not easy, however,
to determine this optimal h a priori." As we will see shortly, we address this commentandandcom8.1whiproxd314(CMms(gued)-256(that,)-259(f35(w18266 687..955283(bas1 86.8en.87dd837..955283(rec2rus)-6.8enpublished3.525 Tm [(")-315(As)-314(we)-31ed)86f35(w18266 687A)29)]TJ/.8en11.955255283(.256 0 Td [283(9162.208 Tm [(for)]TJ/F69 11.9552 T0 T5 Td35(w18266 687(co417(basetr)m83(]TJ/.8en..955283(follo)2)-3.ng2 T03)-638 1.79s)-39prio2
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erfcx(y) = ey2
erf(y) and

S1 :=
¥

å
k= 1

�
1

a2k2 + y2

�
e� (a2k2+ x2);

S2 :=
¥

å
k= 1

�
1

a2k2 + y2

�
e� (ak+ x)2

;

S3 :=
¥

å
k= 1

�
1

a2k2 + y2

�
e� (ak� x)2

;

S4 :=
¥

å
k= 1

�
ak

a2k2 + y2

�
e� (ak+ x)2

;

S5 :=
¥

å
k= 1

�
ak

a2k2 + y2

�
e� (ak� x)2

:

(3.14)

The authors have supplied us with theirMatlab implementation of this method [64] in the

form of a Matlab function Faddeyeva_v2(z,M), where the parameterM is the number

of accurate signi�cant �gures required, and the code enforces a choice ofM in the range

4 � M � 13. In this Matlab implementation the choicea = 1=2 is made and the sums in

(3.14)are truncated, the number of terms retained depending in a complicated way onM.

Zagloul and Ali [63] argued, using numerical calculations, that the approximation(3.11),

with appropriate choices fora and truncation of (3.14)
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Am :=
p

p(2m� 1)
22Mh

N

å
n= � N

ea 2=4� n2h2
sin

�
p(2m� 1)(nh+ a =2)

2Mh

�
; (3.19)

and

Bm :=
i

p
p 2M� 1

N

å
n= � N

ea 2=4� n2h2
cos

�
p(2m� 1)(nh+ a =2)

2Mh

�
: (3.20)

Abrarov and Quine [1] argued, based on numerical calculations, that the approximation
(3.16) is more accurate and faster (using the same number of summation terms in (3.16) as
in (3.8)) than the approximation (3.8). We will be investigating these claims in Section §3.4
and we will be comparing the efficiency (accuracy and speed) of wN(z) given in (3.21) with
the approximations (3.8), (3.11) and (3.16).

We end this introduction by outlining the remainder of this chapter. Section 3.2 gives
summary of the main results; §3.3 is concerned with the proposed approximation and its error
bounds and §3.4 explores, using the theoretical and numerical calculations, the accuracy of
our approximation in comparison with the approximations (3.8), (3.11) and (3.17).

3.2 Summary of the main results

The main contributions of this chapter are: (i) to propose a family of approximations to
w(z), based on the truncated modified trapezium rules defined in (1.22) adopting (at least for
0 � arg(z) < p=4) the proposals of Hunter and Regan [31], but making explicit the choice of
the step-size h as a function of N, the number of quadrature points addressing the criticism in
Remark 3.1.1 by Weideman [62]; (ii) to prove completely explicit and rigorous bounds on
both the absolute and relative errors as a function of N, uniform in z= x+ iy, with x;y � 0;
and (iii) to demonstrate through the bounds and numerical experiments the high accuracy
and efficiency of our approximation in comparison with the approximations (3.8), (3.12),
(3.13) and (3.17).

The proposed approximation to w(z) for z= x+ iy, with x;y � 0, is

wN(z) :=

8
>>><

>>>:

IN(h;1=2); y � max (x;p=h) ;

I �
N(h;0); y < x and jf (x=h) � 1=2j � 1=4; x 0 Td [(;)]T90 G
 [-245(3.1.1)]TJ
0 g 0 27(main)-228(results;)-236(§)-7.783 Td [(N)]TJ/F102 11.9552 Tf 7.016 1.793 Td [(()]TJ/F69 11.9552 Tf 4.639 0 Td [(h)]TJ/F100 11.9552 Tf 5.978 0 Td [(;)]TJ/F66 11.9552 T 10.949 0 Td [(a)]TJ/F100 11.9552 Tf 8.536 0 Td [(=)]TJ/F66 11.9552 Tf 5.977 0 Td [(2)]TJ/64 Tf -0.908 -7.731 Td [(N)
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where f is defined by (3.7),

IN(h;1=2) :=
2ihz

p

N

å
k= 0

e� t2
k

z2 � t2
k

; (3.22)

I �
N(h;1=2) :=

2e� z2

1 + e� 2ipz=h
+ IN(h;1=2); (3.23)

I �
N(h;0) :=

2e� z2

1 � e� 2ipz=h
+

ih
pz

+
2ihz

p

N

å
k= 1

e� t 2
k

z2 � t 2
k

; (3.24)

h =

r
p

N + 1
; tk := ( k+ 1=2)h and t k := kh: (3.25)

The main error estimate that we prove is

Theorem 3.2.1. SupposewN(z) is given by(3.21). Then, forz= x+ iy with

p( x
t
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� The approximation wN is proven in Theorem 3.2.1 (where we give completely explicit
error bounds) to converge exponentially, uniformly in the first quadrant with respect to
both absolute and relative errors, and this predicted rate of exponential convergence is
observed in numerical experiments in Section §3.4 below (we know of no other rigorous
error bounds for approximations for w(z) in the whole quadrant Re(z); Im(z) � 0).

� This approximation is straightforward to code. Listing A.3 shows the Matlab code
used to evaluate wN for all the computations in this paper.

� The approximation wN is very competitive in accuracy and operation counts with other
methods, as discussed in Section §3.4.

3.3 The proposed approximation and its error bounds

In this section we derive the approximation wN(z) given by (3.21) and its error bounds which
demonstrate that the absolute and relative errors are both converging exponentially as N (the
number of quadrature points) increases.

