
The University of Reading
School of Mathematics, Meteorology & Physics

Moving Mesh Methods for
Semi-Linear Problems

by

Matthew Paul Edgington

August 2011

||||||||||||||||||||||||-
This dissertation is a joint MSc in the Departments of Mathematics &

Meteorology and is submitted in partial ful�lment of the requirements for the
degree of Master of Science

Abstract

In this dissertation we examine the application of moving mesh methods to a

number of semi-linear partial di�erential equations (PDEs). In particular we

apply moving mesh methods that are based on the principle of conservation of

certain quantities. The PDEs we consider are the Fisher’s equation, Non-linear

Schr�odinger equation and the Cahn-Allen equation. We begin with some ex-

amples of PDEs that exhibit blow-up behaviour, that is, they have a solution

that becomes in�nite within a �nite time, and then investigate some applica-

tions to other problems not displaying blow-up behaviour. The main aim of

this dissertation is to examine the e�ects of using these conservative moving

mesh methods on the capture of the solutions obtained for the speci�c PDEs

considered and then to discuss the results obtained.

i

Acknowledgements

I would like to begin by acknowledging Professor Mike Baines for his help and

support during the course of this dissertation. In particular I would like to

thank him for always being available to help and for being an endless source of

information and guidance. All of this on top of being a genuinely nice person.

I would also like to thank all of the academic sta� in both the mathemat-

ics and meteorology departments who make this course what it is. A special

mention must also go to Dr. Peter Sweby for his excellent organisation of the

Mathematical and Numerical Modelling of the Atmosphere and Oceans MSc

course.

A huge debt of gratitude is also owed to everyone who encouraged me to

return to university and pursue my interests.

Finally, I must thank the Natural Environment Research Council (NERC)

for their �nancial support, without which I would not have been able to further

my education in this way.

ii

Declaration

I con�rm that this is my own work and the use of all material from other sources

has been properly and fully acknowledged.

Signed ... Date

iii

3 Alternative ‘Fisher Type’ Equations 25

3.1 Introduction to ‘Fisher Type’ Equations 25

3.2 Choosing an Appropriate Monitor Function 26

3.3 ‘Traditional’ Fisher’s Equation 28

3.3.1 Problem Formation . 28

3.4 Method for the ‘Traditional’ Fisher’s Equation 29

3.4.1 Generation of Nodal Velocities 29

3.4.2 New Mesh and Arc-Length Creation 31

3.4.3 Recovery of New Approximations 31

3.5 Cahn-Allen Equation . 33

3.5.1 Problem Formation . 33

3.6 Method for the Cahn-Allen Equation 33

3.7 Numerical Results . 34

3.7.1 Results for the ‘Traditional’ Fisher’s Equation 34

3.7.2 Results for the Cahn-Allen Equation 36

3.8 Summary of Other ‘Fisher Type’ Equations 37

4 The Nonlinear Schr�odinger Equation 38

4.1 Introduction to the Nonlinear Schr�odinger Equation 38

4.2 Problem Formation . 39

4.3 ‘Mass’ Conservative Method for the Nonlinear Schr�odinger Equa-

tion . 40

4.3.1 Analysis of Properties . 40

4.3.2 Calculating Conserved Quantities 44

4.3.3 Generation of New Meshes 44

4.3.4 Recovering New Approximations of � and

4.5 Area Conservative Method for Non-linear Schr�odinger Equation . 51

4.5.1 Generation of Node Velocities 51

4.5.2 Generating New Meshes and Total Areas 54

4.5.3 Recovery of New Approximations 54

4.6 Results for the Area Conservation Method for the Nonlinear Schr�odinger

Equation . 55

4.7 Nonlinear Schr�odinger Equation Summary 57

5 Discussion of Project 58

5.1 Summary . 58

5.2 Conclusions . 59

5.3 Further Work . 60

vi

List of Figures

1.1 An example of a typical blow-up solution pro�le 3

1.2 An example of a typical phase �eld problem solution 4

2.1 Solution of Fisher’s equation for 165 time steps using an explicit

method . 8

2.2 Solution of Fisher’s equation for 5 time steps using a semi-implicit

method . 9

2.3 Solution of Fisher’s equation (with p = 2) at the �nal time step . 16

2.4 Development of time-steps . 17

2.5 Mesh evolution . 18

2.6 Demonstration of the method of linear extrapolation of velocities 19

2.7 Comparison of results obtained using a �xed and a moving bound-

ary node method . 21

2.8 Solution of Fisher’s equation (with p = 3) at the �nal time step . 23

2.9 Mesh evolution in Fisher’s equation with p = 3 24

3.1 Solution obtained for the ‘Traditional’ Fisher’s equation 35

3.2 Mesh Evolution for the ‘Traditional’ Fisher’s equation 35

3.3 Solution obtained for the Cahn-Allen equation 36

3.4 Mesh Evolution for the Cahn-Allen equation 37

4.1 Demonstration of the method of Lagrange polynomials to extrap-

olate solutions . 47

vii

List of Tables

2.1 Cases considered for the number of nodes in x 2 [0; 1] and �t0 in

Fisher’s equation . 15

2.2 Number of nodes and initial time steps used for comparison of 15

of nodes which are redistributed at each time step in order to track the

blow-up behaviour as it develops. The main advantages of this type of

method are that it allows computations to be carried out all the way up

to the blow-up time and also it is not computationally expensive to do

so. There is however a weakness in that as the nodes track the blow-up

1.3 What is a phase �eld problem?

According to Westwood [2], phase �eld models are used to represent situations

whereby a sharp interface is represented by very thin transition layers so that

the phase �eld varies continuously over these transition layers, and yet remains

uniform over the bulk phases.

Zhang and Du [5] state that one of the most important challenges of modeling

this type of problem is to suitably resolve the thin interfacial layer. In this small

layer the solution will remain smooth, but develop a large spatial gradient.

Zhang and Du [5] go on to explain that cases where such layers move over time

may be used to model dynamically evolving fronts.

The literature on this type of problem clearly shows somewhat of a typical

solution which has a very speci�c form. This is that in a case with two phases

P1 and P2, there will be a smooth curve from each phase into a linear slope

between them. An example of such a solution can be seen in Figure (1.2).

