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Chapter 1

Introduction

The aim of this thesis is to formulate and analyse mathematical models of intracellular

signalling pathways describing chemotactic cell movementin Escherichia coli and Rhodobacter

sphaeroidescells. In particular, this allows us to link single cell behaviour to the population scale

by using well informed and analysed single cell models. We also seek to utilise knowledge gained

from E. coli studies to inform models of the more complex bacterial speciesR. sphaeroides.

In order to make sense of the term chemotaxis we may break it down into the pre�x `chemo'







Chapter 3 is able to display an overshoot response to ligand stimuli. In doing so a number of

key processes in the signalling cascade are identi�ed as responsible for the emergence of the

response. Results are compared with experimental data and discussed with reference to their

biological feasibility.

An agent-based model (ABM) is developed in Chapter 6 to understand how individual be-

haviour identi�ed in Chapters 3 to 5 maps to the population scale. Using this ABM we further

these single cell investigations by studying phenomena in the context of chemotacticE. coli cell

populations. In particular, the e�ects of variation in intr acellular signalling protein concentra-



postulating a new R. sphaeroidessignalling model and show that this helps to remove some of

the issues associated with previous modelling e�orts.

Finally, in Chapter 9 a summary of the work contained within t his thesis shall be given.

Within the context of this summary, the implications of this work both for the future study of

chemotaxis signalling pathways as well as other biologicalsystems will be discussed.

In addition to the work discussed in Chapters 1-9, Appendices A-E provide further details

on mathematical results and biological concepts referred to within this thesis for the interested

reader. To this end a glossary of important biological termsappearing within this thesis is also

included.
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2.2 Mathematical Modelling of the Single Cell

From the early 1970s onward there has been a large amount of theoretical work aimed at

understanding bacterial chemotaxis. The majority of this w



where �







and j -th receptors, respectively,J ij denotes the coupling strength between receptors andB i (t)

is the attractant concentration. When no attractant bindin g occurs, each receptor may freely

switch between their two states.

The �rst application of this type of model to chemoreceptor coupling was due to Shi &

Duke [51]. Using mean-�eld theory they demonstrated that the coupling strength of neighbour-

ing receptors had a large e�ect upon the sensitivity of a receptor array, however adaptation was

not studied in great detail within this work. Duke & Bray [ 52] later conducted Monte Carlo

simulations of this model in which each receptor was coupledto its four closest neighbours.

These simulations were able to show that changes in attracta



of the experimental data, their main weakness is in their com





the incorporation of an MWC description of receptor clustering. In this work they discuss the

existence of cell-to-cell variation in methylation and demethylation rates which is proposed to

be a survival/bet hedging strategy allowing for population survival in varied environments. In

addition they note the ability of their model to display the e xperimentally observed asymmetry

in adaptation time for addition or removal of attractant.

The experiments of Li & Hazelbauer [67] were the focus of work by Endres & Wingreen [68].

Li & Hazelbauer [67] observed that the adaptation proteins CheB and CheR can bind an approx-

imately 35 amino acid tether allowing them to act upon groupsof between �ve and seven recep-

tors, termed an \assistance neighbourhood". The work of Endres & Wingreen [68] then sought

to examine this e�ect by incorporating an adaptation model, similar to Barkai & Leibler [ 44],

into an MWC one. In doing so they found two di�erent responsesfor high attractant concen-

trations. In particular, it was noted that the response could either be terminated by receptor

saturation (i.e. no further ligand binding is possible) or for large stimuli, receptors may become

fully methylated. At this point, low a�nity binding of aspar tate to Tsr receptors can allow the

cell to respond to further stimuli. Hansen et al. [69] extended this by explicitly considering the

actions of CheR and CheB in the form of an ODE for the average methylation level of receptors

within a cluster.

More recently, Clausznitzer et al. [70] considered an MWC modelling approach combining

much of the MWC modelling work discussed above. Within this work the kinetics of the average

receptor methylation level (



It is clear from the work summarised here that MWC models are able to produce good agree-

ment with the experimental literature in terms of receptor sensitivity and gain. In particular,





Firstly, some cells will move outward using up serine until they reach the outer ring of the

serine. Then, of those which remain, some will move outward in search of aspartate, forming

a second ring. Finally, some of the remaining cells will search for threonine, forming a third

ring. The observation of these chemotactic bands was a key factor in sparking an interest in the

modelling of population scale behaviour.