We can rewrite (3.4) as

w(z) =
Z ¥

� ¥
f (t) dt; (3.32)

where

f (t) = e� t2
F(t) and F(t) =

iz
p(z2 � t2)

: (3.33)

Note that the function e� t2
F(t) is even and meromorphic with simple poles at t = � z. The

residues at these two simple poles are

R1 = Res ( f ;z) =
� ie� z2

2p
and R2 = Res ( f ; � z) = � R1: (3.34)

Using (1.16) and Remark 1.2.2, we have

C(h;a ) =
2e� z2

1 � e� 2ip(a + z=h)
so that jC(h;a )j �

2e� 2py=h

1 � e� 2py=h
ey2� x2

: (3.35)

Applying the trapezium rule (1.6) to the integral in (3.32) leads to

I (h;a ) = h å
k2Z

ize� (k� a )2h2

p(z2 � (k � a )2h2)
: (3.36)
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Let

I � (h;a ) := I(h;a )+ C(h;a ); for a = 0;1=2; (3.37)

where C(h;a ) and I (h;a ) are given by (3.35) and (3.36)
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we have

jw(z) � I � (h;a )j �
2
p

p MH(F) eH2� 2pH=h

1 � e� 2pH=h
; (3.44)

where F is given by (3.33) and

MH(F) := sup
t2R

jF(t + iH)j: (3.45)

For H > 0 and z = t + iH , we have

jz2 � z 2j = jz� z j jz+ z j � j y� Hj jy+ Hj = H2 � y2;

and hence we have, for H = p=h, that

jw(z) � I � (h;a )j � d1(y) :=
2

p
2ye� p2=h2

p
p(p2=h2 � y2)

�
1 � e� 2p2=h2 � : (3.46)

Similarly and using the bound in (3.35) for C(h;a ), we have for y � 5
4H, that

jw(z) � I � (h;a )j � d1(y)+ jC(h;a )j � d3(y): (3.47)

Select e in the range (0;H) and consider the case that jy� Hj < e. We can easily show that

w(z) � I � (h;a ) =
Z

CH

f (z )(1 � g(z )) dz ; (3.48)

where f is given by (3.33), g(z) = i cot (pz=h+ ap ) and the contour CH , passing above the
pole of f at z = z, is the union of C�

H and g, where C�
H = f t + iH : t 2 R and j(t + iH) � zj > eg

and g = f z+ eeiq : q0 � q � p � q0g, where q0 = sin� 1((H � y)=e) 2 (� p=2;p=2).

For z 2 C�
H , it holds that

jz2 � z 2j = jz� z j jz+ z j � ejy+ Hj: (3.49)

Thus, using (1.8), similarly to (3.46) we deduce that

�
�
�
�

Z

C�
H

f (z )(1 � g(z )) dz

�
�
�
� �

2
p

2y e� p2=h2

p
p e(p=h+ y)

�
1 � e� 2p2=h2 � : (3.50)

To bound the integral over g we note, for z = X + iY 2 g, that (3.49) is true and Y � H.
Further,

je� z 2
j = eP;
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where

P = Y2 � X2

= y2 � x2 � e2cos(2q)+ 2e
p

y2 + x2sin(q � tan� 1(y=
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where

Dh

� p
h

�
=

4
p

2h
�

1 + 2
p

pe� bp2=h2
�

p3=2
�
1 � e� 2p2=h2 � ; (3.56)

andb is given by(3.43).

Proof. It is easy to show, using (3.39) , that Dh(y) and yDh(y) are increasing functions of y

for 0 � y < p=h, in particular

Dh

�
3p
4h

�
=

3
p

2h

14p(1 � e� 2p2=h2)
< Dh

� p
h

�
=

4
p

2h
�

1 + 2
p

pe� bp2=h2
�

p3=2
�
1 � e� 2p2=h2 � : (3.57)

Also we have, using (3.53), that

jw(z) � I � (h;a )j
jw(z)j

� (1 +
p

pjzj)jw(z) � I � (h;a )j

� (1 +
p

2py)jw(z) � I � (h;a )j; (3.58)

and the two results follow.

In the following proposition we bound jw(z) � I (h;a )j and jw(z) � I (h;a )j=jw(z)j.

Proposition 3.3.3. Suppose thatI (h;a ) is given by(3.36). Then, for
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where

MH(F) := sup
t2R

jF(t + iH)j �

p
2y

p(y2 � H2)
: (3.63)

Since
y

y2 � H2 and
y2

y2 � H2 are both decreasing functions of y on (H;¥ ), we have

y
y2 � H2 �

H + e
e2 + 2eH

�
H + e
2eH

�
5

8e
and

y2

y2 � H2 �
25

32e
H: (3.64)

Thus, we have

jw(z) � I (h;a )j �
5
p

2
4
p
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Similarly, using (3.53) and since yDh(y) and
2yey2� 2py=h

1 � e� 2py=h
are both increasing functions of y

for H � y < e, we have that

jw(z) � I (h;a )j
jw(z)j

� (1 +
p

2py)( jw(z) � I � (h;a )j + jC(h;a )j)

�

 

1 +
5
p

2p3=2
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whereDh

�
5p
4h

� �
is given by(3.61).

Proof. De�ne

Eh(z) = w(z) � I � (h;a ) and eh(z) = Eh(z)=w(z);

onG := f z2 C : 0 < arg(z) < p=4g. Sincew(z) andI � (h;a ) are both entire functions ofz

and, using(3.53), w(z) 6= 0 for all z2 G, Eh(z) andeh(z) are analytic onG and continuous

on its closure. From the asymptotic expansion ofw(z) in the complex plane (see [22, (2.6)])

it follows thatw(z) ! 0 asjzj ! ¥ , uniformly for 0 < arg(z) < p=4. Moreover it follows

from (3.37)and(3.35)that the same holds forI � (h;a ) and hence forEh(z). Thus we have,

using Lemma 3.3.1, that

sup
z2G

jEh(z)j = sup
z2¶G

jEh(z)j:

Let z= reip=4 with r � 0. Then, using Proposition 3.3.1, we have that
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Now, for z2 G, using (3.53) and (3.71),

jeh(z)j � (1 +
p

pjzj)jEh(z)j � Pejzj;

where P := M Dh

�
5p
4h

�
�

e� p2=h2
and M := max(1 +

p
pjzj)e�j zj , for z2 G. Thus we have,

using Lemma 3.3.1, that

sup
z2G

jeh(z)j = sup
z2¶G

jeh(z)j: (3.75)

Let z = reip=4 with r � 0. Then, we have, using Proposition 3.3.1, that yDh(y) is
increasing on

�
0; 5

4
p
h

�
and decreasing on

� 5
4

p
h ;¥

�
with Dh

� 5
4

p
h

� �
> Dh

� 5
4

p
h

�
; thus we have

jeh(z)j �

 

1 +
5
p

2p3=2

4h

!

