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Abstract

The Self-Consistent Field Theory, otherwise known as Mean Field Theory, repre-

sents interactions by two static �elds acting on two polymer segments (A, B). The

model corresponds to a melt of AB diblock copolymers subject to a local incom-

pressibility constraint. Exploiting the simplest classical microstructure (Lamellar)

the density distributions of the copolymer blocks are computed by applying the

Crank-Nicolson algorithm on a uniform mesh. The aim of this dissertation is to

increase the numerical e�ciency of the calculations by employing an adaptive mesh

using subdivision. The dissertation contains a study of the e�ectiveness of using the

h re�nement technique on the computation of the copolymer propagators with the

equation @
@s
q(r; s) = a2N

6
r2q(r; s) � w(r; s)q(r; s). Preliminary studies are carried

out using a uniform mesh method and globally re�ning the mesh before subdividing

the mesh in areas of interest. Numerical results of the total partition function and

the segment concentration distributions are compared and conclusions drawn on the

space size step and local re�nement factors.
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Chapter 1

Introduction

1.1 Background

A polymer can be de�ned as a macromolecule. It is essentially constructed from

several repeated monomer building blocks or chemical units, linked together into

one or more chains [4]. Typically there could be several hundred to several thou-

sand monomer units in a polymer. When the monomers that build a chain are

all of the same chemical structure, in other words if they are identical, the poly-

mer is called a Homopolymer. If however it involves two or more chemical distinct

monomers then, the result is termed a copolymer. In our current investigation, we

will be considering block copolymers, these refer to molecules grouped together as

blocks. A linear diblock copolymer is a polymer constructed by attaching one end

of a linear homopolymer of one type of chemical units to the end of another linear

homopolymer of distinct types, creating a longer but still linear molecule. Symbol-

ically we denote A and B the two distinct types of chemical units or monomer and

the portion of the chain which is of type A is referred to as the A block, and similarly

the porton of the chain which is of type B is referred to as the B block. Thus, di-

block copolymer refers to a copolymer comprised of two blocks of distinct species [6].

Figure 1.1: Classical Microstructures
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represents interactions by two static �elds acting on A,B segments. The model cor-

responds to a melt of AB diblock copolymers subject to a local incompressibility

constraint. It uses the applicability of the Gaussian model and develops the nec-

essary statistical mechanics for a single chain which is subject to an external �eld,

w(r). According to the Gaussian model, diblock copolymers are treated as micro-

scopic elastic threats [14].

We should de�ne the following notation that will be used in our model:

� ri = ith monomer

� r�(s) = a function explaining the coarse-grained trajectory of the polymer

� s = a parameter indicating the interval of the chain (segment) and is de�ned

within 0 � s � 1

� subscript � is ued to label di�erent molecules

� N total number of segments

When discretising the partial di�erential equation 1.2, s is treated similarly to a

time variable and r as the space variable.

Each molecule is parametrised by a variable s that increases from 0 to 1 along

the length. The partition function Q for a single copolymer experiencing chemical

potentials q and q� that exerts forces, respectively, on the A and B blocks is given

by

Q =

Z
q(r; s)q�(r; s)dr (1.1)

where the copolymer propagator satis�es

@

@s
q(r; s) =

a2N

6
r2q(r; s)� w(r; s)q(r; s) (1.2)

and can be evaluated starting from q(r; 0) = 1 . Similarly for q�(r; s) the di�erential; s)dr (1.1)rq
; s)dr (1.1)r)q�(r; s)dr



(a) External Fields (b) Segment Concentration Dist.

Figure 1.2: [8]

and starting from q(r; 1) = 1. The function w(r; s)is given by

w(r; s) =

(
wA(r); 0 � s � f

wB(r); f � s � 1
(1.4)

For our case, a symmetric diblock copolymer melt, f = 1
2

, the model exhibits a

microphase phase separation into a lamellar phase for segregation strengths �N ,

where � is the Flory parameter that quanti�es the repulsive interaction of the

chemical units. The boundary conditions for this problem can either be periodic

or reective Neumann conditions [1] .