2.3.1 Keller-Segel Models

Throughout the literature it is most common, when attemptin g to model the behaviour of

chemotactic bacterial populations (such as chemotactic band formation), to consider a math-

ematical model such as that devised by Keller & Segel [87]. Commonly referred to as the

Keller-Segel (or K-S) model, this was originally created for slime moulds but has been success-

fully applied to bacterial chemotaxis [88]. This model takes a continuum approach and uses

two partial di�erential equations (PDEs) to represent a pop ulation density and concentration

of some attractant substance across a spatial domain. A generalised version of this model may

be written as:

@b
@t

= r � (� (s)r b) � r � (� (s)br s) + g(b; s) � h(b; s); (2.8)

@s
@t

= Dr 2s � f (b; s); (2.9)

within which b(x; t) represents the population density,s(x; t) the attractant concentration, x is

the spatial position, t denotes time, � is the chemotactic coe�cient, g indicates cell growth, h

cell death, f indicates degradation of attractant whilst � and D are the di�usion coe�cients of

the bacteria and attractant, respectively. For more detailed information on the impact of the

K-S model in this and other applications we recommend the reviews of Horstmann [89, 90].

It is clear upon examination of the literature that the K-S mo del has been useful within the



in
uence the behaviour observed on the macroscale (population) level by incorporating receptor

dynamics into a generic population model [96



solve analytically [104] and thus it does not necessarily lend itself to gaining insight into how

certain behaviours emerge.

Other stochastic approaches have also been considered suchas Othmer et al. [105] and Rivero

et al. [106]. The Rivero et al. [106] (RTBL) model considered a cell population moving either

left or right along an in�nite one-dimensional line with a co nstant velocity v (other methods

of motility are discussed by Codling et al. [102]). Considering turning probabilities of the form

r1 = � 1� and r2 = � 2� for left- and right-moving cells, respectively, it can be shown that



Todatetherehasbeenrelativelylittleworkfocusedonusin





based models have been produced which display clear potential but either fail to account for

certain processes or su�er from the same model complexity issue as many single cell models.

It is clear that many di�erent approaches have been considered when modelling chemotaxis.

Each of these has their own respective advantages and disadvantages. Within the more recent

literature, however, a number of these drawbacks have started to be addressed. In particular,

MWC modelling has helped to remove signi�cant amounts of complexity from models whilst



Chapter 3

Mathematical Model of E. coli

Chemotaxis Signalling

Within this chapter we analyse a recent mathematical model of the E. coli chemotaxis sig-

nalling cascade [70]. Firstly, the model is presented alongside a discussion ofhow it allows for

further investigation of intracellular phenomena where other models from the literature do not.

A rigorous analysis of the model is then conducted. In particular, we compare a number of func-

tions describing the methylation dependent free-energy (o�set energy) of chemoreceptors against

experimental data in order to choose the most suitable form for use throughout this thesis. A

non-dimensional re-scaling of the model system is then considered. Using this non-dimensional



motivation for the use of the Clausznitzer et al. [70] model presented within this work.

Many mathematical models have focused on describing the processes associated with ligand

binding and adaptation [39, 40





equations (3.5) and (3.8) as a Monod-Wyman-Changeux (MWC) description of receptor clus-



the mathematical model laid out above to a range of experimental data. This demonstrated

that the model represents a detailed enough description of the chemotaxis signalling pathway of

E. coli cells as to adequately represent the biological processes involved. Whilst Clausznitzer et

al. [70] clearly explored this model in the context of large amountsof experimental data, they

provided very little in the way of mathematical analysis. As such, for the remainder of this

chapter we shall present a rigorous analysis of this model fo



all take the same basic form

h(m) = � (m0 � m): (3.12)

In this expression � is a scaling value andm0 represents an initial methylation level (in the

absence of any ligand). Tu et al. [63] takes � = 2 and m0 = 1 to give

h(m) = 2(1 � m); (3.13)

whilst Clausznitzer et al. [70] consider � = 0 :5 and m0 = 2, i.e.

h(m) = 1 �
m
2

; (3.14)

and Shimizu et al. [118] take � = 2 and m0 = 0 :5, giving

h(m) = 2
�

1
2

� m
�

: (3.15)

Each of these functional forms can be compared to experimental data found in the literature [ 62,

118, 119] as shown in Figure3.1. In particular, we compare eachh(m) function to the range

of methylation states possible for each receptor. It is worth noting that each receptor possesses

four methylation sites, which leads to a limit of eight methyl groups per receptor dimer and an

upper limit of 48 methyl groups for an assistance neighbourhood of 6 receptor dimers.