Dh

�
5
4

p
h

�
�

e� p2=h2
: (3.76)

Let z= x+ ie with 0 < e < p=h. Then we have, using (3.53) and Proposition 1.2.4, that

jeh(z)j � (1 +
p

pjzj)jEh(z)j

�
2jzj(1 +

p
pjzj) e� p2=h2

p(1 � e� 2p2=h2)

Z ¥

� ¥

e� t2

jz2 � (t + ip=h)2j
dt:

Taking the limit e ! 0+ , since both sides in the above bound are continuous for 0 < e < p=h,
we obtain

jeh(x)j �
2x(1 +

p
px) e� p2=h2

p(1 � e� 2p2=h2)

Z ¥

� ¥
G(t) dt; x � 0; (3.77)

where

G(t) =
e� t2

jx2 � (t + ip=h)2j
:

Note
Z ¥

� ¥
G(t) dt =

Z � x=2

� ¥
G(t) dt +

Z x=2

� x=2
G(t) dt +

Z 3x=2

x=2
G(t) dt +

Z ¥

3x=2
G(t) dt: (3.78)

Since, for x � 0 and t 2 R,

jx2 � (t + ip=h)2j = jx� t � i(p=h)jjx+ t + i(p=h)j �
p
h

q
x2 + ( p=h)2;

we have
Z 3x=2

x=2
G(t) dt �

h

p
p

x2 + ( p=h)2

Z 3x=2

x=2
e� t2

dt �
hxe� x2=4

p
p

x2 + ( p=h)2
; (3.79)

Z ¥

3x=2
G(t) dt �

h

p
p

x2 + p2=h2

Z ¥

3x=2
e� t2

dt �
he� 9x2=4

3px
p

x2 + p2=h2
; (3.80)
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with f given by (3.33) and t k and tk are given by (3.25).

We will call the error in approximating I (h;a ) by IN(h;a ) the truncation error, given by

TN(h;a ) := 2h
¥

å
k= N+ 1

f ((k+ a )h): (3.88)

Proposition 3.3.5. Supposet k is given by(3.25) andjz� t kj � h=4 for k = N + 1;N + 2; :::
and z= x+ iy with 0 � y < x . Then, for h> 0,

jTN(h;0)j �
2
p
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For the second summation we have that

2h
¥

å
k= M

e� t 2
k

jz� t kj
�

4
h

 

2h
¥

å
k= M

e� t 2
k

!

�
4
h

 

2he� t 2
M + 2h

¥

å
k= M+ 1

e� t 2
k

!

�
4
h

�
2he� t 2

M + 2
Z ¥

t M

e� t2
dt

�

�
4
h

�
1 + 2ht M

t M

�
e� t 2

M

�
4
h

�
1 + 2ht M

qx

�
e� t 2

M :

Note that (1+ 2ht)e� t2
is a decreasing function of t for t � t0, where t0 := 2h=(1+

p
1 + 8h2)

and t0 < h < t N+ 1. Thus we have that

2h
¥

å
k= M

e� t 2
k

jz� t kj
�

4
h

�
1 + 2ht N+ 1

qx

�
e� t 2

N+ 1: (3.93)

We have, using
1

q
x2 + t 2

N+ 1

�
1

t N+ 1
and (3.91), (3.92) and (3.93), that

jTN(h;0)j �

p
2(1 + 2ht N+ 1)

pt N+ 1

�
1

(1 � q) t N+ 1
+

4
hq

�
e� t 2

N+ 1:

Choose q such that
1

(1 � q) t N+ 1
=

4
hq

;

i.e.
q =

4 t N+ 1

h+ 4 t N+ 1
:

Then we have that

jTN(h;0)j �
2
p

2 (1 + 2ht N+ 1) (h+ 4t N+ 1)
pht 2

N+ 1
e� t 2

N+ 1: (3.94)

Similarly, we have, using
x

q
x2 + t 2

N+ 1

� 1 and (3.91), (3.92) and (3.93), that

xjTN(h;0)j �
2
p

2 (1 + 2ht N+ 1) (h+ 4t N+ 1)
pht N+ 1

e� t 2
N+ 1: (3.95)

In a similar way we can prove the following result for T(h;1=2).
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Proposition 3.3.6. Supposetk is given by(3.25) andjz� tkj � h=4 for k = N + 1;N + 2; :::
and z= x+ iy with 0 � y < x . Then, for h> 0,

jTN(h;1=2)j �
2
p

2 (1 + 2htN+ 1) (h+ 4tN+ 1)
pht2N+ 1

e� t2
N+ 1; and (3.96)

jTN(h;1=2)j
jw(z)j

� (1 +
p

2p tN+ 1) jTN(h;1=2)j: (3.97)

Proof. Suppose that 0 < q � < 1, then we have, using (3.88) with a = 1=2, that

jTN(h;1=2)j �

p
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Then we have that

jTN(h;1=2)j �
2
p

2 (1 + 2htN+ 1) (h+ 4tN+ 1)
pht2N+ 1

e� t2
N+ 1 : (3.101)

Similarly, we have, using
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Proposition 3.3.7. Supposea = 0 or a = 1=2 and z = x+ iy with y � x � 0. Then, for

h > 0,

jTN(h;a )j �
(1 + 2ht N+ 1)

pt 2
N+ 1

e� t 2
N+ 1; and (3.108)

jTN(h;a )j
jw(z)j

�
(1 + 2ht N+ 1)(1 + 2

p
p t N+ 1)

pt 2
N+ 1

e� t 2
N+ 1: (3.109)

Proof. Suppose tk and t k be given by (3.25) and F(t) is given by (3.33). Then, for z= x+ iy
with y � x � 0,

jz2 � t2
k j2 = y4 + t4

k + x4 + 2x2y2 + 2t2
k (y2 � x2) � j z2 � t 2

k j2:

Thus, we have

jTN(h;a )j � 2h
¥

å
k= N+ 1

e� t 2
k jF(t k)j;

and, using (3.53),

jTN(h;a )j
jw(z)j

� (1 +
p

pjzj)

 

2h
¥

å
k= N+ 1

e� t 2
k jF(t k)j

!

� (1 +
p

2py)

 

2h
¥

å
k= N+ 1

e� t 2
k jF(t k)j

!

; y � 0:

Since
jz2 � t 2

k j2 = y4 + t 4
k + x4 + 2x2y2 + 2t 2

k (y2 � x2) � y4 + t 4
k ;

jTN(h;a )j �
2
p

2hy
p

¥

å
k= N+ 1

e� t 2
k

q
y4 + t 4

k

�

p
2y

p
q

y4 + t 4
N+ 1

�
2he� t 2

N+ 1 + 2
Z ¥

t N+ 1

e� t2
dt

�

�

p
2y(1 + 2ht N+ 1)

pt N+ 1

q
y4 + t 4

N+ 1

e� t 2
N+ 1:

Moreover

y
q

y4 + t 4
N+ 1

�
1

p
2 t N+ 1

and
y2

q
y4 + t 4

N+ 1

� 1:
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(iii) the approximationwN, with N � 14, is signi�cantly more accurate than the approxima-

tion (3.8) from Weideman [62];

Figure 3.2 below shows thatwN(z) is very accurate asjzj ! 0, and withN as small as9

the computed relative error is< 10� 12, which con�rms the calculations in Figure 3.1.

