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property for C*-algebras given in [13], the extreme extension property for

JB*-triples does not imply the Cartan extension property.

The thesis is organised as follows.

Chapter 1 contains no new results. Its purpose is to collect together the
well-known background of JB*-triples which is fundamental for the under-
standing of the remainder of the thesis. Chapter 1 gives priority to key
results and concepts which will be used frequently in the sequel. Known
material which is used infrequently is introduced in the place where it is

first needed.

Chapter 2, which is largely expository, contains Banach space theory
appropriate to the theme of this thesis and sets the scene. In addition
to some necessary background material, the second chapter also contains
a brief discussion of Banach spaces X for which all closed subspaces have
the extension property in X. It is pointed out that Hilbert spaces are the
only JB*-triples with this property. The chapter concludes with a brief
discussion of co-sums of closed subspaces of a Banach space X in relation

to the extreme extension property.

The focus of Chapter 3 is on unique norm preserving extension of predual
elements of Cartan factors. When C is a Cartan factor and JBW*-subtriple
of a Cartan factor D it is shown (Theorem 3.3.4) that the existence of a
single element p of 0.(C. 1) with unique extension in d.(D.. 1) implies that
the same is true of every element of 0.(C. 1) and analysis is made of Cartan
factor inclusions that force this property, summarised in Theorem 3.3.11.

When this partial unique extension condition compels C to be an inner
ideal is considered and conclusions drawn (for example, Theorem 3.4.8).

Turning attention to norm one non-extreme elements in the predual of C,



one of our key results (Theorem 3.5.6) is that unique norm one extension of
just one of these forces C to be an inner ideal. The chapter concludes with

applications to von Neumann algebras.

Extreme points of the dual ball of a JB*-triple live on Cartan factors con-
tained in the atomic part of the second dual, allowing the work of Chapter
3 to be brought to bear, in Chapter 4, upon unique extension theory of ele-
ments of d.(A}) to 0.(B;) when A is a JB*-subtriple of a JB*-triple B and
consequently upon the situation when A has the extreme extension prop-
erty in B, and connections with representation theory is made. The Cartan
extension property is introduced and characterisations given in terms of a
stronger unique extension property and of inner ideal structure of atomic
parts (Theorem 4.4.5). In an extension of Theorem 3.5.6, a main conclusion
of Chapter 4 is that a norm one atomic functional has a unique extension
to a norm one atomic functional if and only if it has a unique norm one ex-
tension (Theorem 4.5.1) and a discussion of the atomic extension property
evolves. A brief review of repercussions for appropriate state extensions in

the category of JB*-algebras is provided.

Chapter 5 culminates in a solution of the extreme, Cartan and atomic
extension properties of a separable JB*-subtriple in a JIBW*-triple and, in
so doing, extends C*-algebra work of [13], [18] to the JB*-triple setting. To
acquire this solution we are lead into di Lerknt areas, obtaining a number of
independently interesting results in Banach space properties of JB*-triples
along the way. In particular, for every JB*-triple A it is shown that weak
sequential convergence in d. (A7) coincides with norm convergence (Theorem
5.3.7). When A is separable, exploiting an important result in [19], we
deduce that weak* sequential convergence and norm convergence coincide
in 0. (A7) precisely when A is a weakly compact JB*-triple. This enables the
above mentioned solution. The chapter begins with a discussion of weakly

compact JB*-triples in which a new ‘inner ideal’ equivalence is included.
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Chapter 1

Jordan Structures

1.1 Introduction



The papers [38], [39] and [41] of Friedman and Russo serve as a good
introduction to the properties of JB*-triples. ‘Concrete’ JB*-triples, now
known as JC*-triples, were first studied by Harris in [45] and [46] under the
name J*-algebras. Although now firmly a branch of functional analysis and
operator algebra, JB*-triples have their origin in the theory of bounded
symmetric domains. The equivalence of JB*-triples and Banach spaces
whose open unit ball is a bounded symmetric domain is due to Kaup [52].
A survey and history of this area (not discussed in this thesis) is given in
[20].

The reader is referred to the books of Pedersen [61] and Rudin [63] for
the basics of functional analysis. Relevant material on C*-algebras can be
found in [58] and [60].

General mathematical notation used throughout this thesis is standard.
If X is a Banach space, X; and S(X;) denote the closed unit ball and unit
sphere of norm one elements, respectively. In the usual way, X is regarded
as being a subspace of X** and X* is identified with the weak* continuous
linear functionals on X**. Our usage of ‘c-convex sum’ includes ‘convex
sum’. Thus a o-convex sum of a Banach space X is a finite or infinite series

AnXn Where A > 0 for all n and I%L 1. If K is a convex set 0.(K)
denotes the set of extreme points of K. For a locally compact Hausdor (]
space S, Cp(S) stands for the continuous functionals vanishing at infinity.
The notations R, C and H stand for the real numbers, complex numbers

and the quaternions, respectively.