Figure 1.2: An example of a typical phase �eld problem solution

4

Chapter 2

Blow-Up in Fisher’s

Equation

Our investigation into the application of moving mesh methods in the solution

of various PDEs begins with the examination of Fisher’s equation and this is a

common starting point when considering blow-up problems.

2.1 Introduction to Fisher’s Equation

Fisher’s equation is the standard one-dimensional heat equation with an extra

source term and is given by

ut = uxx + up; (p > 1): (2.1)

Fisher’s equation has applications in many areas of science as described in [3], [6]

and [7]. Budd et al. [3] state that the equation is used as a representation of the

temperature in a reacting or combusting medium, whilst Braun and Kluwick [6]

and Kluwick et al. [7] explain a use of Fisher’s equation in the representation of

various processes involved in laminar boundary layer separation, which is a key

research area within meteorological science.

5

Fisher’s equation is an example of a typical blow-up problem in so much

as the solution can exhibit blow-up at a single blow-up point, denoted x�, and

this will occur within a �nite blow-up time, T . Budd et al. [3] describe this by

saying that for some blow-up time T <1, as t! T we have

u(x�; t)!1 and u(x; t)! u(x; T) <1; if x 6= x�:

2.2 Problem Formation

In examining Fisher’s equation we will consider two di�erent cases which are

related to the power of the blow-up term. We begin by considering the case

in [3] where p = 2 and we will then go on to look at the case where p = 3, i.e.

we will examine

ut = uxx + u2 (2.2)

and

ut = uxx + u3 (2.3)

in x 2 [0; 1]. Throughout our investigation into Fisher’s equation we will use

Dirichlet boundary conditions of the form

u(0; t) = u(1; t) = 0:

According to Budd et al. [3] our choice of initial condition must be large enough

to ensure that blow-up will occur and also must be chosen such that our problem

will display blow-up at a single blow-up point (in this case x� = 0:5). With these

considerations in mind we take our initial condition to be that given in [8], i.e.

u(x; 0) = 20 sin(�x):

6

2.3 Fisher’s Equation on a Fixed Mesh

In order to demonstrate the need for moving mesh methods we �rst consider

Fisher’s equation as in Equation (2.2), as discussed previously and examine

two di�erent solution methods which both utilise a �xed mesh. The two �xed

mesh methods we consider are very simple explicit and semi-implicit solution

methods. We will then discuss the results obtained and demonstrate the need

for a moving mesh method for solving blow-up problems.

2.3.1 Explicit Method

One of the simplest methods which can be used to solve Fisher’s equation nu-

merically is to utilise �nite di�erence methods applied on a �xed mesh (i.e. a

mesh made of static nodes). This will give us some insight into the blow-up

solution of Fisher’s equation and act as a benchmark against which to compare

results.

Figure 2.1: Solution of Fisher’s equation for 165 time steps using an explicit
method

We can clearly see that in this case we have a blow-up point located at

x� = 0:5. It is also the case that as our blow-up peak grows taller and narrower,

we can see that our �xed mesh method fails to resolve the solution and with this

being the case, under a �xed mesh method we would need to add extra nodes

into our mesh in order to add extra resolution to the solution.

Another common issue with using a �xed mesh to tackle a blow-up problem

is that the blow up point, x�, may not actually be located at one of the nodes

leading to an even greater failure of the �xed mesh method to resolve the solution

of the blow-up problem.

2.3.2 Semi-Implicit Method

The stability condition referred to in Section (2.3.1) is the main weakness as-

sociated with using an explicit method in order to solve problems and so we

now extend our investigation into �xed mesh solutions of blow-up problems by

considering a semi-implicit solution method. As in Section (2.3.1) we begin

by discretising Fisher’s equation, however in this case we discretise our spatial

derivative at the forward time which gives

�
un+1
j � unj

�

and this rearranges to

un+1
j � �

�
un+1
j+1 � 2un+1

j + un+1
j�1

here is the form of r-re�nement whereby we aim to conserve the fractional area

under the curve as our solution evolves.

2.4.1 Generating Node Velocities

In order to guide the movement of the nodes making up our mesh we consider a

velocity-based approach whereby each node is assigned a velocity with which it

will move towards the blow-up point. This is recalculated at each time step and

a new mesh is created. The velocity with which the nodes are allowed to move

is calculated in such a way that the fractional area under the solution curve is

conserved at each time step.

We begin by splitting our domain x 2 [0; 1] into two halves since we know the

solution is symmetric. The domain now becomes x 2 [0:5; 1], which is divided

into N equally sized intervals which shall be denoted by (xj�1(t); xj(t)), for

j = 1

into which we may substitute (2.2) in place of ut, giving

_� =

Z 1

0:5

uxx + u2dx

= [ux]10:5 +

Z 1

0:5

u2dx: (2.7)

In the method of conservation we hold the fractional area of the regions under

the solution curve constant over time, i.e.

1

�

Z xj(t)

xj�1(t)

u(x; t)dx = constant. (2.8)

Di�erentiation of (2.8) with respect to time yields

d

dt

"
1

�

Z xj(t)

xj�1(t)

u(x; t)dx

#
= 0; (2.9)

which, since we are di�erentiating under the integral sign we may utilise the

Leibniz integral rule in order to obtain

0 = � 1

�2
_�

Z xj(t)

xj�1(t)

u

step. At j = N , v is not actually de�ned by (2.10) however we take vN = 0.

2.4.2 Generation of New Meshes and Total Area

In order to generate the new mesh and total area under the solution curve to be

2.4.4 Adaptive Time-Step

In order to allow our method to track the bahaviour of the solution appropriately

we may use the scaling argument given in Budd et al. [3] to create a condition for

varying the length of the time step. Budd et al. [3] state that Fisher’s equation

is invariant under the rescaling

(T � �t) = �(T � t); (2.11)

�u = �
�1

(p�1)u; (2.12)

(�x� x

Nodes �t0 Nodes �t0 Nodes �t0
11 1:71� 10�5 21 1� 10�5 41 1� 10�5

11 8:55� 10�6 21 4:9� 10�6 41 15� 10�6

11 4:275� 10�6 21 2:45� 10�6 41 2:5� 10�6

11 2:1375� 10�6 21 1:225� 10�6 41 1:24� 10�6

Table 2.1: Cases considered for the number of nodes in x 2 [0; 1] and �t0 in
Fisher’s equation

15

2.6 Can We Allow Moving Boundary Nodes?

Since we know that vN = 0 is chosen arbitrarily in order to �x the boundary

node and hence maintain the length of our domain, it may be of use to consider

the possibility of allowing the boundary node to have a velocity other than

vN = 0.