We will comment now on the accuracy and the ef�ciency of computingw(z) using the

approximationwN(z) given by(3.21)and its codew(z,N) in Listing A.3 in comparison with

the approximations(3.8), (3.11)and(3.16)and their codes. We do not have access to exact

values forw(z) and so we use four different accurate approximations tow(z):

(i) Our own approximationwN(z) with N = 20 computed by the callw(z,20) to the code

in Listing A.3;

(ii) Weideman's approximation(3.8)with N = 40 (this choice ofN gives maximum accu-

racy for this approximation), implemented by the callcef(z,40) in Table 1 [62];

(iii) The approximation(3.11)of Zagloul and Ali [63], implemented in theMatlab code

[64], supplied to us by the author, computed by the callFaddeyeva_v2(z,M) with

M = 13(the maximum value permitted by the code), whereM is the number of accurate

signi�cant �gures required, which must be in the range 4� M � 13;

(iv) The approximation(3.16)of Abrarov and Quine [1], implemented as the theMatlab

functioncomperf(z) of Abrarov and Quine [1, Appendix], which uses the method

(3.16) witha = 2:75 andM = 5.

The maximum absolute errors and computation times are shown in Table 3.1 (using Matlab

(R2015a) on a laptop with Intel core i7-4510U 2.00 GHz processor) forw(z,N) in Table A.3,

cef(z,40) in Table 1 of Weideman [62], comperf(z) of Abrarov and Quine [1, Appendix]

and the method of M. Zaghloul and A. Ali [63] as implemented inFaddeyeva_v2(z,13)

of [64]. The calculations are implemented forz = 10peiq , with p = � 6(0:0006)6 and

q = 0(p=400)p=2
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Algorithm Maximum absolute error Computation time in seconds
w(z,11) 1:11 � 10� 15 0.64

cef(z,40) 1:30 � 10� 15 1.46
comperf(z) 5:53 � 10� 10 0.90

Faddeyeva_v2(z,13) 3:92 � 10� 15 0.51
Table 3.1 Accuracy and computation times of the Matlab codes of the approximations (3.21), (3.8),
(3.11) and (3.16).
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Fig. 3.2 The surfaces of the absolute (top) and relative (bottom) errors of the approximation wN(z)
given by (3.21) with N = 9, where the exact value of w(z) is computed by w20(z).





Chapter 4

The 2D impedance half-space Green’s
function for the Helmholtz equation

4.1 Introduction

This chapter is concerned with the problem of calculating sound propagation from a mono-
frequency coherent line source above an impedance plane. The interest in this problem has
been motivated by the development of boundary element methods (BEMs) for the calculation
of outdoor sound propagation for many applications (e.g. [26], [11], [12] and [13]). These
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d0= jr � r0
0j be the distance from the image source to the receiver and r = kd0, where k is

the wave number that satisfies k = 2p=l where l is the wavelength.

The problem is to calculate the acoustic pressure at r, denoted by Gb (r;r0), due to the
source at r0, where b is the normalised admittance of the impedance plane with Re(b) > 0.
Gb (r;r0) (the Green’s function) satisfies the following conditions:

(i) the Helmholtz equation, that is

Ñ2Gb (r;r0) + k2Gb (r;r0) =
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deform the path L to the steepest descent path (see [35], [8] and [14]), and obtain [14]

Pb (r;r0) = P(G)
b + P(s)

b ; (4.11)

where

P(G)
b =

beir

p

Z ¥

� ¥
e� r t2

F(t) dt; (4.12)

with

F(t) := �
b + g(1 + it2)

p
t2 � 2i(t2 � z2

1)(t2 � z2
2)

; �
p
2

< arg
p

t2 � 2i <
p
2

; (4.13)

z1 :=
p

ia+ ; �
p
4

< arg
p

ia+ <
3p
4

; (4.14)

z2 :=
p

ia� ; 0 < arg
p

ia� <
p
2

; (4.15)

a� := 1 + bg�
q

1 � b 2
q

1 � g2; Re
q

1 � b 2 � 0; (4.16)

and

P(s)
b :=

beir

p
p e� ir a+

2
p

1 � b 2
ds; (4.17)

where

ds :=

8
>>><

>>>:

2; Imb < 0; Rea+ < 0

1; Imb < 0; Rea+ = 0;

0; otherwise

(4.18)

The integral representation (4.12) from [14] will be the starting point for our proposed
approximation of Pb .

Numerical computation of the solution of the problem (
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has been widely cited and applied (e.g. [41], [25], [7], [47] and [39]) as a well-established
method for solving this problem. In particular, it is used in many papers as an efficient
method for the solution of outdoor sound propagation problems via the BEM (e.g. [32], [34],
[49], [51]). The following representations for Pb (r; r0) is derived and used in [14]:

Pb (r;r0) =
b eir

p

Z ¥

0
t � 1=2 e� r t f (t) dt; Im(b) > 0 or Re(a+ ) > 0; (4.19)

and

Pb (r;r0) =
b eir

p

� Z ¥

0 2e
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and H is the Heaviside step function defined by

H(t) :=

8
>>><

>>>:

1; t > 0;

1=2; t = 0;

0; t < 0;

(4.32)

and

d(1)
+ :=

8
>>><

>>>:

2e� 2ipz1=h; y1 < 0 ;

1 + e� 2ipz1=h; y1 = 0 ;

2; y1 > 0:

(4.33)

La Porte [38] proved a bound on jPb � Ph;N;H
b j derived largely from Proposition 1.2.4 and

using, for F given by (4.13), that

MH(F) := sup
x2R;jyj= H

jF(x+ iy)j �
jb j + g

p
1 � H2

bM; (4.34)

where

bM := max
�

3;
2max(x2

1;x2
2) + 2

jH2 � y2
1jjH2 � y2

2j

�
; (4.35)

and x j = Re(zj ) and y j = Im(zj ) for j = 1;2.

La Porte [38] showed, using numerical calculations, that the approximation in (4.28)
achieves with N = 11 higher accuracy than the approximation (4.25), with n= 40 and m= 22,
in Chandler-Wilde and Hothersall [14] for 0:5 � r � 8:54, 0 � g � 1 and 0:1 � j b j � 1.