�A(r) and �B(r) correspond to ensemble-averaged segment concentration distri-

butions and from the schematic diagram in Figure 1.2b we can see the concentrations

of A and B segments at di�erent points r.

The incompressibility assumption is then given by �A + �B = 1. The segment

concentrations are de�ned as follows:

�A(r) =
V

Q

fZ
0

q(r; s)q�(r; s)ds �B(r) =
V

Q

1Z
f

q(r; s)q�(r; s)ds (1.5)
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"Re�ning indicators" are often used to identify portions of the domain in need of

additional resolution [10].

This dissertation will centre around the use of the local grid re�nement. The

aim of the h type adaptive procedure is to achieve a higher rate of convergence and

thus reach the desired accuracy with minimal cost. Given that we have su�cient



Chapter 2

Preliminary Stage

We are interested in obtaining the solution to the Self-Consistent Field equations in

which the normalised density distributions, ��(r) reect a lamellar morphology. In

this symmetry, ��(r



The �nite di�erences method will be used to approximate the solution of the di�usion

equation 2.1. The basic idea of the �nite di�erence method of solving PDEs is to

replace spatial and time derivatives by suitable approximations, then to numerically

solve the resulting di�erence equations. Speci�cally instead of solving q(r; s) with

r continuous, we solve qi;j � q(ri; sj) where ri � i�x and sj � j�s. We will have a

grid similar to Figure 2.1



@q

@r
= lim

�r!0

�q

�r
(2.3)

the derivatives evaluated at the grid points (r; s) = (ri; s



and dr the size of the space step

� D will denote the total length of space, 0 � s � D

� tmax the total length of time and as previously mentioned, the segments s

behave similarly to the time variable so tmax = 1

� Nt the total number of time steps and ds the size of time step

� �nally r(i) = (i� 1) � dr where dr = D



approaches zero in the limit that �s ! 0 and �r ! 0. The scheme is found to be

"consistent", �rst order in time and second order in space.

In order to guarantee that the scheme will give a good approximation to the true

solution of the di�usion equation, when the discretised equation approaches the ex-

act solution then the numerical scheme is termed convergent.

For a linear solution such as the di�usion equation, convergence is dependent on

the stability of the numerical scheme, it is termed stable if the ampli�cation factor

remains bounded during calculations. According to the Lax Equivalence theorem

schemes that are convergent are those that are consistent and stable [7].

Therefore, for a properly posed initial value problem for a linear PDE and a consis-

tent �nite di�erence approximation, stability is the necessary and su�cient condition

of convergence. The explicit scheme 2.12 is stable and therefore convergent when

�s

(�r)2
� 1

2
(2.13)

The main advantage of the explicit scheme is that it’s easy to solve numerically.

However, the stability condition raises issues as we are bound by the physical prob-

lem on having total space length D = 2:336784 and total time variable tmax = 1

and thus restricting us on the choice of total number of space and time steps Nx; Nt.

We can therefore conclude that the stability condition and the scheme’s �rst order

in time truncation error restrict the accuracy of our numerical result.

2.2.1 Applying the Explicit Scheme

Since the explicit Scheme is relatively easy to solve numerically, we will use a FOR-

TRAN program that will numerically solve the partial di�erential equation 2.1 that

de�nes the copolymer propagators.

Using the �nite di�erence method as shown in the previous section we can obtain

the discretised equation of 2.1,

qi;j+1 = qi;j +
1

6

ds

(dr)2
(qi+1;j � 2qi;j + qi�1;j)� wjqi;j (2.14)

For the q� the PDE is identical to 2.1 but with the right hand side multiplied

by -1. Therefore the discretised form is very similar but with a small di�erence as

shown below,

q�i;j-1 = q�i;j +
1

6

ds

(dr)2
(q�i+1;j � 2q�i;j + q�i�1;j)� wjq�i;j (2.15)

In both cases, equations 2.14 and 2.15, we use reective boundary conditions
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which are de�ned in the program as, q0;j = q2;j and qNx+1;j = qNx�1;j. They are

de�ned similarly for q� which is denoted as q1 in the program. The initial data for

the q propagator is q(r; 0) = 1 and for the q� is q�(r;Nt) = 1.