With this is in mind we investigate a possible solution to this problem which

is to allow the boundary node to move with a certain velocity whilst maintaining

its �xed value of u = 0. This method has been applied to Fisher’s equation here

in order to examine what e�ect this has on our solution when compared to those

obtained in the previous sections where we had a �xed boundary node.

In order to assign a velocity to the boundary node it is necessary to consider

a di�erent method to that laid out in Equation (2.10) since the value of uj for

the boundary node will be equal to zero and we may therefore not divide by

it. To overcome this issue we consider a linear extrapolation of the velocities

assigned to the two nearest nodes as shown in Figure (2.6), where the dotted

line represents the linear extrapolation.

Figure 2.6: Demonstration of the method of linear extrapolation of velocities

19

We may express this linear extrapolation of the velocity using the expression

vJ = vJ�1 + (xJ � xJ�1)
(vJ�1 � xJ�2)

(xJ�1 � xJ�2)
; (2.16)

where the J subscript represents the boundary node.

The examples considered here are as laid out in Table (2.2) where �t0 rep-

resents the initial time step and all subsequent time steps are determined by

Equation (2.15).

Nodes in x 2 [0; 1] 11 21 41
�t0 2:1375� 10�6 1:225� 10�6 1:24� 10�6

Table 2.2: Number of nodes and initial time steps used for comparison of �xed
and moving boundary node methods

A comparison of the results obtained using these two di�erent methods are

shown in Figure (2.7). Each of the lines in this �gure represents the solution

obtained at the �nal time-step.

We also examine the di�erence in the maximum values of u obtained at the �nal

time-step in order to look at the e�ect on our solution of allowing our boundary

node to move. This is shown in Table (2.3) where the percentage refers to the

percentage of the value of uMAX obtained using a �xed boundary node method

which can be achieved when using a moving boundary node method.

Nodes Fixed Boundary Node Moving Boundary Node Percentage
11 4664.85 7100.06 152.20%
21 29144.84 3292.37 11.30%
41 2933.36 1828.48 62.33%

Table 2.3: Comparison of results obtained using a �xed and a moving boundary
node method

We can see from Figure (2.7) that allowing a method whereby the boundary

node is allowed to move does not have a huge e�ect in terms of the general

shape of the solution which would suggest that there may be some potential in

this method, however upon examination of Table (2.3) we see that there does

not appear to be any reliable pattern in how close the two methods �nal time

20

(a) 11 nodes, �t0 = 2:1375 � 10�6 (b) 21 nodes, �t0 = 1:225 � 10�6

(c) 41 nodes, �t0 = 1:24 � 10�6

Figure 2.7: Comparison of results obtained using a �xed and a moving boundary
node method

solutions are associated with the number of nodes or the size of the time step.

The fact that this method of moving boundary nodes appears to be rather

unpredictable in terms of how close to the �xed boundary node solution the

results we obtain are would suggest that this method should not be applied

within the conservative moving mesh methods discussed here.

21

2.7 Method of Conservation for Fisher’s Equa-

tion (with p = 3)

We now move on to considering the Fisher’s equation with a di�erent power, p,

which in this case will be chosen as p = 3 which gives us Equation (2.3), i.e.

ut = uxx + u3:

Budd et al. [1] state that for Fisher’s equation taking the form in Equation

(2.1), we must conserve the quantity

Z
up�1dx;

and so in this case we conserve

Z
u2dx: (2.17)

The method we will use in this section is exactly as laid out in Section (2.4)

except for the fact that we will conserve the value in Equation (2.17) instead of

the conserved value of Z
udx

which was conserved in the case where p = 2. The cases which shall be consid-

ered here all use 41 nodes in x 2 [0; 1] and we utilise the �t0 values from the

p = 2 case of Fisher’s equation.

2.8 Results for Fisher’s equation (p = 3)

We begin by illustrating the behaviour of our solution as time passes. As men-

tioned previously, here we use 41 mesh points over the domain x 2 [0; 1] and we

use the same initial time-steps, �t0

(a) �t0 = 1 � 10�5 (b) �t0 = 5 � 10�6

(c) �t0 = 2:5 � 10�6 (d) �t0 = 1:25 � 10�6

Figure 2.8: Solution of Fisher’s equation (with p = 3) at the �nal time step

As before we are able to see that the largest value of u that we are able to

obtain is dependent on both the initial time-step and its development over time.

We can also see that in this case (where p = 3) we reach our largest solution in

a much smaller number of time-steps than we were able to in the p = 2 case.

The reason for this is that the up term is the blow-up term, and in the case

where p = 3 this blow-up will occur faster due to the greater power of u.

We also examine the evolution of our mesh as time passes in order to see

how the method works in terms of moving the mesh points in order to allow the

resolution of the solution to be maintained.

Similar to the previous case we can see that as time passes, the nodes without

a �xed position move in towards the blow-up point. The main di�erence between

this case and the one considered previously is that it takes many fewer time-

steps in order to reach the blow-up time, T . This can be seen by the fact that

23

(a) �t0 = 1 � 10�5 (b) �t0 = 5 � 10�6

(c) �t0 = 2:5 � 10�6 (d) �t0 = 1:25 � 10�6

Figure 2.9: Mesh evolution in Fisher’s equation with p = 3

the time at which the mesh points really accelerate towards the blow-up point

occurs much earlier than in the p = 2 case.

24

Chapter 3

Alternative ‘Fisher Type’

Equations

We now move the investigation into moving mesh methods on to look into their

application for some further examples of ‘Fisher type’ equations.

3.1 Introduction to ‘Fisher Type’ Equations

According to Ockendon et al. [9], ‘Fisher type’ equations are examples of semi-

linear reaction-di�usion equations and they take the form

ut = uxx + f(u; x; t): (3.1)

Ockendon et al. [9] go on to state that these equations often appear in models

of population dynamics, where the function f(u; x; t) can be either positive or

negative depending upon the process which is being modelled.