This chapter of the thesis builds on the work of La Porte [38] but extends this work
significantly. The main issues with the approximation Ph;N;H

b in (4.28) are that: (i) the
approximation formula blows up if the simple pole at z1 =

p
ia+ coincides with a quadrature

point at kh and is inaccurate in floating point arithmetic when z1 is close to kh; (ii) the
expression (4.31) blows up when a� = 2 and is inaccurate in floating point arithmetic when
a� is close to 2; and (iii) the bound (4.34) blows up when H = Im(z1) or H = Im(z1). In this
chapter of the thesis we address all these issues: we propose an approximation which is stable
for numerical calculations for r > 0, 0 � g � 1 and b with Re(b) > 0; we prove a rigorous
and uniform error bound for this approximation; and finally we show through systematic
numerical experiments that this approximation is at least as accurate as the approximation
(4.28) in La Porte [38] and is more accurate and more efficient than the approximation of
Chandler-Wilde and Hothersall [14].
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Recently, O’Neil et al. [47] propose a method of computing Pb (r; r0), for 0 � b � 1,
based on the following representation for Pb (r;r0):

Pb (r;r0) = I1 + I2;

where

I1 :=
ikb
2p

Z 1

0
H(1)

0 (kjr � er0j)eikbh dh ; er0 = ( x0; � (y0 + h)) ;

and

I2 :=
ikb
2p

Z ¥

� ¥

e�
p

l 2� k2(y+ y0) e�
p

l 2� k2� ikb

p
l 2 � k2

� p
l 2 � k2 � ikb

� eil (
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experiments to demonstrate the accuracy of the proposed approximationPb;N in comparison

with the approximations of Chandler-Wilde and Hothersall [14] and La Porte [38].

Let Pb (r ; r0) be given by equations(4.11)–(4.18)andH := min(0:9; eAN) with eAN :=q
2p(N + 1)=(

p
3r ), and recall that
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with

CN := ( jb j + 1)

2

4 384
p

10 (4jb j + 7)(1 + 4
p

p r )r 3=2

p3=2(N + 1)2
�

1 � e� 2p(N+ 1)=
p

3
� + 20

�
1 +

1
eAN

�
3

5 ; (4.46)

eCN := ( jb j + 1)

"
781

p
10p(4jb j + 7)(1 + 4

p
p r )

p
r

�
1 � e� 0:9p=hN

�
(N + 1)1=3 + eKN

#

and

eKN := 8KN

 

1 +
r 1=3

ap1=3H1=3(N + 1)1=3

!

; (4.47)

whereKN is given by(4.120)
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Remark 4.3.1. The advantage of choosing the branch cut for
p

i(a+ � 2) as in(4.51)is that

a cut from2 to + ¥ on the positive real axis in thea+ -plane is implied. This is convenient,

sincea+ � 2 is impossible unlessb � 1. Thus,
p

i(a+ � 2), considered as a function ofb ,

is analytic in the cut half-plane.

The formulas(4.51)and(4.52)for R1 andR2 are not numerically stable in �oating point

arithmetic whenb andg are close to zero, close to1 or whenb = g. We simplify them in

the following lemma to make them more stable in numerical calculations.

Lemma 4.3.1.For 0 � g � 1 andb in the cut half-plane, we have that

R1 = �
ie� ir a+

4
p

1� b2
; (4.54)

R2 =
ie� ir a�

4
p

1� b2
W; (4.55)

where

W:=

8
<

:
+ 1; if bb

<1.95599 7 [(�)]TJ/F103 11.9552 Tf 10.95 0 Td [(b)]TJ/F66 8.9664 Tf 8.034 3.455 Td [(g)]TJ/F96 11.9552 Tf266067 6.773 Td [(W)]TJ/F5g 0 G
/F66 11.669 - 6.773 Td [(b)]TJ/F66 8.9664 Tf 8.034 3.455 Td [(g)]TJ/F
ET
q
1 0 0 1 1620671 523.878 cm
[]0 d 0 J 0.466 w 261.96.96f 0 11.4 0 BT
/F69 11.9552 Tf 314..531 513.034 Td [(1)]TJ/F95 11.955261.96.965599 7 [(�)]TJ/F103 11.9552 Tf 10.95 0 Td [(b)]TJ/F66 8.9664 Tf 8.034 3. 0 Td [(�)]TJ/F100 11.9552 Tf 6.176 6.773 Td [(;)]TJ
023 11.9552 Tf 10.95- 6.773 Td [00 i b

i2 ; if o0(wrwise7 687. 11.9552 Tf 15.7f 793 Td [(=)]TJ/F[((4.55))]TJ
0 g 0 G Tf923 11.5731.9552 Tf -406.943 -34.542 Td [542 Td [(wher)37(e)]TJ/F96 11.9552 59988878 cmPr).474of.TJ/F[((4.55))]TJ
0 g 0  -15370 0 1 35Us-250(them [())]TJ/F66 11.9552 Tf 0.987 0 0 1 188.35446 -33.899 Td )20(v90.1(R)]TJ/F66 8.96(wher)37(e)]TJ/F935 72.82f 9Td [(1)]e�)]TJ
 11.9552 Tf 321. 2737Td [(i)]TJ/F103 8.9664 Tf 2.492 0 Td [(r)]TJ/F69 8.9664 Tf 5.667 0 Td [(a)]TJ/F102 6.9738 Tf 4.483 -1.345 Td [(+)]TJ
ET
q
1 0 0 1 153.888 561.973 cm
[]0 (wher)37(e)]TJ/Ff 711.83f 1.0 Td [(1)]TJ/F102 11.9552 Tf 14.944 1.886 Td [(=)]TJ/F95 11.9552 T 10.953 8.094 Td [(i)-111(e)]TJ/F95 8.411.955 9.96 4.34 Tda +TJ/F66 8.9664 Tf 8.034 3.455 Td [(g)]TJ/FF69 11.9552 Tf 1.005 0 Td [(a)]TJ/F102 69664 Tf 8.0377 -1.793 Td 0b
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where Wis given by (4.56),

d+ :=

8
>>><

>>>:

2e� 2ip(a + z1=h); y1 < 0 ;

1 + e� 2ip(a + z1=h); y1 = 0 ;

2; y1 > 0;

(4.73)

and H is the Heaviside step function given by (4.32).

4.3.1 Bounding the discretisation error

This section is concerned with bounding, for h > 0 and a = 0 or a = 1=2,

E� (h;a ) := I � I � (h;a );

where I and I � (h;a ) are given by (4.50) and (4.70), respectively.