The function w�j



In Figure 2.4 the blue line denotes wA and the green line wB. The external �elds

have been computed using 15 space steps and 80 time steps for 0 � r � 2:336784

and 0 � s � 1 and because there are only 15 space steps the plot is not smooth nor

is it accurate enough. We therefore try plotting it using Nx = 100 and Nt = 3592,



Figure 2.5: Program - Stability condition noti�cation

The numerical solution of q when choosing 15 space steps and 80 time steps has

been plotted in MATLAB and is shown in Figure 2.6. The results could also be

plotted on a logarithmic scale so that the plots show more details in all the domain

and the propagator’s behaviour, however the propagator plots are only shown for

reference. The aim is to compute the segment concentrations with great accuracy

and to meet the incompressibility condition

Figure 2.6: q propagator - explicit scheme - Nx = 15, Nt = 80
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In order to check the correctness of the plot, a small test we could perform is to

remove the w�;i function, the external �elds, from the partial di�erential equation

2.14. This would transform our PDE in a pure di�usion equation and in fact we

would be solving the Heat Equation @q
@s

= @2q
@r2 , of which the expected result is known.

The discretised form of our PDE would then look like equation 2.18. The fact that

our initial data is equal to 1 throughout the whole domain including the boundary

points, would lead us to expect a constant value of 1 as a solution and a at plot

2.7

qi;j+1 = qi;j +
1

6

ds

(dr)2
(qi+1;j � 2qi;j + qi�1;j) (2.18)

Figure 2.7: q propagator - removing external �elds

Now that we have validated that the explicit scheme works correctly, another

test run could be to plot the results of the PDE with segragation strength �N = 1

instead of 100. This would help us understand how the w�;i function a�ects our



and from a di�erent angle in �gure 2.9.

Figure 2.8: q propagator - �N = 1

Figure 2.9: q propagator - �N = 1 - di�erent angle

Looking at the results we could see how the w�;i function chages the plot from

Figure 2.7 to Figure 2.9 and then Figure 2.6. We could therefore conclude that the

20



larger the values of w�;i, the larger the values of q will be. An exponential growth

appears in the values of q. This could not have been caused by the di�usion part of

the equation as all the research concludes that di�usion satis�es the solution which

appears in Figure 2.7. We therefore refer to the analytic solution of @q
@s

= �w�;iq



remaining di�usion equation produces the same result as the q propagator under

the same conditions. The discretised equation without the external �elds is now,

qi;j-1 = qi;j +
1

6

ds

(dr)2
(qi+1;j � 2qi;j + qi�1;j) (2.19)

and the results satisfy our expectations, as shown in Figure 2.11.

Figure 2.11: q� propagator - external �elds removed

Plotting the results of the PDE with segregation strength �N = 1 instead of 100 for

q� as well, allow us to make better comparisons between the two propagators. That

is because the w�;i function will be weaker and thus it will have less e�ect on the

PDE and will not experience such great exponential growth. The outcome is shown

in Figure 2.12 and from a di�erent angle in �gure 2.13.
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Figure 2.12: q� propagator - �N = 1

Figure 2.13: q� propagator - �N = 1 - di�erent angle

Comparing Figure 2.12 of the q� copolymer propagator to Figure 2.8 of copoly-

mer propagator q, we can notice two relatively similar plots, with the �rst starting

from 1 in the last time step, Nt = 80, and the second one starting from 1 at the

initial time step j=0. They are both relatively symmetrical and q� being almost
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Figure 2.15: q� propagator - Nx = 100, Nt = 3592

2.3 Numerical Integration

Once q(r; s) and q�(r; s) have been calculated using the numerical scheme, we must

solve equations 2.20 and 2.21.

Q =

Z
q(r; s)q�(r; s)dr (2.20)

�A(r) =
V

Q

fZ
0

g(r; s)q�(r; s)ds �B(r) =
V

Q

1Z
f

q(r; s)q�(r; s)ds (2.21)

Equation 2.20 indicates the partition function and 2.21 the ensemble-averaged

segment concentration distributions and their results should resemble Figure 1.2b.