1.2 Algebras

By an algebra shall be meant a complex linear space A together with a
bilinear map, m: Ax A - A, referred to as a product. If accompanied by

a conjugate linear map of order two, a B a*, such that
(m(a, b))* = m(b*, a’)

then, with respect to 11, a 3 a* is an involution and A is a *-algebra. The

powers of an element a may be defined inductively by
a"! =n(@",a), for all n 11

In this generality no assumption is made concerning commutativity nor
associativity of products. In particular, the above definition of powers is

one-sided and we need not have (a")* = (a*)", in the case of a *-algebra.

1.3 Jordan Algebras

An algebra A with product, (a,b) B a-b, is said to be a Jordan algebra
if
aob = bea and a-c(bca?) = (a-b)e-a

The associated Jordan triple product is
{acbeoc} = (@aeb)ec + (cob)oa — (a=c)=h.

Jordan algebras are commutative but not necessarily associative. An asso-
ciative Jordan algebra is said to be abelian.

Let a belong to A, where A is a Jordan algebra. We have, for m,n L]

am+n — am o al’l

from which it follows that the Jordan subalgebra generated by a is abelian.



The multiplication operator T, and quadratic operator U, are defined
on A by
Ta(b) = aeb and Uy(h) = {a-b-a}.



An ideal of a Jordan algebra A is a linear subspace | for which A< 1 is
contained in 1. In which case, A/1 is canonically a Jordan algebra and I
is, in particular, a subalgebra of A. A quadratic ideal of a Jordan algebra
A is a linear subspace | for which Ug(l) is contained in A, for all elements

ain A.

1.4 Complex Jordan *-Triple Systems

1.4.1 Throughout this thesis a Jordan *-triple system shall mean a com-
plex linear space A together with a triple product, {---}: A® - A, linear
and symmetric in the outer two variables, conjugate linear in the middle

variable and satisfying the main identity

{ab{xyz}} = {{abx}yz} + {xy{abz}} — {x{bay}z}.

Given a and b in A, where A is a Jordan *-triple system, the operators
D(a,b) and Q,p 0N A



Other useful identities (an extensive list can be found in [57]) are
(i) DX, Y)Qx = QxD(y,x)
(i) D(Qx(¥).y) = D(x,Qy(x))
(i) Qo.n = QxQyQx
(iv) [D(x,y),D(a,b)] = D({xya},b) — D(a, {bxy}), where [-, ] denotes
the commutator.

By means of the above identity (b), and separately that of (iv) — the
latter in conjunction with liberal use of the fact that the triple product is

symmetric in the outer variables, we have the following.

Proposition 1.4.3

The following are equivalent for a Jordan *-triple system A.

(@) D(x,x)D(y,y) = D(y,y)D(x,x), for all x,y Al
(b) D(x,y)D(a,b) = D(a,bh)D(x,y), for all a,b,x,y Al

(c) {xy{abc}} = {x{yab}c}, for all a,b,c,x,y LAl

A Jordan *-triple system satisfying any of the equivalent conditions of
Proposition 1.4.3 is said to be abelian.
Given an element a in a Jordan *-triple system A, the odd ‘powers’ of

a are defined inductively by
al = a, a®*V = faa®Va}, n LI

The set of all odd powers of a is an abelian subtriple of A, the Jordan
*-triple in A generated by a.

Let m: A — B be a linear map between Jordan *-triple systems. If
n({abc}) = {n@n)n(c)}, forallab,c CA

then 1 is said to be a triple homomorphism. In fact, by polarisation, m is a

triple homomorphism if

n({aaa}) = {n(@)n(a)n(a)}, foralla CA



1.4.4 Significant classes of Jordan *-triple systems arise from Jordan *-

algebras and associative *-algebras in a way now described.

(@) Let A be a complex Jordan *-algebra. Then A is a Jordan *-triple

system with respect to the triple product
{abc} = {a~°b*ec} = (a°b*)ec+a-(b*=c)—(a=c)eb".
(b) If A'is an associative complex *-algebra, so that A is a special Jordan

*-algebra via the special Jordan product a~b = %(ab + ba), then A is

a Jordan *-triple system via
{abc} = %(ab*c + ch*a).

We note that (b) is a special case of (a).

1.4.5 Let | be a linear subspace of a Jordan *-triple system A. In order

of increasing generality, | is said to be

(@) an ideal of A if {IlAA} + {AlA} is contained in I;
(b) an inner ideal of A if {lAl} is contained in I;

(c) a subtriple of A if {I11} is contained in 1.

By the polarisation identities of 1.4.2 the conditions (b) and (c) are respec-

tively equivalent to

(b)) {xAx} CLlfor all x [

(¢
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We write e [CTlwhen e and T are orthogonal and e [Tlwhen f —e is a
tripotent orthogonal to e.
Since, for j [30,1,2}, £ [CA;(e) if and only if 2{eef} = jf, the

following observation is a consequence of 1.4.2(iv).



1.5 JB*-Algebras

1.5.1 A JB*-algebra is a Jordan *-algebra and Banach space A satisfying



The latter set is the spectrum of a [CAL, and coincides with the set
{\ CQA:a— Al is not invertible in A}.