The two examples of ‘Fisher type’ equations which shall now be considered,

in addition to those in Section (2

‘traditional’ Fisher’s equation.

The �rst of these monitor functions given by Qiu and Sloan [10] is a standard

arc-length monitor function. This takes the form

M(x; t) =

s
1 + �2

�
@u

@x

�2

; (3.4)

in which � is a user-speci�ed parameter that is given a value of � = 2 in the

paper by Qiu and Sloan [10]. Another monitor function considered in this same

paper is that of a curvature monitor function of the form

M(x; t) =

1 + �2

�
@2u

@x2

�2
! 1

4

; (3.5)

where � is again a user-speci�ed parameter taking the value � = 2 in the

literature. Qiu and Sloan [10] then go on to de�ne a modi�ed monitor function

which they believe captures the characteristics of the model e�ectively and this

is given in [10]. Another monitor function considered in this same paper is that

of an extended curvature monitor function of the form

M(x; t) =

"
1 + �2(1� u)2 + �2(a� u)2

�
@2u

@x2

�2
1

2

; (3.6)

and in this case we have three user-de�ned parameters �; � and a which are

given the values � = 1:5, � = 0:1 and a = 1:015 in the paper by Qiu and

Sloan [10].

In this investigation, we are concerned with implementing velocity-based

moving mesh methods and with this in mind it will be the arc-length monitor

function,

M(x; t) =

s
1 + �2

�
@u

@x

�2

;

which shall be applied in subsequent sections. This is chosen as it should be

suitable for use with both the ‘traditional’ Fisher’s equation and the Cahn-Allen

equation due to the fact that they share many similar characteristics.

27

3.3 ‘Traditional’ Fisher’s Equation

3.3.1 Problem Formation

During the investigation into the ‘traditional’ Fisher’s equation we shall consider

the problem as laid out by Qiu and Sloan [10]. This gives the equation as

ut = uxx + u(1� u); (3.7)

and shall be considered in the domain x 2 [0; 1].

It is also necessary to de�ne both initial and boundary conditions in order

to be able to solve this problem. The boundary conditions given in [10] are

lim
x!�1

u(x; t) = 1 and lim
x!1

u(x; t) = 0;

initial condition as

u(x; 0) =

8>><>>:
e�5x for 0 � x < 1

0 for x = 1:

3.4 Method for the ‘Traditional’ Fisher’s Equa-

tion

As discussed in Section (3.2), we create a velocity based method whereby an

arc-length monitor function is used in order to guide the movement of the nodes.

The method which shall be used for this problem is essentially a hybrid of two

separate monitors since we use an area monitor to avoid a complicated inversion

process which would be necessary were we to use an arc-length monitor in the

retrieval of new approximations of the solution.

3.4.1 Generation of Nodal Velocities

We begin by splitting the domain x 2 [0; 1] into N equally sized intervals

(xj�1(t); xj(t)), for j = 1; 2; :::; J . The arc-length of the solution curve for

each of these intervals is given by

lj =

Z xj(t)

xj�1(t)

Mdx; (3.8)

where M =
p

1 + u2
x.

It is then possible to combine the arc-lengths for each of these intervals to

give the arc-length of the entire domain, which shall be denoted . This gives

(t) =

Z 1

0

Mdx: (3.9)

We may now di�erentiate with respect to time in order to give the rate of

change of the entire arc-length. This is given by

_ =
d

dt

Z 1

0

Mdx; (3.10)

29

to which we may apply the Leibniz integral rule to obtain

_ =

Z 1

0

@M

@t
dx =

Z 1

0

uxutxp
1 + u2

x

dx:

We are now able to substitute Equation (3.7) into this in order to obtain

_ =

Z 1

0

uxp
1 + u2

x

@

@x
(uxx + u(1� u))dx:

In each interval we hold ux/
p

1 + u2
x constant and so we may take this outside

of the integral to obtain

_ =
JX
j=1

uxp
1 + u2

x

�����
x

j� 1
2

(t)

[uxx + u(1� u)]
xj(t)

xj�1(t):

This may now be rearranged to give an expression for the nodal velocity which

is given by

vj =
�1

Mj

"
_

lj �Mj�1vj�1 + [uxx + u(1� u)]xj

xj�1
� ux
M

���
x

j� 1
2

#
:

3.4.2 New Mesh and Arc-Length Creation

In order to create the new meshes and total arc-length of the solution curve, we

use a simple explicit Euler time stepping method.

This allows us to generate a new grid using the expression

xn+1
j = xnj + �t vnj :

The same method is then used to generate a new arc-length for the entire domain

which is given by

n+1
j = nj + �t _nj :

3.4.3 Recovery of New Approximations

We now resort to the use of the previous monitor function in order to obtain

new approximations of the solution.

Firstly, we calculate the area under the solution curve for the entire domain,

which shall be denoted by �, and is given by

�(t) =

Z 1

0

u(x; t)dx:

We now di�erentiate with respect to time, which gives

_� =
d

dt

Z xj

xj�1

udx;

31

and we may now apply the Leibniz integral rule to this, which yields

_� =

Z xj

xj�1

utdx+ [uv]xj
xj�1

:

Equation (3.8) may now be substituted into this to give

_� =

Z xj

xj�1

(uxx + u(1� u))dx+ [uv]xj
xj�1

= [ux]xj
xj�1

+

Z xj

xj�1

u(1� u)dx+ [uv]xj
xj�1

:

It is now possible to obtain all of these values from previous stages of the method.

A simple explicit Euler time stepping method is used to generate a new total

area under the solution curve which is given by

�n+1 = �n + �t _�n:

We then use this new � value to give

Z xj+1

xj�1

udx = �n+1;

to which we may apply the mid-point rule, giving

un+1
j [xn+1

j+1 � x
n+1
j�1] = �n+1;

and this may be rearranged to give an expression for the approximate solution

which is

un+1
j =

�n+1

[xn+1
j+1 � x

n+1
j�1]

:

32

3.5 Cahn-Allen Equation

3.5.1 Problem Formation

Before we may investigate the application of a velocity based moving mesh

method to the Cahn-Allen equation, we must begin by laying out the problem

as it will be considered here. Lyons et al. [11] carry out numerical simulations

of this equation which is given by

ut = uxx + u� u3; (3.11)

and this shall be investigated on the domain x 2 [�1; 1].