Both equations involve integrating the product of q(r; s) and q�(r; s),(X = q(r; s):q�(r; s)

). There are several method of numerical integration of varying accuracy and ease







approximation of the true result and in fact the numerical solution when plotted in

MATLAB is very inaccurate and disapointing, Figure 2.17.

Figure 2.17: Segment Concentration Dist. - Nx = 15, Nt = 80

Another attempt to improve the accuracy and get more realistic results for the

segment concentrations ��(r), is to allocate more space steps, e.g Nx = 100 and

corresponding time steps to meet the stability condition, Nt = 3592.

We should point out that an even greater number of space steps is prefered, however

by choosing e.g Nx = 1000 we would require Nt = 365533 and therefore we would

need a stronger processing unit. This problem is another reason why the explicit

scheme is not e�cient for our problem.

The results for both Q and �A(r), equations 2.22 and 2.23 with Nx = 100 and

Nt = 3592 can be observed in Figure 2.18 and 2.19, accordingly. However we can

notice that the concentrations are still lacking accuracy and a small error in the

last few digits has caused Q not to be a straight line but in fact include a jump of

magnitude 113900032 which is still small compare to the values we are handling.

The relative di�erence is quite small.

All together the explicit scheme is not appropriate for all the reasons mentioned so

far, but gives us the background required to use a less unstable scheme and compare

28



its results.

Figure 2.18: Total Partition Function - N100 = 100, Nt = 3592

Figure 2.19: Segment Concentration Dist. - N100 = 100, Nt = 3592

29





@q

@s
jri;sj+1

=
qi;j+1 � qi;j

�s
+O(�s) (3.1)

@2q

@r2
jri =

qi�1;j � 2qi;j + qi+1;j

�r2
+O(�r2) (3.2)

Substituting 3.1 and 3.2 into 2.1 and collecting the truncation errors we obtain

qi;j+1�qi;j
�s

= 1
2
(1

6

qi�1;j�2qi;j+qi+1;j

�r2 + 1
6

qi�1;j+1�2qi;j+1+qi+1;j+1

�r2 ) + w�;i
qi;j+qi;j+1

2
+O(�s2) +

O(�r2)

We can notice that the values of q in the above equation from time step j and time

step j+1 appear on the right hand side. This equation is used to predict values of

q at time j+1 so all values of q at j are assumed to be known. The propagator q is

equal to 1 at the �rst time step as imposed by the initial data.

Rearranging the above equation so that values of q at time j+1 are on the left (L)

and values of q at time j are on the right (R) and dropping the truncation error

terms we obtain L = R as follows:

L =
�

1:0 +
1

3
�+

�s w�;i
2

�
qi;j+1 �

1

6
�qi�1;j+1 �

1

6
�qi+1;j+1 (3.3)

R =
�

1:0� 1

3
�� �s w�;i

2

�
qi;j +

1

6
�qi�1;j +

1

6
�qi+1;j (3.4)

where � = �s
2�r2 .

This equation cannot be rearranged like the explicit equation scheme to obtain a

simple algebraic formula for computing for qj+1
i in terms of neighbors like qi+1;j; qi�1;j

and qi;j.

This equation is one equation in a system of equations for the values of q at the

internal nodes of the spatial mesh ( i=2,3...,N-1 ).

The system of equations can be represented in matrix form, the left hand side

3.3 is presented by matrix 3.6. The matrix is tridiagonal and e�cient algorithms

exist to invert the matrix.

When we perform a von Neumann stability analysis to the scheme by substituting

qi;j = �jeikj�r into the di�erential scheme, it yields an ampli�cation factor:
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� =
1� 2m(sin(k�r

2
))2

1 + 2m(sin(k�r



analysed but with opposite signs. However, since the initial data of q� is at the last

time step j=Nt, we need to work backwards to time step j=1 and thus we use the

same discretised equations with the same signs, for the right hand side, 3.4, 3.7 and

3.8 and for the left hand side the tridiagonal matrix solver for matrix 3.6.