Since F given by (4.13) is meromorphic for jIm(t)j < 1, we will be defining H throughout
this chapter as

H := min
�

0:9;
p
r h

�
: (4.74)

Then, we have the following result.

Proposition 4.3.1. Let h> 0 and H := min
�

0:9;
p
r h

�
. Then

jE� (h;a )j �
D(H) er H2=4� pH=h

1 � e� pH=h
; (4.75)

where

D(H) :=
512

p
10p(jb j + 1)(4jb j + 7)(1 + 4

p
pr )

p
r H4 +

2p
j1 � b 2j1=2 : (4.76)

Proof. Let z1 = x1 + iy1 and z2 = x2 + iy2 be given by (4.14) and (4.15), respectively. Select
e 2 (0;H=4) and consider the case jH � j y1jj � e and jH � y2j � e. Then, using Proposition
1.2.4, we have that

jE� (h;a )j �
2
p

p MH(F)
p

r (1 � e� 2pH=h)
er H2� 2pH=h; (4.77)
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and using equation (4.34) and noting x2
j � j zj j2 � 2 + 2jb j with j = 1;2, it holds that

MH(F) �

p
10(jb j + 1)
p

1 + H
max

�
3;

2max(x2
1;x2

2) + 3
e2(jy1j + H)(y2 + H)

�

�
p

10(jb j + 1) max
�

3;
7 + 4jb j

e2(jy1j + H � 4e)(y2 + H � 4e)

�

�
p

10(jb j + 1) max
�

3;
7 + 4jb j

e2(H � 4e)2

�
: (4.78)

We consider now the case jH � j y1jj < e or jH � y2j < e. Let D be the region in the
complex plane defined by

D := f z : 0 < Im(z) < Hgn
[

j= 1;2
Be(zj ); (4.79)

where, for j = 1;2,

Be(zj ) :=

8
<

:
f z : jz� zj j < eg; if jIm(zj ) � Hj < 2e;

f ; otherwise
(4.80)

and let, for j = 1;2,

gj = f z2 ¶D : jz� zj j = eg and G�
H = f z2 ¶D : z= t + iH ; t 2 Rg;

where ¶D is the boundary of D. Then we can show, recalling that g, F and C(h;a ) are given
by (1.7), (4.13) and (4.72), respectively, that

jE� (h;a )j �

�
�
�
�

Z

G�
H

e� r z2
F(z)(1 � g(z))dz

�
�
�
� +

2

å
j= 1

�
�
�
�

Z

gj

e� r z2
F(z)(1 � g(z))dz

�
�
�
� + jC(h;a )j:

(4.81)

If H � e < jy1j � H or H � e < y2 � H, then, using (1.8), (1.9) and (4.72), it holds that

jC(h;a )j �
p

2j1 � b 2j1=2

 
2e� 2pjy1j=h

1 � e� 2pjy1j=h
+

2e� 2py2=h

1 � e� 2py2=h

!

�
p

2j1 � b 2j1=2

 
4e� 2p(H� 4e)=h

1 � e� 2p(H� 4e)=h

!
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Combining the above inequalities, we find that

jF(t k)j �
8x2(jb j + 1)

q
1 + t 4

k

h 4
q

1 + t 4
k (t k + jx1j)( t k + x2)

(4.101)

�
8(jb j + 1) 4

q
1 + t 4

k

h(t k + jx1j)
(4.102)

�
8(jb j + 1)(1 + t k)

h(t k + jx1j)
; (4.103)

where the last line comes from

1 + t
p

2
� (1 + t4)1=4 �

�
(1 + t2)2� 1=4

� (1 + t):

Also, note that
d
dt

�
1 + t

jx1j + t

�
=

jx1j � 1
(t + jx1j)2 ;

thus we have that

jF(t k)j �
8
h

(jb j + 1) �

8
>>><

>>>:

1 + t N+ 1

jx1j + t N+ 1
; if jx1j � 1 ;

1; otherwise ;

(4.104)

but
1 + t N+ 1

jx1j + t N+ 1
�

�
1 +

1
t N+ 1

�
;

and hence the result follows.

Proposition 4.3.2. Leth> 0, N 2 N, F(t) be given by(4.13) andt k = khwith jt k � z1j � h=4
for k = N + 1;N + 2; :::. Then, for

TN(h;0) := 2h
¥

å
k= N+ 1

e� rt 2
k F(t k);

we have

jTN(h;0)j �
8 (jb j + 1)(1 + 2hr t N+ 1)

hr t N+ 1

�
1 +

1
t N+ 1

�
e� rt 2

N+ 1: (4.105)
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Proof. Using Lemma 4.3.2 we find that

jTN(h;0)j �
8MN (jb j + 1)

h

 

2h
¥

å
k= N+ 1

e� rt 2
k

!

=
8MN (jb j + 1)

h

 

2he� rt 2
N+ 1 + 2h

¥

å
k= N+ 2

e� rt 2
k

!

�
8MN (jb j + 1)

h

�
2he� rt 2

N+ 1 + 2
Z ¥

t N+ 1

e� r t2
dt

�

�
8MN (jb j + 1)

h

 

2he� rt 2
N+ 1 +

e� rt 2
N+ 1

rt N+ 1

!

=
8MN (jb j + 1)(1 + 2hr t N+ 1)

hrt N+ 1
e� rt 2

N+ 1:

To arrive at the last line we have used that, for x > 0 and r > 0,

2
Z ¥

x
e� r t2

dt = 2

 
e� r x2

2r x
�

Z ¥

x

e� r t2

2r t2 dt

!

<
e� r x2

r x
: (4.106)

Remark 4.3.2. We can show in a similar way, fortk = ( k+ 1=2)h with jtk � z1j � h=4 and

k = N + 1;N + 2; :::, that

jF(tk)j �
8
h

(jb j + 1)
�

1 +
1

tN+ 1

�
: (4.107)

Also, since tN+ 1 = t N+ 1 + h=2, it holds that

�
1 +

1
tN+ 1

�
�

�
1 +

1
t N+ 1

�
;

and hence we have that

jTN(h;1=2)j �
8 (jb j + 1)(1 + 2hr t N+ 1)

hr t N+ 1

�
1 +

1
t N+ 1

�
e� rt 2

N+ 1: (4.108)

4.3.3 Choices of the step-size h

This section is concerned with proposing explicit recommendations on how to choose the
step-size h, following the recommendations in La Porte [38].