It is also necessary to de�ne both initial and boundary conditions for this

problem. The boundary conditions given by Lyons et al. [11] are

ux(�1; t) = 0 and ux(1; t) = 0;

which hold at all time levels. We must now give an initial condition for con-

sideration here, and this is again given by Lyons et al. [11

di�er in the method for the Cahn-Allen equation are

_ =

JX
j=1

uxp
1 + u2

x

�����
x

j� 1
2

�
�
uxx + u(1� u2)

�xj

xj�1
;

_� = [ux]x
j+1

xj�1
+

Z xj+1

xj�1

u(1� u2)dx+ [uv]xj+1�uX2 1j
1

Figure 3.1: Solution obtained for the ‘Traditional’ Fisher’s equation

Figure (3.1) displays the result after 2999 time steps, which is the �nal time

step before we encounter an issue whereby nodes overtake one another. Upon

examining this �nal solution curve we can see that the curve appears to have

formed the interface which we would expect to see according to Qiu and Sloan

[10].

The next stage is to look at the evolution of the mesh over time, which is

displayed in Figure (3.2).

Figure 3.2: Mesh Evolution for the ‘Traditional’ Fisher’s equation

From Figure (3.2) we are able to see that in the left hand half of the domain,

the nodes appear to be moving in towards the location at which the top of the

interface forms. This is the behaviour we would wish to see when using this

type of method as it would help to accurately resolve the solution at the ends

35

of the interface. Whilst there is a general pattern of nodal movement towards

the desired location, the nodes move in at very di�erent rates which may cause

issues of nodal crossing before a �nal solution has been obtained.

3.7.2 Results for the Cahn-Allen Equation

In Section (3.5.1), we explain that we shall use the domain x 2 [�1; 1] for our

investigations into the Cahn-Allen equation. With this in mind we consider a

mesh consisting of 41 nodes which initially have an equal spacing.

We begin by examining the results which were obtained for the solution

curve, u. The results obtained after 99 and 199 time steps are displayed in

Figure (3.3).

(a) After 99 Time Steps (b) After 199 Time Steps

Figure 3.3: Solution obtained for the Cahn-Allen equation

We can see from Figure (3.3a) that after 99 time steps, the peaks and troughs

in the solution curve appear to be moving towards eachother. Figure (3.3b)

shows that after 199 time steps, the troughs of the solution curve appear to be

developing some unphysical behaviour.

Next, we move on to examine the evolution of the mesh over the �rst 199

time steps, and this is shown in Figure (3.4).

It is clear to see that across most of

Figure 3.4: Mesh Evolution for the Cahn-Allen equation

the case with the ‘Traditional’ Fisher’s equation, the nodes move at very di�er-

ent rates leading to the problem of nodal overtaking which causes a breakdown

of the solution. This nodal overtaking causes the solution after 199 time steps

to display serious amounts of unphysical behaviour.

3.8 Summary of Other ‘Fisher Type’ Equations

In this chapter we have laid out a method based on a hybrid of an arc-length

monitor and an area monitor function.

When examining the application of this method to the ‘Traditional’ Fisher’s

equation we obtained some positive results both in terms of the solution curve

and the mesh evolution. We then applied the same method to the Cahn-Allen

equation. From the results obtained we are able to demonstrate very limited

potential in so much as there was nodal movement in the correct locations,

however the breakdown of physical behaviour within a small number of time

steps may suggest a need to seek a more appropriate method.

37

as described in [12] and [13]. Budd et al. [12] and [13] state that this equation

may be used to represent phenomena in both plasma physics and nonlinear

optics.

As was the case with Fisher’s equation, we may consider the NLS equation as

a typical blow-up problem since, given suitable initial conditions, the solutions

will display blow-up at a single blow-up point and this occurs within a �nite

blow-up time, T .

4.2 Problem Formation

In this investigation into the nonlinear Schr�odinger equation we will consider

the conservative form of the equation, and will look only at the case where d = 2

since there is known to be an ‘exact’ solution for the d = 1 case. This gives the

NLS equation as

i
@u

@t
+

1

r

@

@r

�
r
@u

@r

�
+ juj2u = 0; (4.3)

and it shall be considered on the domain r 2 [0; 1].

In order to solve this problem we must de�ne both initial and boundary

conditions. The boundary conditions considered for this particular problem are

ur(0; t) = 0

u(1; t) = 0;

and we must choose an initial condition which satis�es the boundary conditions

whilst also being large enough to ensure blow-up will occur. With this in mind

we choose an initial condition similar to that chosen for Fisher’s equation how-

ever we will adapt it such that the part in the domain x 2 [0:5; 1] is stretched to

cover the domain of r 2 [0; 1] used for the NLS equation. This gives our initial

condition as

u(r; 0) = 20 sin

�
�

�
1 + r

2

��
:

39

Proof of Invariant Conserved Quantity

We begin our analytic investigation into the NLS equation by proving that the

total integral of the quantity we aim to conserve will not vary over time. In

other words we look to prove that

d

dt

Z R

0

juj2rdr = 0;

where R is the end of the domain.

In order to prove that this is true we take the NLS equation as given in

Equation (4.2), and into this we may substitute u = �+ i to obtain

i
@

@t
(�+ i) +

1

r

@

@r

�
r
@

@r
(�+ i)

�
+ (�2 + 2)(�+ i) = 0;

which may be rearranged and split into its real and imaginary parts. This gives

expressions for _� and _ , which are

_� =
@�

@t
=
�1

r

@

@r

�
r
@

@r

�
� (�2 + 2): (4.4)

_ =
@

@t
=

1

r

@

@r

�
r
@�

@r

�
+ �(�2 + 2) (4.5)

We now look at the time derivative of our conserved quantity, which is given

by

d

dt

Z R

0

(�2 + 2)rdr; (4.6)

since juj2 = �2 + 2, and this may be re-written as

Z R

0

2�
@�

@t
rdr +

Z R

0

2
@

@t
rdr: (4.7)

It is now possible to substitute for _� and _ using Equations (4.4) and (4.5),

41

which gives

�
Z R

0

2�
@

@r

�
r
@

@r

�
dr �

Z R

0

2�r (2)dr �
Z R

0

2�r (�2)dr (4.8)