The experimental data of both Endres et al. [62] and Vaknin & Berg [119] use similar

experimental techniques, whereby Tar receptors were genet
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and from equation (3.20)

� � =

 R


 R + 
 B b� 2
p

=
1

1 + 
 B

 R

b� 2
p

=
gR [RT ]

gR [RT ] + gB [BT ]2b� 2
p

=
1

1 +
gB [B T ]2b� 2

p
gR [RT ]

: (3.26)

Using this expression alongside equation (3.9) we see that

eF �
=


 B


 R
b� 2

p =
gB [BT ]2b� 2

p

gR [RT ]
; (3.27)

within which F is given by equation (3.11). Now, rearranging this equality we are able to obtain

the steady-state expression for the average chemoreceptormethylation level

m� = 2

"

1 + ln

 
1 + [L ]=K of f
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1 + [L ]=K on
a
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 R
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1 + [L ]=K of f
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1 + [L ]=K on
a

!

�
1
N

ln

 
gB [BT ]2b� 2

p

gR [RT ]

!#

: (3.28)

Each of the steady-state expressions obtained thus far havebeen done so by simple rearranging

of expressions. These equations may also be utilised to obtain a steady-state expression forap

(i.e. for equation (3.21)). In this case we substitute the steady-state equations (3.24)-(3.26)

into equation (3.21) and multiply through by the denominators of each term. This yields a �fth

order polynomial in a�
p, the roots of which represent values fora�

p. This takes the form

p(a�
p) = 0 = Aa � 5

p + Ba � 4
p + Ca� 3

p + Da � 2
p + Ea�

p + F; (3.29)

where A; B; C; D; E and F are coe�cients of the polynomial p(a�
p) that are de�ned as follows

A = � gR [RT ][AT ]4k1k2k3
3; (3.30)

B = � gB [BT ]3[AT ]3k2k3
3k5 � 3gR [RT ][AT ]3k1k2k2

3k5 � gR [RT ][AT ]3[ZT ]k1k3
3k4 (3.31)

� gB [BT ]2[AT ]3[YT ]k2k3
3k6 � gR [RT ][AT ]3[BT ]k2k3

3k5 � gB [BT ]2[AT ]3[YT ][ZT ]k2k3
3k4

� gR [RT ][AT ]3[YT ][ZT ]k2k3
3k4 + gR [RT ][AT ]4k1k2k3

3 � gR [RT ][AT ]3[YT ]k2k3
3k6

� gR [RT ][AT ]3k1k3
3k6;

C = � gB [BT ]3[AT ]2k3
3k5k6 + 3gR [RT ][AT ]3k1k2k3

3k5 � 3gR [RT ][AT ]2k1k2
3k5k6 (3.32)

� gR [RT ][AT ]2[BT ]k3
3k5k6 � gR [RT ][AT ]2[BT ][ZT ]k3

3k4k5 � 3gR [RT ][AT ]2k1k2k3k2
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@f4
@ap

=
k3[AT ](1 � bp)

k5
; (3.45)

@f4
@bp

=
� k3[AT ]ap

k5
� 1: (3.46)

We now investigate the eigenvalues of this system by substituting into the Jacobian each of the

steady-state values before solving

det jJ � � I j = 0 ; (3.47)

within which I is the identity matrix with the same dimensions as the Jacobian and � denotes

an eigenvalue of the system. Utilising the parameter valuesgiven in Table 3.1 we are able to

obtain the four eigenvalues of the system, which are

� 1 = � 822:1086; � 2 = � 8:8146; � 3 = � 1:7996; and � 4 = � 0:1942:

It is clear that each of these four eigenvalues of the system is such that � i < 0 and hence we

are able to conclude that this system is asymptotically stable at the parameter values stated in

Table 3.1.



adjusts the length of each time step in order to maintain these tolerances as well as the numerical

stability of the scheme used.

3.3 Summary & Discussion

Within this chapter we began by presenting a recent mathematical model of the E. coli

intracellular signalling pathway from the literature. The remainder of this chapter then sought

to produce a rigorous analysis of the model.