The class of JB*-algebras includes all C*-algebras. A C*-algebra A is a

JB*-algebra via the special Jordan product
1
aoh = 5(ab+ba)

and Ag, is a JB-algebra. A JC*-algebra is a JB*-algebra that is (isomet-
rically) Jordan *-isomorphic to a norm closed Jordan *-subalgebra of a
C*-algebra. The self-adjoint part of a JC*-algebra is called a JC-algebra.
The canonical example of a JB*-algebra that is not a JC*-algebra is the
exceptional algebra M$ of the 3 < 3 hermitian matrices over the complex
octonions (see 1.11.1 (6)).

A JW*-algebra is a JC*-algebra with a predual. The second dual A**
of a JC*-algebra A is a JW*-algebra. The following Gelfand-Naimark the-
orem shows that every JBW*-algebra decomposes into an orthogonal sum

of ‘special’ and ‘exceptional’ weak* closed ideals.

Theorem 1.5.2 [66, 3.9]

Every JBW*-algebra is an [J-sum of the form

M [CCI{X,MJ)

where M is a JW*-algebra and X is a compact hyperstonean space. Hence,

every JB*-algebra is weak* dense in a JBW*-algebra of this form.

15



1.5.3 The set of positive elements of a JB*-algebra A,
A, = {a%:a A},

is stable under addition and by multiplication by positive scalars. Moreover,

Asa = A+ — A4. The set of positive linear functionals on A is
Ay = {¢ LA": ¢(A+) L]0 c0)}.
The quasi-state space of A,
Q(A) = {¢ LA, : [GLTTY = AL nA,
IS a convex weak*-compact subset of Aj. The state space of A
S(A) = {p LA":p(1) =1= [pI}]

where 1 is the identity element of A**, is the convex set of positive linear

functionals of norm 1. We have

0:(Q(A)) \ {0} = 0e(S(A)).
This latter set is the set of pure states of A and is denoted by P (A).

A positive linear functional ¢ on a JB*-algebra A is said to be faithful

(kerp) n A = {0}

The normal states of a JIBW*-algebra M are the weak*-continuous states

of M.

16



1.6 JB*-Triples

A JB*-triple is a complex Banach space and a Jordan *-triple system A

such that
(a) HAaa} = @IZ]for all a A

(b) for each a [CA, the operator D(a, a) is hermitian with non-negative

spectrum.

Every norm closed subtriple of a JB*-triple is a JB*-triple. A JBW*-
triple is a JB*-triple M with a predual M,. By [48, 3.21, 3.24] and [6,
2.1], such a predual is unique and the triple product on a JBW*-triple is
separately weak* continuous in each variable. The second dual of a JB*-
triple is a JBW*-triple containing A as a JB*-subtriple [26].

If e is a tripotent in a JBW*-triple M the Peirce subspaces M;(e) are
JBW*-subtriples of M for j = 0,1 and 2, and My(e) is a JBW*-algebra
with the product and involution given in 1.4.4,

A fundamental result concerning triple homomorphisms is the following.



For any pair of complex Hilbert spaces H and K the Banach space of

operators B(H, K) with triple product
1
{abc} = E(ab*c + ch*a),

is (leblised (1) T Jt24a6355T-251.74-33.624 Td[(is)-3IW*-sub(duct)] T I6x



1.7 Local JB*-algebra structure

If x is an element of a JB*-triple A, A and A(X






The classification of norm closed inner ideals in a JB*-triple by unique

extensions is fundamental.

Theorem 1.8.3 [33, 2.5, 2.6]
Let I be a JB*-subtriple of a JB*-triple A. Let J be a JBW*-subtriple of a
JBW*-triple M.

(@) 1 is an inner ideal of A if and only if each p in I* has unique norm

preserving extension in A*.

(b) J is an inner ideal of M if and only if each p in J, has unique norm

preserving extension in M,.



The following is an amalgamation of [30, 85] and [35, &4].

Theorem 1.8.6
Let M be a JBW*-triple.

(a) Every structural projection on M is weak* continuous and contractive.

(b) There is a bijection from the set of all structural projections of M onto

the set of all weak* closed inner ideals of M given by

P B P(M).

1.9 Orthogonality

1.9.1 The notion of orthogonality of tripotents (see remarks following
Proposition 1.4.9) in JB*-triples generalises.

Let A be a JB*-triple. Elements a and b in A are said to be orthogonal

D(a,b) = 0.

(D(a,b) =0 if and only if D(b,a) =0 [34, 3.1].) Leta,b CAland Sand T

be subsets of



Theorem 1.9.2
Let A be a JB*-triple. Let S he a subset of A, B and C be JB*-subtriples
of A, | a norm closed inner ideal of A and let J be a norm closed ideal of

A.

(a) S* is a norm closed inner ideal of A, and is an ideal of A if S is an
ideal of A. Moreover, S [S1+.

(b) As(e)* = Aq(e) for each tripotent e in A.
(c) If B and C are orthogonal (that is, B [C), then
B+C =B L .C
is a JB*-subtriple of A containing B and C as norm closed ideals.

(d) 1 nJ ={0} ifand only if I [Tl
(e) If A is a IBW*-triple and J is weak* closed then

A=J+3t (=J LI

Lemma 1.9.3

Let | be a weak* closed inner ideal in a JBW*-triple M and let (J;) be a

family of mutually orthogonal weak* closed ideals of M. Then

(T o TR | 1
I n Ji = |ﬂJi.