+

Z R

0

2
@

@r

�
r
@�

@r

�
dr +

Z R

0

2 r�(�2)dr +

Z R

0

2 r�(2)dr:

We may then simplify Equation (4.8) to leave

Z R

0

2
@

@r

�
r
@�

@r

�
dr �

Z R

0

2�
@

@r

�
r
@

@r

�
dr: (4.9)

The next stage is to integrate each of the terms in Equation (4.9) by parts which

will leave us with

�
2 r

@�

@r

�R
0

� 2

Z R

0

@

@r
r
@�

@r
dr �

�
2�r

@

@r

�R
0

+ 2

Z R

0

@�

@r
r
@

@r
dr; (4.10)

from which the integral terms cancel leaving us with

d

dt

Z R

0

(�2 + 2)rdr =

�
2 r

@�

@r

�R
0

�
�
2�r

@

@r

�R
0

(4.11)

= 2 (R)R
@�(R)

@r
� 2 (0)0

@�(0)

@r
� 2�(R)R

@ (R)

@r
+ 2�(0)0

@ (0)

@r
;

which, using the boundary conditions ur(0; t) = 0 and u(1; t) = 0 is equal to

zero, and hence we have proven that

d

dt

Z R

0

juj2rdr =
d

dt

Z R

0

(�2 + 2)rdr = 0:

Derivation of Velocity Formula

In order to derive a formula for the velocity of the mesh nodes, we begin by

considering the expression

Mv = �
Z rj

0

@M

@t
rdr;

which may be rearranged to give

v =
�1

(�2 + 2)

Z rj

0

�
2�
@�

@t
+ 2

@

@t

�
rdr:

We may then substitute for @�
@t and @

@t using Equations (4.4) and (4.5), giving

v =
�1

(�2 + 2)

�Z rj

0

�
2�

@

@r

�
r
@

@r

��
dr +

Z rj

0

�
2�r (�2 + 2)

�
dr

�
Z rj

0

�
2

@

@r

�
r
@�

@r

��
dr �

Z rj

0

�
2 r�(�2 + 2)

�
dr

�
;

and this simpli�es to

v =
�1

(�2 + 2)

�Z rj

0

2�
@

@r

�
r
@

@r

�
dr �

Z rj

0

2
@

@r

�
r
@�

@r

�
dr

�
:

Now we may integrate by parts as in Section (4.3.1), which will give

v =
�1

(�2 + 2)

�
2r

@�

@r
� 2r�

@

@r

�rj

0

: (4.12)

The quotient rule applied to
� will give

@

@r

�

�

�
=
�@ @r �

@�
@r

�2
: (4.13)

We are now able to substitute Equation (4.13) into Equation (4.12) to obtain

v =
�1

(�2 + 2)

�
�2r�2 @

@r

�

�

��rj

0

;

and the case where r = 0 returns only zero and so we now have an expression

43

for the nodal velocity which is

v =
2r�2

(�2 + 2)

@

@r

�

�

�����
rj

: (4.14)

4.3.2 Calculating Conserved Quantities

In order to calculate the partial ‘mass’ values which we will hold constant, we

begin by splitting our domain r 2 [0; 1] into N equally sized intervals with nodes

denoted by rj(t) for j = 0; 1; :::; J . As mentioned earlier, we aim to conserve

the ‘mass’ in each interval which is given by

mj =

Z rj+1(t)

rj�1(t)

(�2 + 2)rdr: (4.15)

4.3.3 Generation of New Meshes

The generation of a new mesh relies on us being able to de�ne a suitable velocity

for each node. Once this velocity is known, we may use a simple explicit Euler

time stepping method.

An analytic derivation of the formula used to give the velocity of each node

is laid out in Section (4.3.1) and the velocities of the nodes are given by

vj =
2rj�

2
j

�2
j + 2

j

@

@r

�
 j
�j

�
:

We then make the observation that

vj =
drj
dt
;

and this allows us to create a new grid using the standard explicit Euler time

stepping method as given by the expression

rn+1
j = rnj + �t vj ;

where �t represents the length of the time step. This new mesh may then be

44

used in the calculation of the values of � and at the next time level.

4.3.4 Recovering New Approximations of � and

New � Approximations

In order to calculate a new approximation of the real part of our solution, �,

we begin by calculating

�nj =

Z rj+1(t)

rj�1(t)

�rdr; (4.16)

for each node. We then continue by examining how the value � evolves over

time and this is done by considering

_�nj =
d

dt

Z rj+1(t)

rj�1(t)

�rdr

=

Z rj+1(t)

rj�1(t)

@�

@t
rdr + [�rv]

rj+1(t)

rj�1(t);

into which we may substitute Equation (4.4).

Once each of these values has been calculated for each node, we may then

use a simple explicit Euler time stepping method to calculate a value of � at the

next time level using

�n+1
j = �nj + �t _ � at the

next time level using

�

part of our solution, �, at the next time level and this is given by

�n+1
j =

2�n+1
j�

(rn+1
j+1)2 � (rn+1

j�1)2
� : (4.18)

New Approximations

We may now use a simple combination of Equations (4.15) and (4.18) to obtain

an approximation for the imaginary part of the solution, . This begins by

applying the mid-point rule to Equation (4.15) to give

mj =

Z rn+1
j+1

rn+1
j�1

(�2 + 2)rdr =
�
(�n+1
j)2 + (n+1

j)2
� (rn+1

j+1)2 � (rn+1
j�1)2

2

!
;

which may be rearranged to obtain

 n+1
j =

s
2mj

(rn+1
j+1)2 � (rn+1

j�1)2
� (�n+1

j)2:

This may be calculated since we may substitute Equation (4.18) in place of the

�2 term. The value of mj need not be recalculated at each time step since this

quantity is time invariant as demonstrated analytically in Section (4.3.1).

This method may only be used to calculate values of � and for j =

1; :::; J�1, meaning we have a requirement for an alternative method to calculate

approximations at the nodes r0 and rJ . For the values of � and at rJ we use

the boundary conditions to set

�J = J = 0:

The approximations at the node r0 = 0 must be extrapolated from the values

at the other nodes and the method used to do this is laid out in Section (4.3.6).