This analysis began by examining three di�erent o�set energy functions from the literature

in the context of the available experimental data. Upon doing so it was shown that the function

of Clausznitzer et al. [70] produced the best �t and will thus be used for all E. coli chemotaxis

modelling work in this thesis.

A non-dimensional re-scaling of the model was then presented and utilised in order to demon-

strate that there exists just one biologically feasible steady-state for this system. This equilib-

rium state was subsequently shown to be asymptotically stable, with eigenvalues demonstrating

that this is a sti� system.

The analysis conducted within this chapter demonstrates a number of features of this math-

ematical model that had previously only been assumed withinthe literature. In addition to this,



Chapter 4





4.2 Conditions for FCD

In this section we outline theoretical conditions required for a mathematical model of the

form

_x = f (x(m); � ; [L ]);





which, upon use of the chain rule, is given by

_x =
@x
@m

dm
d�

=
1
2

x(m)
dm
d�

= f (x(m); � ; [L ]): (4.9)

The su�cient condition given by equation ( 4.3) may then be tested by multiplying x(m) and

[L ] by some constantp > 0 which gives

f (px(m); � ; p[L ]) =
1
2

px(m)
dm
d�

= p
�

1
2

x(m)
dm
d�

�
= pf (x(m); � ; [L ]); (4.10)

which clearly satis�es equation (4.3).

Examination of equation (







4.3.2 Parameter Sensitivity Analysis

The results of Section4.3 suggest that the property of FCD will be robust to variation i n

parameters in the signalling cascade. In order to test this r





Table 4.1: Dissociation constants for active and inactive T







4.4.2 Multiple Di�erent Ligand Types

In light of the results of Section 4.4.1 we now consider the e�ect of the cell detecting two



[L ] � K of f
i � K on

i , K of f
i � [L ] � K on

i or K of f
i � K on

i � [L ]. Figure 4.8 displays numerical

results verifying that FCD holds in this signalling team con�guration. It should therefore be

biologically feasible given experimentally determined values for the ligand dissociation constants

of Tar and Tsr receptors to MeAsp and serine in both cases where receptors bind either the same

or separate ligands.

4.5 Summary & Discussion

Within this chapter we have demonstrated, using both theore









existence of a negative feedback loop in which the protein CheB-P acts to reduce the methylation

level of the chemoreceptors. This particular feature of thenetwork is of interest since negative

feedback is known to have the potential for creating oscillatory behaviour within monotone

dynamical systems (i.e. those in which proteins activatingcertain processes do not repress that

process at a di�erent concentration and vice versa) [134, 135, 136].

Motivated by the existence of this negative feedback loop, we postulate that overshoot can

be described as damped oscillatory behaviour. As such, in the remainder of this chapter, we

consider the model laid out in Chapter 3 and ask under what conditions it exhibits overshoot.

5.3 Methodology

In this section we consider methods that are needed in order to test the hypothesis stated in

Section 5.2. The hypothesis that overshoot may be modelled as damped oscillatory behaviour

requires an investigation into how variation in parameter values a�ect eigenvalues of the system

steady-state. Thus we appeal to the theory of asymptotic stability analysis (see Appendix C).

Within Section 3.2.4, an asymptotic stability analysis for the model laid out in Chapter 3

showed that it displays (non-oscillatory) stable behaviour for the parameter values in Table3.1.



state of a system over some pre-de�ned range for any pair of parameters in the system. This

stability analysis routine takes the following form.



steady-state and multiplied by 100, giving overshoot amplitude as a percentage of the steady-

state value. Other de�nitions of overshoot amplitude could also have been considered, however,

we chose this method so as to allow a fair comparison between our results and those of Min et

al. [131].