Proof

Let R denote the left hand side, above. Let x R and choose y ["R such
that x = {yyy} (see 1.7.2). We have y = I;i,lwhere xij [ for all i.
Therefore, since the x; are mutually orthogonal

L 1 L1
x = {yxiy} L1 1 nJj

proving that R is contained in I n Jj. The converse is clear. O
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The orthogonal decomposition of weak* closed ideals in a JBW*-triple
described by Theorem 1.9.2(e) is a starting point of an elaborate decompo-
sition theory of ‘types’ of IBW*-triples [48], [49], [50].

A IJBW*-triple M is said to be type | if each non-zero weak* closed
ideal of M contains a non-zero abelian tripotent, and to be continuous if
M contains no non-zero abelian tripotents. If M is a JBW*-triple and J is
the smallest weak* closed ideal of M containing all abelian tripotents of M
then

M = J I,

where J is type | and J* is continuous [48, (4.13)].

Let M be a IBW*-triple. If M has no non-trivial weak* closed ideals it
is referred to as a factor. (When M is a JIBW*-algebra this is equivalent to
M having trivial centre.) Since non-zero abelian tripotents in a factor are
minimal tripotents [48, (4.9)], the IBW*-triple factors of type I, also called
Cartan factors (see Section 1.11 for details), are the factors that posses
a minimal tripotent. The cardinality of a maximal orthogonal family of
minimal tripotents in a type | factor M is an invariant referred to as the
rank of M.

Let e and T be orthogonal tripotents of a JB*-triple A. Then A,(e) is
orthogonal to A,(f). Indeed,

f CAh(e).

Thus, the inner ideal Ap(e) must contain the inner ideal generated by f.
That is,
A(F) CAy(e) = Az(e)".

The following generalises this situation.
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Lemma 1.9.4
Let a and b be elements of a JB*-triple A, and let r(a) and r(b) be the

corresponding range tripotents in A**. The following are equivalent.
(a) a [CAd
(b) A(a) CA[D).
() Az (r(a)) LA (r(b)).
(d) r(a) Cx).

Proof
The implications (b) [{a)] (c¢) C(d)lare obvious and (d) 1



It follows that if a and b are orthogonal elements in a JB*-triple A, so
that by Theorem 1.9.2(c) the JB*-subtriple

A(@) +A(b) = A(a) LA(b),

we have that

[@h b= max (&L I

1.10 Support Tripotents

The key notion of support tripotents of functionals in the predual of a

JBW*-triple, and much more, was studied in the seminal paper on JBW*-






In the next statement, (a) is a consequence of Theorem 1.8.3, Theorem
1.10.2 and 1.4.6(h), and (b) is due to Theorem 1.10.2 and the property that
if J is a norm closed ideal of A and u is a minimal tripotent of A** then

u CIr or u C@*)* .

Corollary 1.10.4

Let A be a JB*-triple. Let I be a norm closed inner ideal of A and let J be

a norm closed ideal of A.

(@) {p LAl(A]) :s(p) LI} — 0e(l]) (P E- pl))
is a bijection, the inverse of which is the norm one unique extension

map.
(b) Let p CJI(AT). Then
() s(p) LLIr* if and only if p(J) 8 {0}.
(i) s(p) C.IA* if and only if p(J) = {0}.
1.10.5 Two functionals in the predual of a JBW*-triple are said to be

orthogonal if their support tripotents are orthogonal.

Let p,T [M,, where M is a JBW*-triple such that p and 1 are orthog-

onal and
ol ¥+ O+ 1L
Since
P = pePas(p)) and s(p) Ls(r),
we have

p(s(m) = 0 = 1(s(p))-

Further, since [S{p) —s(t)[= 1 and (p —1)(s(p) —s(1)) = 2, we have that

[t E 2.

28



Lemma 1.10.6

Let p [M.,, where M is a JBW*-triple. Suppose that p is a g-convex sum

1 L1
P = AnPn ( A=1 A>0forall n)

of mutually orthogonal norm one functionals p, [M,. Then

1
[P+ 1 and s(p) =  s(pn)

Proof

Since pn(s(pm)) = 0 whenever m 8 n, we have
Ll 1l

p s(pn) = A = L
L 1
Therefore, s(p) C_1s(pn), by Theorem 1.10.1 (b). On the other hand
L 1

AnPn(s(p)) = 1,

giving pn(s(p)) = 1 and hence s(pn) [sS(p), for all n. Thus, since

L 1
s(pn) [slp),

the required equality results. O

1.11 Cartan Factors

The Cartan factors (defined below) are exactly the type | IBW*-triple fac-
tors [49, 1.8]. There are six generic types. Namely, rectangular, hermitian,
symplectic factors and spin factors, all four of which are JC*-triples, and
two further exceptional factors By, and Mé.

In the following, complexifications of JB-algebras are assumed to be in



1.11.1
(1) B(H, K) is the rectangular factor, My ,. We write M, , = M.
(2) For n CZ1{x [BI(H) : x* = x} is the hermitian factor S,.
(3) For n C41{x [BI(H) : xt = —x} is the symplectic factor A,.
Remarks

(@) If m [Cn)so that K may be regarded as a closed subspace of H, we

have

Mmn mn,m

induced by x O x*. For finite m and n, My, is the space of m x n

complex matrices.
(b) The hermitian factor S, is a JBW*-algebra Jordan *-isomorphic to
B(Hr)sa + IB(HRr)sa,
where Hg is the real Hilbert space such that
H = Hg+iHg, givenby Hg = {h [CH:jh=h} [43, §7].