For r > 0, H := min (0:9;p=(r h)) and t N+ 1 = ( N + 1)h with N 2 N, we define two
possible choices, h�

N and hN, for the step-size h. For both we choose the step-size to satisfy
the right hand equations in (4.109) and (4.111) below, i.e. to equalise the exponents in our
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Lemma 4.3.3. If b > 0 and a given by(4.114), then

1
1 + 3b

� a �
1

1 + b
: (4.115)

Given r > 0 and N 2 N we choose h > 0 as follows.

Remark 4.3.3. Let H := min(0:9; eAN) with eAN :=
q

2p(N + 1)=(
p

3r ), and set

h :=

8
>>>>>><

>>>>>>:

h�
N :=

s p
3p

2r (N + 1)
; eAN � 0:9

hN = a
�

pH
r (N + 1)2

� 1=3

; otherwise;

(4.116)

where a2 [1=(1 + 3b);1=(1 + b)] is given by

a =
3

s
1
2

+

r
1
4

+ b3 +
3

s
1
2

�

r
1
4

+ b3; (4.117)

and

b =
r 2=3H4=3

12p2=3(N + 1)2=3 : (4.118)

The following result bounds the expression

1 + 2hr tN+ 1

hr tN+ 1

for the choice of h given in Remark 4.3.3 which will be used to simplify further the bound
(4.105) in Proposition 4.3.2.

Lemma 4.3.4. Let r > 0, N 2 N and eAN :=
q

2p(N + 1)=(
p

3r ), and h be given as in

Remark 4.3.3. Then, fort N+ 1 = ( N + 1)h,

1 + 2hr t N+ 1

r ht N+ 1
�

8
>>><

>>>:

5
2

; if eAN � 0:9;

(N + 1)1=3 KN; otherwise;

(4.119)
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where

KN :=
2

(N + 1)1=3 +
2

r 1=3p2=3H2=3 +
r H2

8p2(N + 1)4=3 : (4.120)

Proof. For h = h�
N =

s p
3p

2r (N + 1)
, we have

1 + 2r ht N+ 1

r ht N+ 1
= 2 +

1
r (N + 1)(h�

N)2 = 2 +
2

p
3p

� 2:5:

For h = hN = a
�

pH
r (N + 1)23tN+ 1

= 2 N + 1) 1=p

r 1=3( p
H )2=3=2 :1(N + 1) 1=p

r 1=3( p
H )2=3
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and hence the �rst bound follows.

Now we consider the caseH = 0:9 andh = hN = a
�

pH
r (N + 1)2

� 1=3

. Using(
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Pb ;N given by (4.36) in comparison with the approximations (4.25) and (4.28). System-
atic numerical calculations are implemented for q0 = 0o(10o)90o, jb j = 0:1(0:1)0:999 and
arg(b) = � 89o(8:9o)89o, and the Faddeeva function in P(2)

n;m given by (4.24) is computed by
Wiedeman’s approximation (3.8), implemented by the call cef(z,40) in Table 1 [62].

For convenience, we denote in this section the approximation (4.28) in La Porte [38] by
P(1)

N and our approximation Pb ;N given by (4.36) by P(2)
N . We do not have access to exact

values for Pb and so using different accurate approximations to Pb :

(i) Our approximation Pb ;N given by (4.36) with N = 100, computed by the Matlab code
in Listing A.4;

(ii) Chandler-Wilde and Hothersall’s approximation P100;100 given by (4.25) computed by
a Matlab
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(ii) With N = 11, our approximation Pb
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r = kd
0
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r = kd
0

d
0

Eapprox E(4)
9 E(4)

11 E(4)
21

0:5 0:0796 5:8 � 10� 4 1:7 � 10� 5 3:0 � 10� 6 9:8 � 10� 9

0:75 0:119 8:1 � 10� 5 2:7 � 10� 6 7:1 � 10� 7 2:5 � 10� 9

1:125 0:179 7:1 � 10� 6 1:3 � 10� 6 2:8 � 10� 7 4:9 � 10� 10

1:688 0:269 3:5 � 10� 7 5:3 � 10� 7 9:4 � 10� 8 7:6 � 10� 11

2:531 0:403 8:3 � 10� 9 1:8 � 10� 7 2:7 � 10� 8 8:6 � 10� 12

3:793 0:604 8:4 � 10� 11 5:2 � 10� 8 6:1 � 10� 9 7:1 � 10� 13

5:70 0:906 7:0 � 10� 13 1:3 � 10� 8 1:1 � 10� 9 4:0 � 10� 14

8:54 1:36 4:0 � 10� 13 2:5 � 10� 9 1:7 � 10� 10 6:7 � 10� 15

12:814 2:039 4:0 � 10� 13 5:2 � 10� 10 2:2 � 10� 11 1:1 � 10� 14

19:222 3:059 3:9 � 10� 13 9:7 � 10� 11 2:7 � 10� 12 3:2 � 10� 15

28:833 4:589 3:9 � 10� 13 1:9 � 10� 11 3:1 � 10� 13 5:0 � 10� 15

43:249 6:883 3:9 � 10� 13 4:3 � 10� 12 3:7 � 10� 14 3:7 � 10� 15

64:873 10:325 3:9 � 10� 13 1:7 � 10� 11 4:1 � 10� 14 6:0 � 10� 15

97:31 15:487 3:9 � 10� 13 1:5 � 10� 11 6:8 � 10� 14 7:8 � 10� 15

145:96 23:230 3:9 � 10� 13 7:4 � 10� 12 5:8 � 10� 14 6:1 � 10� 15

218:95 34:847 3:9 � 10� 13 1:0 � 10� 11 5:0 � 10� 14 6:2 � 10� 15

328:42 51:633 3:9 � 10� 13 4:1 � 10� 12 2:2 � 10� 14 1:3 � 10� 14

492:63 78:404 3:9 � 10� 13 3:0 � 10� 12 1:8 � 10� 14 2:9 � 10� 15

738:95 117:608 3:9 � 10� 13 2:9 � 10� 12 1:2 � 10� 14 7:6 � 10� 15

1108:4 176:407 3:9 � 10� 13 2:0 � 10� 12 9:9 � 10� 15 4:9 � 10� 15

Table 4.3 Maximum values of Eapprox and E(4)
N given by (4.129) and (4.133), respectively, with

N = 9;11;21, for q0 = 0o(10o)90o, jb j = 0:1(0:1)0:999 and arg(b) = � 89o(8:9o)89o.
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comparison with La Porte’s approximation (4.28).
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Fig. 4.3 Accuracy of our approximation (4.36), as a function of r , in comparison with La Porte’s
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98 Concluding remarks and further work

In Chapter 4, building on the works of Chandler-Wilde and Hothersall [14] and La Porte
[38], we extended and improved the approximation of La Porte [38] by proposing a more
stable (in floating point arithmetic) approximation of the 2D impedance half-space Green’s
function of the Helmholtz equation. We proved a uniform bound on the absolute error
of this approximation and we showed, using systematic numerical calculations, that our
approximation is more accurate and more efficient than the approximation of Chandler-Wilde
and Hothersall [14].