The external �eld de�ned by the function w�;i and equation 2.16 is computed

in the same way as explained in the explicit scheme section 2.2.1 . Once more, for

propagator q the �rst half of the time steps use wA;i and the remaining steps wB;i

and for propagator q� vice versa. The plotted results should look similar to Figure

2.4.

We will test run the program of the Crank Nicolson scheme with a uniform mesh

to compare the results with that of the explicit scheme. Starting with the prop-

agator q and choosing 15 space steps and 80 time steps, the results should look



partial di�erential equation. This would transform our PDE into a pure di�usion

equation of which the discretised form is equation 3.9 and the result should look

similar to Figure 2.7 of the explicit scheme.

qi;j



to validate that the Crank Nicolson scheme works correctly for the computation of

q� by removing the w�;i function and thus solve an ordinary di�usion equation but

backwards as the initial data is at the last time step. The solution is 1 throughout

the domain and Figure 3.5 presents the results.

Figure 3.4: q� propagator - Nx = 15, Nt = 80

Figure 3.5: q� propagator - excluding external �elds

35



Unlike the explicit scheme, there is no stability condition that needs to be satis-

�ed, therefore we can choose a larger number of space steps without having to select

a huge number of time steps. We now test run the program on a number of space

steps that was di�cult to run using the explicit scheme. Figures 3.6 and 3.7 show

the results of the q and q� propagators for space steps Nx = 1000 and time steps

Nt = 100.

Figure 3.6: q propagator - Nx = 1000, Nt = 100

Figure 3.7: q� propagator - Nx = 1000, Nt = 100

36



We repeat the process and select Nx = 6000 and Nt = 1000. The results of

both q and q� propagators are in Figures 3.8 and 3.9. The increase of resolution

is noticeable and we only have to refer to the integral equations of Q and ��(r) to

check if the numerical solutions converges to the expected results.

Figure 3.8: q propagator - Nx = 6000, Nt = 1000

Figure 3.9: q� propagator - Nx = 6000, Nt = 1000

Applying the trapezoidal rule to the integral equations for the total partition
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Figure 3.11: Total Partition Function - Nx = 15, Nt = 80

Further on are the results for Nx = 1000 and Nt = 100. We can observe an

improvement in the ��



Figure 3.13: Total Partition Function - Nx = 1000, Nt = 100

Finally, we have the results of Nx = 6000 and Nt = 1000. This number of





Chapter 4

Grid Re�nement

Now that we have created a program that uses the Crank Nicolson scheme and nu-

merically solves our equations on a uniform mesh we would like to increase the level

of accuracy at the interface points between the two �elds. Having a high level of ac-

curacy at those points is important in order to understand the nature of interactions

between the two �elds and to manipulate and exploit them in the di�erent industrial

and commercial applications. In addition, a uniform grid may be disadvantageous

when solutions possess large local gradients. In Chapter 1, we have talked about

adaptive methods and speci�cally about h re�nement. Using this method we can

break the mesh into smaller pieces when necessary and coarsen the mesh where the

solution is very smooth if desired [3].

The basic idea of local uniform grid re�nement is to cover the spatial domain,

D, with nested, �ner and �ner, locally uniform subgrids so as to accurately resolve

steep spatial transitions. This was done to balance the improvement in model ac-

curacy in the area of interest while trying to minimize errors of the re�ned model

and reduce processing time. When very large re�nement ratios are used, errors in

the model solution in the coarse section might increase. To avoid that phenomenon,

the re�nement was done in two stages to achieve a cell size suitable for interactions

between the two �elds for a single molecule. In addition downsizing to an interme-

diate scale model made the process more computationally e�cient [16].