For2 [nk oo, S,



(4) Spin Factors
For any cardinal number n, the JBW*-triple spin factor V, is the
complexification

Un + iU,
of the JBW-algebra real spin factor [43, §6]
Us = L, [R1,

where L, is a real Hilbert space of orthonormal dimension n [Z1with

product and norm given by
(@a+al)e(b+pB1l) = Ba+ab+ ([@b[Fapf)l
and
[aH ol [al # |a| ([Cdizds the Hilbert norm).

The spin factors V,, are reflexive and topologically equivalent to the
complex Hilbert space of orthonormal dimension n + 1. By a spin
factor V we shall always mean a complex spin factor V,, for some n,

unless otherwise explicitly stated.

The generic types of the two exceptional factors are next given. A clear

account of these factors can be found in [36].

(5) B1. This denotes the sixteen dimensional factor composed of the

space of 1 < 2 matrices over the complex octonions.

(6) M3



1.11.2 Type | IBW*-algebra factors
The five kinds of Cartan factor My, S,, Az (in the sense of (¢)), V, and
M2 are the generic types of JBW*-algebra factors of type 1. There is some

overlap with low dimensional spin factors. Namely,

V2 Q, V3 mz, and V5 —'I:I



In particular, (a) realises By, as a subtriple of M8. We note that (b)

realises M, , as an inner ideal of Mg (for m [Csthnd n [Cf)land (c) realises
A as an inner ideal of An+1.

The smallest non-zero norm closed ideal of a Cartan factor is the ele-
mentary ideal of C, denoted by K(C) [11].

Note: in this notation, standard in JB*-triple theory, if H is a Hilbert
space then K(H) = H, and K(B(H)) is the C*-algebra of compact opera-
tors on H.

The following compilation is drawn from [11], [12], [21] and [41] and

summarises salient properties of Cartan factors.

Theorem 1.11.4

(@) Let C be a Cartan factor.

(i) C is the weak* closed linear span of its minimal tripotents.

(i) K(C) is the norm closed linear span of the minimal tripotents of
C.

(iii) K(C)* =C, and K(C) = C if and only if C has finite rank.

(iv) Every weak* closed inner ideal of C is a Cartan factor.

(b) Let e be a minimal tripotent in a JBW*-triple M and let f be a min-

imal tripotent in a JB*-triple A.

(i) The weak* closed ideal of M generated by e is a Cartan factor.

(i) The norm closed ideal of A generated by T is the elementary ideal

of a Cartan factor.
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1.12 Atomic IBW*-Triples and Decomposition

A JBW=*-triple is defined to be atomic if it is the weak* closed linear span
of its minimal tripotents.
In Theorem 1.12.1, part (a) follows from Theorem 1.11.4 (b)(i), and part
(b) is [41, Remark 2.8].

Theorem 1.12.1
Let M be an atomic JBW*-triple.

(@) M is an [J-sum of Cartan factors.

(b) Every norm one functional in the predual of M is a o-convex sum of

mutually orthogonal functionals in 0.(M. ).

If M is a IBW*-triple we denote the smallest weak* closed ideal of M
containing the minimal tripotents of M by Mg and shall refer to it as the
atomic part of M. By Theorem 1.9.2(e), the orthogonal decomposition of
weak* closed ideals

M = Mgy I;Clmat)L

is automatic, and (My)* contains no minimal tripotents. In light of these

remarks the following is crucial.

Theorem 1.12.2 [41, Theorem 2]
If M is a JBW*-triple then My is the weak* closed linear span of the

minimal tripotents of M. Hence, My is an atomic JBW*-triple.

Let A be a JB*-triple and let p [CAF. Then p is defined to be an atomic
functional of A if s(p) CAE;. It is immediate from Theorem 1.10.2(b) that

p is atomic for all p [Cd(A}). Consider the orthogonal decomposition

AT = A D"
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Let
Pat AT — A;:

denote the canonical projection. Via Theorem 1.10.1 we have that the set

S of atomic functionals of A is given by

S = {p LA :p((Az)") ={0}} = {p CA':p=p=Pal.



Chapter 2

Hahn-Banach Extensions

2.1 Introduction

Let E be a norm closed subspace of a Banach space X and let p [CH*.
The Hahn-Banach theorem guarantees the existence of a norm preserving
extension of p, also referred to as a Hahn-Banach extension of p, in X*.
Such extensions need not be unique. Moreover, if p has two distinct norm
preserving extensions ¢ and ¢ in X*, then it has uncountably many, since

each element of the straight line joining ¢ to § in X*,

{1-0¢+ay:a L01]},

IS again a norm preserving extension of p.