We have achieved our objectives in this thesis and we hope that the presented approx-
imations will be of great benefit for the wide range of applications of these three special
functions.

5.2 Further work

It was shown in this thesis that the truncated modified trapezium rule given by (1.23) is an
accurate and efficient method to approximate three special functions which can be written as
integrals of the form

I :=
Z ¥

� ¥
e� r t2

F(t); dt; for r > 0; (5.1)

where F is an even meromorphic function with simple poles in a strip surrounding the
real line. It is of interest to investigate further to what extent the methods of this thesis are
applicable to other special functions. In particular, we summarize below suggested extensions
to the work of this thesis, motivated by our theoretical and numerical results, as follows:

(i) The Voigt function, denoted by V(x;y), is defined as V(x;y) = Re(w(z)) , and its
derivatives satisfy that

¶V
¶x

= � 2Re(
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(iii) Additionally, it is interesting to investigate to what extent the methods of Chapter 4 are

applicable to the 3D impedance half-space Green's function for the Helmholtz equation

[14], to the 2D case of an in�nite periodic array of point sources above an impedance

plane [28], and the related important 2D case of an in�nite periodic array of point

sources in free space [40]. In all three cases integral representations of the form(5.1)

are relevant withF meromorphic.
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Appendix A

Matlab codes

A.1 Matlab codes to compute Fresnel integrals

Listing A.1 Matlab code to evaluate FN(x) given by (2.12)

1 f u n c t i o n f = f r e s n e l ( x ,N)
2 s e l e c t = x >=0;
3 f = z e r o s ( s i z e ( x ) ) ;
4 i f any ( s e l e c t ) , f ( s e l e c t ) = F ( x ( s e l e c t ) ,N ) ; end
5 i f any (~ s e l e c t ) , f (~ s e l e c t ) = 1� F(� x (~ s e l e c t ) ,N ) ; end
6 f u n c t i o n f = F ( x ,N)
7 h = s q r t ( pi / ( N+ 0 . 5 ) ) ;
8 t = h * ( (N: � 1 : 1 ) � 0 . 5 ) ; AN = pi / h ;
9 t 2 = t . * t ; t 4 = t 2 . * t 2 ; e t 2 = exp(� t 2 ) ;

10 r o o t i = exp ( i * pi / 4 ) ;
11 z = r o o t i *x ; x2 = x . * x ; x4 = x2 . * x2 ; z2 = i *x2 ;
12 S = (� e t 2 ( 1 ) . / ( x4+ t 4 ( 1 ) ) ) . * ( z2+ t 2 ( 1 ) ) ;
13 f o r n = 2 :N
14 S = S + (� e t 2 ( n ) . / ( x4+ t 4 ( n ) ) ) . * ( z2+ t 2 ( n ) ) ;
15 end
16 ez = exp ( ( 2 *AN* i * r o o t i )* x ) ;
17
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Listing A.2 Matlab code to evaluate CN(x) and SN(x) given by (2.14) and (2.15)

1 f u n c t i o n [C , S ] = f r e s n e l C S ( x ,N)
2 h = s q r t ( pi / ( N+ 0 . 5 ) ) ;
3 t = h * ( (N: � 1 :1) � 0.5) ; AN = pi / h ; r o o t p i = s q r t ( pi ) ;
4 t 2 = t .
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A.2 Matlab code to compute Faddeeva function
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34 end
35 f u n c t i o n f = w3 ( z ,N)
36 z2 = z . * z ; az = (2 i /AN) * z ;
37 a = h * ( (N: � 1 :1) + 0 . 5 ) ; a2 = a . ^ 2 ; e t 2 = exp(� a2 ) ;
38 S1 = e t 2 ( 1 ) . / ( z2� a2 ( 1 ) ) ;
39 f o r n = 2 : N
40 S1 = S1 + e t 2 ( n ) . / ( z2� a2 ( n ) ) ;
41 end
42 h0 = 0 . 5 * h ;
43 S0 = exp(� h0 . ^ 2 ) . / ( z2� h0 . ^ 2 ) ;
44 f = az . * ( S0 + S1 ) ;
45 end
46 end



A.3 Matlab code to compute Pb 109

A.3 Matlab code to compute Pb



110



A.3 Matlab code to compute Pb 111

65 i f V1 == V2
66 V = 1 ;
67 e l s e
68 V = � 1;
69 end
70 Cm = � 2*V* exp ( � 1 i * rho . * am ) . * h e a v i s i d e (H� imag ( z2 ) ) . / ( 1 + exp

( � 2*1 i * pi * z2 . / h ) ) ;
71 TC = pi *( Cp + Cm) . / ( 2 * s q r t (1 � beta . ^ 2 ) ) ;
72 t = h . * ( ( N: � 1 :1 ) + 0 . 5 ) ; t 2 = t . ^ 2 ; h0 = 0 . 5 . * h ; e t 2 = � exp

(� t 2 . * rho ) ;
73 s1 = beta + gamma . * ( 1 + 1 i * t 2 ) ; s2 = s q r t ( t2 � 2*1 i ) ;
74 s3 = t2 � 1 i * ap ; s4 = t2 � 1 i *am ;
75 S1 = e t 2 ( 1 ) . * s1 ( 1 ) . / ( s2 ( 1 ) . * s3 ( 1 ) . * s4 ( 1 ) ) ;
76 f o r n = 2 : N
77 S1 = S1 + e t 2 ( n ) . * s1 ( n ) . / ( s2 ( n ) . * s3 ( n ) . * s4 ( n ) ) ;
78 end
79 A = � ( beta + gamma . * ( 1 + 1 i *h0 . ^ 2 ) ) . * exp(� rho . * h0 . ^ 2 ) ;
80 B = s q r t ( h0 . ^ 2 � 2*1 i ) . * ( h0 ^2 � z1 . ^ 2 ) . * ( h0 ^2 � z2 . ^ 2 ) ;
81 I = ( beta . * exp (1 i * rho ) / pi ) . * 2 * h . * ( S1 + A . / B) ;
82 f2 = I + ( beta . * exp (1 i * rho ) / pi ) . *TC ;
83 end
84 end