Stage 1 involves recognising the regions that require re�ning and applying the scheme

with a new discretised equation and stage 2 aims to smooth the transition between

step size as to avoid big "jumps", but to change step size gradually around the

areas of interest. A common approach is the h-re�nement, to provide re�nement in

an area of interest. We achieve this by using a �nite-di�erence grid with variable

spacing such that the grid spacing is small where needed and larger away from it.
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R =

 
1:0� �s

6

1

(ri+1 � ri)(ri+1 � ri�1)
� �s

6

1

(ri � ri�1)(ri+1 � ri�1)
� �swi

2

!
qi;j

+
�s

6

1

(ri+1 � ri)(ri+1 � ri�1)
qi+1;j

+
�s

6

1

(ri � ri�1)(ri+1 � ri�1)
qi�1;j

(4.5)

As in the previous discretised equation for the Crank Nicolson under uniform

mesh, this equation cannot be rearranged to obtain a simple algebraic formula for

computing qi;j+1 in terms of neighbours like qi+1;j,qi�1;j and qi;j. This equation is

one equation in a system of equations for the values of q at the internal nodes of the

spatial mesh ( i=2,3,...N-1 ).

The system of equations is represented in a matrix form and in fact a tridiagonal

matrix, is represented by matrix 4.6,0BBBBBBB@

b1 c1 0 : : : 0

a2 b2 c2 : : : 0
...

. . . . . . . . .
...

0 : : : aN�1 bN�1 cN�1

0 : : : 0 aN bN

1CCCCCCCA
(4.6)

where the coe�cients of the interior nodes are:

a = ��s
6

1
(ri�ri�1)(ri+1�ri�1)

b = 1:0 + �s
6

1
(ri+1�ri)(ri+1�ri�1)

+ �s
6

1
(ri�ri�1)(ri+1�ri�1)

+
�sw�;i

2

c = ��s
6

1
(ri+1�ri)(ri+1�ri�1)

Due to the reective boundary conditions,

a1is multiplied by2

cNx is also multiplied by2

Similarly the right hand side as de�ned by equation 4.5 satis�es the reecitve

boundary conditions by imposing the following equations for the �rst and �nal space
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step, 4.7 and 4.8 respectively.

R(1) =
�

1:0� 1

3
�� �s w�;1

2

�
q1;j+1 +

1

3
�q2;j+1 (4.7)

R(Nx) =
�

1:0� 1

3
�� �s w�;1

2

�
q1;j+1 +

1

3
�qNx�1;j+1 (4.8)

where



As we can see from Figure 4.1 the areas of interest are between 200 � r � 400

and 600 � r � 800, since those are the regions where the �elds intersect. These

regions correspond to Nx = 1000 steps, we can therefore generalise them for any Nx

steps as follows:

� Nx
5
� r � 2Nx

5

� 3Nx
5
� r � 4Nx

5

Using these inequalities we can specify the areas where we need a �ner grid and a

coarser grid in the rest of the domain.

The program subdivides the elements in those regions in any even number we

choose. As an initial test run we choose to double the points within areas of interest,

the space step therefore is divided by a factor of 2, ( dr
2

). Such a grid should be more

accurate than a uniform grid calculation. As an example, if we choose Nx = 1000

and Nt = 100, the total points the adaptive Crank Nicolson program will calculate

are Nx = 1400 and the results are shown in the feedback table the program produces

as shown in Figure 4.2

Figure 4.2: Feedback table - Version 6

The propagators q and q� that are computed from this program are shown in

Figures 4.3 and 4.4, respectively.
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Figure 4.3: q propagator - Version 6 - Nx = 1400, Nt = 100

Figure 4.4: q� propagator - Version 6 - Nx = 1400, Nt = 100

Finally the trapezoidal rule is used to solve the total partition function Q and

the segment concentration distributions ��(r) are presented in Figures 4.5 and 4.6

accordingly.
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stages. We can select to subdivide the gird by any even factor, obviously the greater

the number (k) the �ner the grid becomes. As an example if k=2 and there are

200 points in the coarse regions 1, 3 and 5, the �ne regions 2 and 4 will have 400

points and step size half ( dr
2

) of that of in the coarse regions. The advantages of

this adaptive mesh is that less physical memory will be required for a large number

of total space steps, Nx, less processing time and power and therefore less costs

imposed compared to having a uniform mesh and using the step size dr
2

throughout

the whole domain. We will explore and compare the time and accuracy di�erences

between the uniform mesh and di�erent versions of the program in more detail in

the next Chapter.