The question of existence of uniqgue Hahn-Banach extensions seems to
be one of considerable complexity, as may be seen by the recent article
[5] and references therein. The subject impinges upon JB*-triple theory
via a path pioneered in [30], [33], and [35] (see Theorems 1.8.3 and 1.8.6).
Involved, broadly speaking, are generalisations of M-ideal theory. Extensive
accounts of L- and M-theory can be found in [2], [3], [7] and [44] from which
main definitions and some results are recalled. Pertinent Banach space
‘smoothness’ properties are briefly reviewed and applied in the context of
JB*-triples. In addition, useful conclusions are drawn in connection with

unique Hahn-Banach extensions of dual ball extreme points.
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2.1.1 We shall work with the following definitions. Let X be a Banach

space and let E be a norm closed subspace of X.

(a) E is said to have the extension property in X if each p [CH* has

unique norm preserving extension in X*,

(b) E is said to have the extreme extension property in X if each p [

0.(E}) has unique extension in d.(X7).

(c) X is said to have the extension property if every norm closed subspace

of X has the extension property in X.

(d) X is said to have the extreme extension property if every norm closed
subspace of X has the extreme extension property in X.
2.2 L-Summands, M-Summands and ldeals

2.2.1 Let E be a closed subspace of a Banach space X. We have the

following definitions.

(@) E isan L-summand of X if there exists a closed subspace F of X such

that E [ F1= X and
XH+y[F XTI+ [yl ]
for each x [H and y [CEL

(b) E is an M-summand of X if there exists a closed subspace F of X

such that E [CEF1= X and

xXHy[F= max{XL Iyl}]

for each x [Handy [El
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We also have the following related definitions, where P is a projection on
X.

(c) P issaid to be an L-projection if
X ¥ [PX[# XI—Px[
for each x [X.
(d) P is said to be an M-projection if
XTI+ max{[Px[Ixl— Px[}]
for each x [X.

(e) P is said to be neutral if P is contractive, and if x [X such that
[PIx[=F XL, then Px = x.

The complement | —P of an M-projection P is an M-projection. Similarly,
complements of L-projections are L-projections. Every L-projection is a

neutral projection. The map P 3 P (X) defines bijections from the set of
() L-projections on X onto the set of L-summands of X;
(ii) M-projections on X onto the set of M-summands of X.

We further recall that

@iii) P : X - X is an M-projection if and only if P* : X* - X* is an

L-projection;

(iv) P : X - X is an L-projection if and only if P* : X* - X* is an

M-projection.



2.2.2 Let E be a norm closed subspace of a Banach space X. The topo-

logical annihilator of E in X* is denoted by
E® = {p X" :p(E) = {0}}.
The subset E™(it need not be a linear subspace) of X* given by
E-={p CX*: [p). [Z [pIH
satisfies
E°nEY= {0} and X*=E°+E" (set addition).

(a) E issaid to be an M-ideal of X if E° is an L-summand of X*. In which
case, E s a subspace of X* and is the complementary L-summand of
E°in

(b) E is said to be an N-ideal of X if E s a subspace of X*. In which
case
X* = E° [EX

and the projection onto Eis contractive and neutral [35].

(c) E issaid to be a Banach ideal of X if there is a contractive projection
P on X* with
kerP = E°.

Remarks. The term Banach ideal used above is non-standard. Subspaces
satisfying (c) are referred to simply as ideals of X in [59], for example. But
the latter usage conflicts widely with that used elsewhere in this thesis. The

term N-ideal was used in [35].
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2.2.3 Consider now a norm closed subspace E of a Banach space X. Sup-

pose there is a contractive projection P on X* such that
kerP = E°.

Let p [X*. By definition, p and Pp agree on E and for each T [CH° we
have
[P+ [Pl(p— 1) IpF 11
so that
[P (I ThH+ E° ¥ [p). ]

and thus [Plp = [p]. L Hence, Pp is a Hahn-Banach extension of p|. and
P (X*) is contained in EY

Now suppose that, in addition, E has the extension property in X. Then

P p must be the unique norm preserving extension of p|., and P (X*



We note that if E is an N-ideal of a Banach space X and
¢:E* — X*
denotes the norm preserving unique extension map then
$:E*— EY and 0:E"— E* (pB- plp)

are mutually inverse surjective linear isometries.
The relevance of the above for JB*-triples is that the M-ideals of a JB*-
triple are precisely its norm closed ideals [6, Theorem 3.2] and the following

variation of Theorem 1.8.3.

Theorem 2.2.5 [30], [33], [35]

The following are equivalent for a JB*-subtriple E of a JB*-triple X.
(@) E has the extension property in X.
(b) E is an N-ideal of X.

(c) E is an inner ideal of X.

2.3 The Extension Property

2.3.1  We recall (for example, s955Tf-F357.57.714.346Tf-13511.9007.71TJF3Td[(1px7ylcle-



Each of the conditions (a) and (b) passes to all norm closed subspaces (via
the Hahn-Banach theorem in the case of (a)).
There is a well-known (partial) duality between smoothness and strict

convexity due to Klee.

Theorem 2.3.2 [54, Al.1]

Let X be a Banach space.

(a) If X* is smooth then X is strictly convex.

(b) If X* is strictly convex then X is smooth.