5.4 Full Four-Dimensional Model Results

Within this section we utilise the numerical routine from Section 5.3







k
2
 (





readily than those pairs that included variation of the CheA concentration. Of particular interest

amongst the results obtained here is that where the total concentrations of CheB and CheY were

varied (see Figure5.6(d)). In this particular case we note that in order to achieve overshoot,









@r3
@ap

=
k3[AT ](1 � bp)

k5
= � 6; (5.12)

@r3
@bp

=
� k3[AT ]ap

k5
� 1 = � 7; (5.13)

are the partial derivatives of equations (5.2)-(5.4) with respect to each of the three system

variables. In order to obtain the eigenvalues of the system i





5.5.3 Model 3 - Second-Order System: CheA-P is a Multiple of R eceptor

Activity

Due to the failure of the second-order model reduction considered in Section5.5.2 we now

investigate an alternative method of reducing this model toa second-order dynamical system. In

this particular case we consider the concentration of CheA-P to be a simple multiplicative scaling

of the receptor signalling team activity, i.e. �� � [Ap], in which � is calculated at steady-state

from a numerical simulation of the full system using parameters from Table 3.1 (see Fig.5.8(c))

and � is described by equations (3.9) and (3.11). In addition to this we consider CheY-P to be

a decouplable read-out variable as in the model of Tu et al. [63]. This results in a second-order

dynamical system of the form

dm
d�

= 
 R (1 � �) � 
 B b2
p� = r6(m; bp); (5.24)

dbp

d�
= � 2 �k3��(1 � bp) � bp = r7(m; bp); (5.25)

in which � is the multiplicative scaling of � such that �� � ap.

In this case the assumption that CheY-P concentration is a (decoupled) output variable

means that all phosphoryl groups produced by CheA must transfer to CheB. Clearly this means

that the sharing of phosphoryl groups between CheB and CheY has been removed from the

system. We can also see that the timescale upon which CheA autophosphorylates has been

removed.

Once again, in order to analyse the stability characteristics of this system we must investigate

the eigenvalues of the Jacobian matrix. For this particular reduced model the Jacobian matrix

is of the form

J =

0

B
@

@r6
@m

@r6
@bp

@r7
@m

@r7
@bp

1

C
A ; (5.26)



Here eigenvalues are obtained upon solving

� 2 � � (� 12 + � 15) + � 12� 15 � � 13� 14 = 0 ; (5.31)

in which � 12� 15 are given by equations (5.27)-(5.30). Analysing these eigenvalues shows that

a large fold-change (� 9.5 fold increase) in all protein concentrations is required for this model

to display overshoot behaviour, as seen in Figure5.10. Clearly this represents a signi�cant

change from the original fourth-order dynamical system. Thus we conclude that Model 3 does

not represent a valid reduction for the system. This supports the notion that the timescales

of various reactions in the system as well as the sharing of phosphoryl groups between CheB

and CheY are important features in the mechanism causing damped oscillatory behaviour to be

observed.

0 2 4 6 8



in which � is de�ned as per equations ( 3.9) and (3.11) whilst kR=B
cat and K R=B

M are catalytic

rates and Michaelis-Menten constants of CheR and CheB, respectively. Here the concentration

of CheY-P is described by
d[Yp]

dt
= ka� �

[Yp]
� z

; (5.33)

in which ka



5.6 Understanding Key Principles of the Overshoot Response

Using model reduction analysis we have found some support for the idea that the dynamic

timescales of intracellular processes are important for the ability of a cell to display overshoot. In

order to further examine this, we seek to deduce within this section an analytic expression that

is capable of reproducing the region of damped oscillatory behaviour displayed in Figure 5.7.

As discussed in Section5.5, the use of lower-order dynamical systems may signi�cantly

simplify analytical work. Based on the analysis of various reduced model forms, here we shall

make use of the third-order reduction considered in Section5.5.1. Since we seek to explain the

emergence of overshoot we must consider here the eigenvalues of the Jacobian matrix for this

system, as given by the roots of the characteristic polynomial. In order to do this we consider

the di�erent analytical solution forms that may be obtained from a cubic polynomial of the form

p(� ) = � 3 + A� 2 + B� + C = 0 ;



dynamical system, giving the condition

2
27

k3
2[YT ]3(1 � y�

p)3

k3
5

�
1
2

(gR [RT ] +



� � � � � ��
�

�

�

�

�

�

�

	

�
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such high fold-changes in protein concentration are often l



the cell has enough time to adapt in bothE. coli and Bacillus subtilis [142, 143]. In fact, this

observation likely explains the di�erence between the experimentally obtained results for step-up

and step-down stimuli. In the case of a step-up stimulus it ispossible for chemoreceptors to



have been shown here to be important determinants of the transient cell response. Secondly,

simpli�ed mathematical models give a number of bene�ts, particularly in terms of the ease with

which analytical results may be obtained. However, such simpli�cations not only alter the net-

work structure but the ability of the system to exhibit previ ously observed transient behaviour

as demonstrated in Section5.5. In particular the ability of the model to �t with biological

observations may be greatly altered or lost altogether. Onesuch example is the model due to

Tu et al. [63] which has been used with some success in a number of studies such as that by

Kalinin et al. [ 64



of phenomena including overshoot.