Figure 4.8: Version 7 - Diagram

Program Version 6 is expected to be relatively better than the uniform mesh

program, as long as the step size between coarse and �ne regions does not di�er a

lot. The �ner the grid in the areas of interest, the greater the accuracy of our results

at those points. However, the bigger the "jumps",the greater chances of errors in





The propagators q and q� that are computed from this program are shown in

Figures 4.10 and 4.11, respectively.

Figure 4.10: q propagator - Version 7

Figure 4.11: q� propagator - Version 7

We numerically integrate using the trapezoidal rule to �nd the total partition

function Q and the segment concentration distributions ��(r). The solutions are

presented in Figures 4.12 and 4.13 accordingly.
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Chapter 5

Computational E�ciency

In order for a local re�nement to make sense, re�ned calculations need to show

some computational savings. Using a �ne grid over the entire domain (referred to

as global re�nement) can be computationally intensive, both in terms of CPU time

and memory requirements. We will be investigating which method is more e�cient

in terms of accuracy, CPU time and memory requirements. The program using a

uniform mesh referred to as Version 5, the program Version 6 that uses a locally

re�ned grid and Version 7 that introduces the concept of a variably spaced grid, were

run on the same processing unit, under the same conditions and using a constant

total time step, Nt = 100 throughout all the tests. Results are shown for re�nement

ratios of 2, 4 and 8 in Version 6 and compared to the uniform grid. In each case

calculations were performed with a re�ned grid and a uniform grid. Version 7 is still

under construction and therefore results can only be compared for the re�nement

ratio of 4. The uniform grid cell size corresponded with the �nest cells in the re�ned

grid. Each calculation was run to the same simulation time and the CPU times were

calculated. The CPU times are recorded on the tables below. Our experience has

been that the CPU time per iteration does not vary much during a calculation so

these timings should be representative.

Figure 5.1
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As we can see from Table 5.1, by re�ning the grid at the areas of interest by

only a factor of 2, the total CPU time used by the program is decreased by 16.4%.

We selected an initial total number of space steps Nx = 1000 in Version 6 of the

program. The re�nement at the areas around the interface of the external �elds were

double the points at the rest of the domain and the �nal points became Nx = 1400.

On the other hand by attempting a global re�nement using Version 5, points had

to be selected as Nx = 2000 so that the size of the space step dr became equal to

the step size at the �ne regions in Version 6.
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Great savings can be made by gradually re�ning the grid as to the solution ap-

proaches the interface points as in Version 7. Variably spaced grids are still being

investigated since we have noticed that the more we re�ne the domain covered by

the �ne cells, the more time the calculations require. Currently the number of cells

at the �ne regions, in both Version 6 and Version 7, is rather large compared to the

coarser levels. A more accurate analysis of the external �elds is required so more

precise areas of interest are selected.

5.1 Re�nement Errors

Applying the local re�nement method, by either using a variably spaced grid or by

simply splitting the domain in coarser and �ner regions, emphasis is given to spe-

ci�c areas of interest where a �ner grid is used. This approach could create errors

in calculations of our segment concentration distributions, especially in the parts

wher a coarser mesh is used. We therefore want to distinguish the size of the overall

error between the results of a globally re�ned mesh using the uniform mesh program

(Version 5) with small size steps and that of a locally re�ned mesh that has similar

size steps only at the �ner regions.

As an initial test for error calculations we �nd the mean sum of �A(r) and �B(r).

The incompressibility condition states that �A(r) + �B(r) = 1. Using numerical

schemes such as the Crank Nicolson and the trapezoidal rule lead us to expect a

small variance of the solution to this sum. We therefore calculate the mean sum of

the segment concentrations across the whole domain using equation 5.1

Mean Sum =
NxX
r=1

�A(r) + �B(r)

Nx

(5.1)

The results of this sum are shown in the table below, 5.3. Nt remained constant

across all programs and equal to 100. The re�nement at the �ner regions is done

using a factor k = 4.
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Figure 5.3: Table

From the table above, we can conclude that the more we re�ne the grid the

greater the error and that can probably be attributed to the coarser areas where

less attention is given. However the averages di�er only very slightly and the size of

the error is not clear and probably not very accurate with this method of measure.