(c) If X is reflexive then the converses of (a) and (b) are true.
2.3.3 All Hilbert spaces are both smooth and strictly convex. It is clear
that neither C [_T nor (C L-€)* £-clzQiis strictly convex and thus, by
Theorem 2.3.2(c), neither of these spaces is smooth. Hence, if X is smooth
or strictly convex then X cannot contain an isometric copy of C [ C.

The connection with the extreme extension property comes from the

following theorem.

Theorem 2.3.4 [37], [68, Theorem 6]
A Banach space X has the extension property if and only if X* is strictly

convex.
The proceeding elementary result is useful.

Lemma 2.3.5

The following are equivalent for a JB*-triple A.
(a) Every norm one element is a tripotent.
(b) No two non-zero elements are orthogonal.

(c) A'is a Hilbert space.
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Proof
To see that (a) (b)) note that if u and v are non-zero orthogonal tripotents

of A then u+ v



(e)



(b) If p CAI(EY) then
(i) E(p,E) is a face of XJ;
(if) p has an extension in de(X).
Proof

(a) Note that E(p, E) is weak* closed, since if ¢ is the weak* limit of a
net (¢,) in E(p, E), then

¢(a) = limdr(a) = p(a)

for all a in E, so that ¢ CElp, E). Now, since X; is weak* compact,
the same is true of E(p, E).
For convexity, let A [0, 1] and ¢,y [CEXp,E). Then

AP+ (L—ANY X

and
A+(A =M = Al + A =Myl = p
so that A¢ + (1 — Ay CEIp, E), as required.

(b)(i) Suppose A [(0,1) and ¢,y XA such that
A+ (1— ANy LEp, E).
Since this functional agrees with p on E,
Al + (A=Al = p

so that ¢|- = Y|z = p, because p is an extreme point of E;. Therefore

¢ and Y lie in E(p, E), as required.

(if)



Corollary 2.4.2
Let E be a norm closed subspace of a Banach space X, and let p [dl(Ey).

(a) p has a unique extension p in d.(X7) if and only if p is the unique

extension of p in Xj.

(b) E has the extreme extension property in X if and only if each p [

0.(E}) has unique extension in Xj.

Proof

(@) If p has unique extension p in d.(X;), then d.(E(p,E)) = {p} by
Lemma 2.4.1 and hence E(p, E) = {p} by the Krein-Milman theorem.
Conversely, E(p, E) = {p} implies p [CdI(X7), again by Lemma 2.4.1.

(b) This is immediate from (a). O
2.4.3 Let x be a norm one element of a Banach space X. Even more

straightforwardly than in Lemma 2.4.1, it is seen that E* is a weak* compact

convex subset of X and, moreover, is always a face of X;. Therefore,

() 0(EX) LadX;).

There will be a unique ¢ [X; attaining its norm at x if and only if
EX = {¢}. Since E* is a face of X, this is equivalent to saying that
¢ CAI(X;), by the Krein-Milman theorem. It follows that

(b) X is smooth if and only if N(X}) [Cdd(X7).

We have the following characterisation of smoothness in terms of unique

extension conditions.
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Proof
If X has the extreme extension property then it is certainly smooth, by

Proposition 2.4.4, so that

N(X7) Lad(Xy),
by 2.4.3(b). If, in addition, d.(X7) is norm closed then we deduce from the
Bishop-Phelps theorem (N (X7) is norm dense in S(X;)) that

0e(X1) = S(Xy),

so that X* is strictly convex which, using Theorem 2.3.4, completes the

proof. a

2.4.6 We remark that 0.(X;) is norm closed whenever X is a JB*-triple
[16, Proposition 4]. Without appealing to this fact it is in any case immedi-
ate from Theorem 2.3.6 and Proposition 2.4.4 that the extension property
and the extreme extension property coincide for JB*-triples.

We shall close this section with three observations used later.

Proposition 2.4.7 [18]
Let X be a Banach space and let E be a closed subspace of X. Suppose that

E has the extreme extension property in X. Then the unique extension map
0e(E7) — 0e(X7)

p B~ p



Proposition 2.4.8

Let X be a Banach space and let E be a closed subspace of X. Suppose that
E has the extreme extension property in X and there exists a contractive
projection, Q, from X onto E. Then for each p [dL(E;), Q*(p) is the
unique extension of p in d.(X;). Moreover, Q is the unique contractive

projection from X onto E.

Proof
Let p [dI(E;). Since Q is the identity function on E, Q*(p) extends p, and
[QF(p) (= [pIsince Q* is contractive. So, Q*(p) is the unique extension of
p in X, by assumption.