4.3.5 Lagrange Polynomial Exrapolation

Since we are unable to produce a solution value at the point r = 0 using the

method laid out above it is necessary to utilise some other method to generate a

46

solution at r = 0. The method which is used here is that of Lagrange polynomial

extrapolation whereby we create a polynomial which runs through a set of points

and then we are able to use this to extend our solution curve to the point r = 0.

In this case we use the three points next to the point r = 0 to create a

quadratic polynomial which may be used to extend our solution curve.

Figure 4.1: Demonstration of the method of Lagrange polynomials to extrapo-
late solutions

Figure (4.1) shows a simple example of this method, where the rj are the radial

coordinates and the uj are the solution values. This example shows the case

of a straight line solution however this method is equally valid when applied to

curves such as those obtained in the solution of the NLS equation.

The formula which is used to create a quadratic running through the three

and this is applied at each time step to produce both a � and value at the

point r = 0.

This method yields some reasonable results however it is the case that this

method will violate one of the boundary conditions. The reason for this is that

our solution will not necessarily have the property that ur(0; t) = 0, and this

leads us to seek a method of extrapolation which will ensure we do not violate

the boundary conditions.

4.3.6 Improved Polynomial Exrapolation

In order to ensure we do not violate the boundary condition ur(0; t) = 0, we

begin by creating a quadratic polynomial of the form

uj = ar2
j + brj + c

and then use the solutions and the radial coordinates at two other points in

order to specify the values of each coe�cient.

Using the boundary condition ur(0; t) = 0 gives

duj
drj

= 2arj + b = 0;

from which we may deduce that b = 0 leaving our quadratic polynomial as

uj = ar2
j + c:

We now use the two closest values of u and r to assign values to the other

coe�cients which will be given by

a =
u1 � u2

r2
1 � r2

2

and

c = u2 � ar2
2:

48

This now gives us a polynomial of the form given above which may be used

to calculate the solution value at the point r = 0, and using this method clearly

ensures that our solution will satisfy the boundary condition ur(0; t) = 0 which

takes e�ect at the point r = 0.

4.4 Results for Mass Conservative Method for

Nonlinear Schr�odinger Equation

In order to examine the results obtained for the above method whereby a mass

monitor function was used, we begin by showing how the real and imaginary

parts of the solution develop over time and then look at the evolution of the

mesh over the same time period.

The example considered here uses a time step of �

most certainly not consistent with what we would expect to see from a blow-up

problem.

The results which were obtained for the imaginary part of the solution are

shown in Figure (4.3).

Figure 4.3: Imaginary part of the ‘mass’ conservative solution of the Nonlinear
Schr�odinger Equation

We can clearly see from Figure (4.3) that this method will result in the imag-

inary part of the solution, , will increase over time. This does not necessarily

go against what we should expect to see from a known blow-up problem.

We also examine the evolution of the mesh over time, and this is shown in

Figure (4.4).

Figure 4.4: Mesh Evolution of the ‘mass’ conservative solution of the Nonlinear
Schr�odinger Equation

From Figure (4.4) we are able to see that the method laid out in the previous

50

sections will cause the nodes to move very slightly. This change is however likely

to be too small to give much bene�t in terms of accurate representation of the

solutions obtained.

Consideration of all of the results obtained together would suggest that this

method does not suitably model the behaviour which should be produced from

the NLS equation. The most likely reason for the failure of this method is

that whilst the ‘mass’ conservation property is necessary, it is not su�cient to

capture the correct behaviour of our solution.

4.5 Area Conservative Method for Non-linear

Schr�odinger Equation

We now consider a velocity-based method whereby the velocity assigned to each

node in order to ensure that the area under the solution curve held in each

interval remains constant over time.

As explained previously, solutions of the NLS equation consist of a real part,

� and an imaginary part, . With this in mind we de�ne two separate meshes.

One of these is for use in calculating � solutions and the other for the solutions

and these shall be denoted r� and r respectively.

the solution for each interval as given by

a j =

Z r(t)

rj�1(t)

 (r; t)rdr: (4.19)

The next step is to sum the a j value from each interval to give the area under

the solution curve for the entire domain, �. This is given by

�(t) =

Z 1

0

 (r; t)rdr: (4.20)

use the Leibniz integral rule to obtain

0 =
�1

�2
_�

Z rj(t)

rj�1(t)

 (r; t)rdr +
1

�

"Z rj(t)

rj�1(t)

@

@t
rdr + [rv]

rj(t)

rj�1(t)

#
:

Using Equations (4.5) and (4.19), allows us to re-write this as

0 =
� _�

�
a j +

�
r
@�

@r

�rj

rj�1

+

Z rj

rj�1

�r
�
�2 + 2

�
dr + jrjv j � j�1rj�1v j

and the mid-point rule my be applied to this in order to obtain

1

�(t)
 j(t)

�
r2
j+1(t)� r2

j�1(t)
�

2
=

1

�(0)
 j(0)

�
r2
j+1(0)� r2

j�1(0)
�

2
:

This may be rearranged to obtain

 j(t) = j(0)
�(t)

�
r2
j+1(0)� r2

j�1(0)
�

�(0)
�
r2
j+1(t)� r2

j�1(t)
� ;

and this is used to recover a new approximation of the imaginary part of the

solution.

Utilising the same method applied to

1

�

Z rj+1(t)

rj�1(t)

�(r; t)rdr;

will give the expression used to recover the real part of the solution which is

�j(t) = �j(0)
�(t)

�
r2
j+1(0)� r2

j�1(0)
�

�(0)
�
r2
j+1(t)� r2

j�1(t)
� :

4.6 Results for the Area Conservation Method

for the Nonlinear Schr�odinger Equation

In examining the results obtained for the area conservative method applied to

the NLS equation, we begin by looking at the velocities of the nodes in both

the � and meshes. Based on the theory of this type of problem we should

condition of the form

6
p

2e�r
2

;

which is considered on the domain r 2 [0; 5]. The nodal velocities obtained for

the �rst time step are shown in Figure (4.5).

Figure 4.5: Nodal velocities obtained for the NLS equation with an initial con-
dition of 6

p
2e�r

2

Figure (4.5) clearly shows that some of the nodes in each mesh will have

a velocity such that they move to the left and some will have velocities such

that they move to the right. Movements of this type will obviously not aid in

accurately resolving the detail of the blow-up in the solution as time passes.