We therefore use the error,

Error =

vuuut 1

D

DZ
0

(�AB1(r)� �AB2(r))2dr (5.2)

where �AB1(r) is the sum of �A(r) + �B(r) of the global re�nement program which

produces the more accurate results throughout the whole domain, since the step size

is equal to that of the �ner regions in Version 7. �AB2(r) is the sum of the segment

concentrations as a result of Version 7 that focuses on speci�c regions of the domain.

The issue with computing the error using equation 5.2 is that each program

makes calculations at di�erent points in the domain and the global re�nement has

a lot more points than the local re�nement and we need to use this equation only at

the common points. Since we are more interested in the local re�nement program,

we use its space points as reference where to apply the error equation. However,

there might not be an equivalent point in the global re�nement program as di�er-

ent size steps are used. We therefore use linear interpolation to �nd the equivalent

�AB2(r) at that speci�c point.

Once we have a �AB2(r) equivalent to �AB1(r) at each point that the local re-

�nement program produced, we can then apply equation 5.2. The error equation

also includes integrating the di�erence over the two totals over the whole domain.

We use the trapezoidal rule to numerically solve this integration in the same way

as we did for calculating the total partition function and the segment concentration

equations.

We will now compare Version 7, a variably spaced grid that re�nes the �ne re-
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gions by a factor of 4 against Version 5, using a globally re�ned grid that has equal

space steps, to that of the �ne regions of the locally re�ned grid. We will select

Nt = 100 in both programs and the results are shown in Table 5.4

Figure 5.4: error table

The results show that the di�erence between the result of globally re�ning the

grid and using a variably spaced grid is only 2.191146698777E-02. This error is

located around the coarser regions of the domain where the locally re�ned grid pro-

gram uses bigger space steps.

Table 5.5 performs global re�nement on our domain by using smaller and smaller

steps. Part 1 of the table increases the total number of space steps from 12000 to

20000 and then 40000 while maintaining the time steps constant. We can observe

a negative correlation between processing time and error. As the processing time

increases as a consequence of the extra steps and calculations the error decreases.

But it’s the change in the error that is surprisingly small. The change appears in

the seventh signi�cant �gure. We therefore perform a di�erent test, as shown in

Part 2. Space steps are kept at 6000, while we run the program with 1000, 2000,

4000 and 6000 total time steps. The processing time does increase similarly to Part

1, however the error decreases at each stage to almost half the size of the previous

test run. Thus having a su�cient number of total time steps is important. Part 3

shows a change in total time steps but with a smaller number of space steps. The

error increases as expected but very slightly. What is even more surprising is that

using 6000 total space steps and 1000 time steps does not a�ect the error as much

as using 1000 space steps and 6000 time steps. The error is almost double in the

�rst case. From table 5.5 we can conclude that using 6000 time steps gives ta45 t9We can oy o 63(sli9o4(ta45)s)-326(andsc)1sfy379(us26e)-367(r(steps.)]TJ 17.559 -35.855 Td [(T)82(388e)-62(388e)-260(p)-27(erf388earf388e)-300(lo)-rf388e)-260(re�nemen)388eat88eaur1(t88e)-299((erro0(Al-rf388e32(388e)(P)erf388e)-3558ns)-onclud)8ns table



step size is equal between the two tables at only the �ne regions of the domain.

The coarser regions in the local re�nement process have greater step sizes and are

in fact 4 times bigger. We therefore see a big change in the processing time and

total space steps required. The error in each test is bigger than the equivalent one

using a global re�nement but by only a slight variation. The 3 di�erent parts lead

us to the same observations and conclusions as in Table 5.5. Therefore, the local

re�nement method reduces the processing time with a cost of a slight increase in

the error but maintains all assumptions and conclusions of the more accurate but

more demanding in processing power and memory, global re�nement approach.
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These comparisons show that using a globally re�ned grid produces more accu-

rate results, which should be more e�cient for analysis and applications. However,

the error is very small and is attributed to the coarser regions which are not our

areas of interest in the domain. The aim of local re�nement is to maintain the
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