To prove uniqueness, suppose that there exists another contractive pro-
jection P from X onto E. Then P* and Q* agree on d.(E}). But P* and
Q* are weak* continuous, and so also agree on EJ, by the Krein-Milman

theorem. Hence, P* = Q* and consequently P = Q. O

Corollary 2.4.9

Let I be a norm closed inner ideal of a JB*-triple A.
(a) There is at most one contractive projection from A onto 1.
(b) If P : A - Ais a contractive projection such that
P(A) =1,
then P is a structural projection.
Proof
(a) This follows from Theorem 2.2.5 and Proposition 2.4.8.
(b) By Theorem 1.8.6, there is a structural projection

Q : A** —_ I**,
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and since 1 must have the extension property in A**, being a weak*

closed and thus norm closed inner ideal of A**, we have
Q — P**’

by Proposition 2.4.8. Hence, P is a structural projection. O

2.5 co-sums and M-Orthogonality

2.5.1 Let (Ej)ic) be a family of Banach spaces. We shall write
1 1
@ ( E),.={ x:(BqDICLu()}
and
1 1
() ( E)o={ xi:(B4dDICcd(1)}
to express the respective [LJ and co-sums of the E; as i ranges over an
indexing set 1.
. . 1 1
In this way, each E; is an M-summand of ( Ej)o (and ( E;j)) and
we have the natural linear isometry
© EiEEl (0B olg).
Similarly, we use
1 1
@ ( E)m={ x:(BqDICLI(1)}
for the Ldsum of the E;. In this case, each E; is an L-summand of the

Ldsum.
We have the further linear isometries

1 1
€ (( Ei)m)*g'%*' e o)

1 1
B L EDG 00 Rl

the latter giving the equality



C_1
25.2 Let X = ( Ej)g where (Ej)ic



Proposition 2.5.4
A co-sum of two or more non-zero M-orthogonal JB*-subtriples of a JBW*-

triple factor M cannot have the extension property in M.

Proof

Let (E;) be a family of non-zero M-orthogonal JB*-subtriples of a JBW*-

triple factor M such that
P - ——T

Ei
0

has the extension property in M. Fix ip. Then

LT
E LElI= Ei |,
0

where E = E;, and F is the co-sum of the remainder.

Put A = E [E] Since it has the extension property in M, A must be
a norm closed inner ideal of M, by Theorem 2.2.5. In particular, A is a
JB*-triple with orthogonal ideals E and F, since each is an M-ideal of A.
Thus,

AV = BV oF

is a weak* closed inner ideal of M with orthogonal non-zero weak* closed
ideals E” and F" and so is not a factor. Since every weak* closed inner

ideal in a JBW*-triple factor is again a factor, this is a contradiction. O

As consequences we note that given a family (E;)ic; of mutually M-

orthogonal norm closed subspaces of a Banach space Y,

(a) if each E; is af each

)i



Proposition 2.5.5
Let (Ei)ici be a family of mutually M-orthogonal norm closed subspaces of

a Banach space X. Let E;



Chapter 3

Cartan Factors and Unique Predual

Extensions

3.1 Introduction

Given a weak* closed subtriple M of a JBW*-triple N, Theorem 1.8.3
shows that every functional in the predual of M has a unique norm pre-
serving extension in the predual of N if and only if M is an inner ideal of
N. In consistency with the general theme of our thesis, in this chapter we
shall investigate the consequences of the existence of unique norm preserv-
ing extensions in N, of single functionals in d.(M. 1) and of other atomic
functionals.

As shall be seen, without any essential loss of information, our investi-
gation quickly reduces to the case where both M and N are Cartan factors.
Amongst other things, in this case we show that the existence of one func-
tional in 0.(M. 1) with unique norm one extension in N, compels the same
condition upon all functionals in 0.(M., 1). However, this particular unique
extension condition does not imply that M is an inner ideal of N because
of obstructions involving generic type. Indeed, in these circumstances, it is
the case that more often than not the Cartan factors M and N in question
have di [erent generic type.

Inspection of finite dimensional examples reveals algebraic and geometric

obstructions alluded to above. For instance, given finite n [Z] the triple
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embeddings
a; i Sh(C) —— Mp(C) and a;: Mp(C) — AL (C),

where a; is inclusion and a, maps x to

1 -
—3 X
—X 0

both implement the extreme extension property, as shall be seen in the
coming general investigation, as therefore does their composition. However,
neither image is an inner ideal in its codomain. The validity of these ob-
servations remain unaledted by further (appropriate) composition with the

triple embeddings
Mm,n — Mn; Mn — Mn,l (m Ijll:m and A2n — A2n+l1

obtained by suitable addition of 0’s (see 1.11.3). On the other hand, the
triple embeddings

B1:Mn(C) == Son(C) and B2 1 An(C) —= M2y (C),

where B; maps X to 1 1
XT
I__O‘I 1
x 0
and (3, is inclusion, do not implement the extreme extension property.

It turns out that these observations are characteristic of some general
rules. Suppose that M and N are hermitian, rectangular or symplectic
Cartan factors and that M is a Cartan subfactor of N for which there
exists p in 0¢(M, 1) with unique norm one extension in N,. Then, as shall
be proved in the sequel, in terms of generic type we have the following table

of the possible generic types of N relative to the generic type of M.
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extension in N,



Corollary 3.2.2

Let I be a weak* closed inner ideal of a JIBW*-triple M and let
l,— M, (18-7)
denote the norm preserving unique extension map. Then
{T M, :1 [} = {p (M, :s(p) [T} = I"h M,

and
ISnM, — I, ®B )

is a surjective linear isometry.
Proof

The first equality of the statement follows from Lemma 3.2.1 and the fact

that given a norm one element p in M, such that s(p) lies in I, then pJ,



(@) If pl, = ¢l,, then p = &,.

(b) ¢ is the unique norm preserving extension of p in N, if and only if ¢

is the unigue norm preserving extensi