Another initial condition was considered in order to test whether the unusual

velocities obtained for the other initial condition were some type of anomaly.

The condition that was next to be considered was of the form

20 sin

�
�

�
1 + r

2

��
;

and this was considered on the domain r 2 [0; 1]. As before we present a plot

of the nodal velocities obtained for the �rst time step of this method in Figure

(4.6).

We are clearly able to see that, as was the case for the other initial condi-

tion, some of the nodes will move to the left and some will move to the right.

56

Figure 4.6: Nodal velocities obtained for the NLS equation with an initial con-
dition of 20 sin

�
�
�

1+r
2

��
Again, we are able to say that mesh evolution of this form will not be of use

in attempting to aid the resolution of the blow-up in the solution of the NLS

equation.

The consideration of both of these initial conditions and the velocities ob-

tained for the nodes within each mesh, allows us to conclude that this method

is not suitable for use in the solution of the NLS equation.

4.7 Nonlinear Schr�odinger Equation Summary

Within this chapter there has been two methods set out to solve the NLS equa-

tion on a moving mesh.

The �rst method was based on the use of a ‘mass’ monitor function and this

resulted in a mesh which did not evolve in a suitable manner to help resolve the

blow-up that our solution should exhibit.

We then went on to consider a method based around the use of an area

monitor function. This method did create a mesh within which the nodes moved,

however the direction of nodal movements was not in a manner which we may

deem as being suitable for helping to resolve the blow-up in the solution of the

NLS equation.

57

Chapter 5

Discussion of Project

5.1 Summary

In this dissertation we have carried out an investigation into the application of

velocity-based moving mesh methods based on various monitor functions. The

methods investigated in this project were applied to a number of semi-linear

time dependant partial di�erential equations.

Chapter 1 began by explaining the motivation for this investigation into

velocity-based moving mesh methods as well as the types of problems to which

these methods were applied. In Chapter 2 we demonstrated the e�ectiveness

of a method based upon an area conservation monitor function for two di�er-

ent powers of blow-up term. Some other ‘Fisher type’ equations, namely the

‘traditional’ Fisher’s equation and the Cahn-Allen equation were investigated in

Chapter 3. The method applied to these equations was built upon a hybrid of

an arc-length monitor function and an area monitor function. Finally, Chapter

5.2 Conclusions

Throughout this dissertation we have outlined a number of di�erent methods

which have been applied to a variety of semi-linear PDEs and have achieved

varying degrees of success.

The method which was applied to Fisher’s equation, which was based on

an area monitor function generated very positive results. This chapter demon-

In general it is clear from the work carried out in this dissertation that

these velocity-based moving mesh methods have some potential in terms of

reallocating nodes in such a way that the resolution in certain areas of the

solution is increased. This also aids with the e�ciency of the numerical methods

used to solve these problems since we may accurately represent the solution with

fewer nodes than would be necessary when using a standard �xed mesh method.

It is also clear that the choice of an appropriate monitor function is essential

for these methods to be successful. The �nal conclusion to draw from this

dissertation is that whilst we have demonstrated the potential of velocity-based

moving mesh methods, they are not always successful and as such they should

ered. There are two main ways in which we may seek to improve our method’s

e�ciency. Firstly, we may look at the numerical code used to obtain the results

in order to ensure it holds a minimum amount of information at any time. We

may also wish to ensure that all calculations are carried out using the smallest

number of operations possible. The other way in which the computational e�-

ciency of our method may be improved would be to look into alternative time

stepping techniques. This could potentially allow us to use fewer time steps in

order to reach our �nal solution and this could signi�cantly reduce the amount

of operations necessary to obtain �nal results.

The investigation into the ‘traditional’ Fisher’s and Cahn-Allen equations

[9] J. Ockendon, S. Howison, A. Lacey, and A. Movchan, Applied partial dif-

ferential equations. Oxford University Press, 1999.

[10] Y. Qiu and D. Sloan, \Numerical solution of �sher’s equation using a mov-

ing mesh method," Journal of Computational Physics, 1998.

[11] W. Lyons, H. Ceniceros, S. Chandresekaran, and M. Gu, \Fast algorithms

	Introduction
	Why do we use moving mesh methods?
	What is a blow-up problem?
	What is a phase field problem?

	Blow-Up in Fisher's Equation
	Introduction to Fisher's Equation
	Problem Formation
	Fisher's Equation on a Fixed Mesh
	Explicit Method
	Semi-Implicit Method
	Evaluation of Fixed Mesh Methods

	Method of Conservation for Fisher's Equation (with p=2)
	Generating Node Velocities
	Generation of New Meshes and Total Area
	Recovering the Solution
	Adaptive Time-Step

	Results for Fisher's equation (p=2)
	Can We Allow Moving Boundary Nodes?
	Method of Conservation for Fisher's Equation (with p=3)
	Results for Fisher's equation (p=3)

	Alternative `Fisher Type' Equations
	Introduction to `Fisher Type' Equations
	Choosing an Appropriate Monitor Function
	`Traditional' Fisher's Equation
	Problem Formation

	Method for the `Traditional' Fisher's Equation
	Generation of Nodal Velocities
	New Mesh and Arc-Length Creation
	Recovery of New Approximations

	Cahn-Allen Equation
	Problem Formation

	Method for the Cahn-Allen Equation
	Numerical Results
	Results for the `Traditional' Fisher's Equation
	Results for the Cahn-Allen Equation

	Summary of Other `Fisher Type' Equations

	The Nonlinear Schrödinger Equation
	Introduction to the Nonlinear Schrödinger Equation
	Problem Formation
	`Mass' Conservative Method for the Nonlinear Schrödinger Equation
	Analysis of Properties
	Calculating Conserved Quantities
	Generation of New Meshes
	Recovering New Approximations of phi and psi
	Lagrange Polynomial Exrapolation
	Improved Polynomial Exrapolation

	Results for Mass Conservative Method for Nonlinear Schrödinger Equation
	Area Conservative Method for Non-linear Schrödinger Equation
	Generation of Node Velocities
	Generating New Meshes and Total Areas
	Recovery of New Approximations

	Results for the Area Conservation Method for the Nonlinear Schrödinger Equation
	Nonlinear Schrödinger Equation Summary

	Discussion of Project
	Summary
	Conclusions
	Further Work