Also, demonstrated here is that protein concentration is animportant factor in a�ecting the

temporal response of an intracellular signalling cascade.Based upon the results obtained within

this work we believe that there are three key ingredients fordetermining variation in a network.





2. Update intracellular signalling pathway;

3. Calculate 
agellar rotational bias;

4. Simulate cell movement - straight swim (run) or turn and swim (tumble);

5. Return to step 1.

For a graphical summary of this algorithm, see Figure6.1. The details of ABM components 1-4 as

well as their respective modelling assumptions and simpli�cations are examined in-depth within





6.1.3 Updating the Signalling Pathway

Within the ABM described here we consider the behaviour of anE. coli cell population

within the ligand pro�le and spatial domain discussed in Section 6.1.2. In doing so we describe

the response of each individual cell with the model in Chapter 3. The key assumptions and

simpli�cations of this model were discussed in Section3.1.2.

Within the ABM formulated here, the intracellular signalli ng cascade ODE model is updated

using an inbuilt MATLAB sti� ODE solver (ode15s). In contras t to previous chapters, here we

restrict this solver such that it progresses forward by the length of one ABM time-step. This

allows a new ligand concentration to be calculated and inputinto the ODE model depending

upon the location of each cell.

Using this ODE solver we are able to obtain a complete representation of the internal state

of each simulated cell for every model time-step. As such, weare able to observe the response of

CheA-P, CheB-P, CheY-P and the receptor methylation level f



ship. This is given by

BiasM =
1

1 + 3
7

�
[Yp ]
[Yp ]0

� 5:5 ; (6.4)

where [Yp] is the CheY-P concentration calculated in Section6.1.3and [Yp]0 is the concentration

in absence of any stimulus.

Examination of the results in Figure 6.2



that still represents this process to a good degree.

Here we consider the 
agellar rotational bias expression from Section 6.1.4 (i.e. equa-

tion ( 6.4
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Figure 6.7: Plots showing the typical simulated behaviour of chemotactic E. coli cells in envi-
ronments containing no spatial ligand heterogeneity (top), a linear MeAsp concentration �eld
(middle) and an exponential MeAsp concentration �eld (bott om). These results display quali-
tatively similar behaviour to simulations conducted in the work of Zonia & Bray [109] although
an exact comparison is not possible. Note that results shownhere represent a typical example
selected from a pool of 50 simulated cells in each di�erent ligand gradient.

between results obtained from this ABM and those of another ABM that utilises a similar



understanding of how changes within the signalling networkwill a�ect the cell response.

Within this section we have shown that the ABM formulated here cannot be invalidated

based upon comparisons with either experimental observations or theoretical results obtained

from population level di�erential equations and an alternative ABM. None of these tests have

displayed results suggesting that the ABM considered here m



� lower fractions of phosphorylated proteins at steady-state,

� shorter adaptation times,

� smaller initial response amplitudes (in terms of phosphorylated fraction),

than those with smaller total protein concentrations. Such variation in total protein concen-

trations is then applied in the signalling pathway ODE model from Chapter 3 which is used to

simulate the behaviour of E. coli cells in the ABM.
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shown that for small to intermediate MeAsp concentrations, the e�ect of MeAsp binding to Tsr

receptors is negligible (see Figure4.7(a)) and as such this e�ect has previously been ignored.

However, by considering a slight adjustment to equation (3.10) it is possible to incorporate

MeAsp and serine binding to Tar and Tsr receptors, respectively. This results in a free-energy

expression of the form

F = N

"

1 �
m
2

+ � a ln

 
1 + [L a]=K of f

a

1 + [L a]=K on
a

!

+ � s ln

 
1 + [L s]=K of f

ser

1 + [L s]=K on
ser

!#

; (6.10)

within which [ L a] and [L s] represent the concentrations of MeAsp and serine, respectively while

K on
ser = 1mM and K of f

ser = 0 :0025mM denote the ligand dissociation constants of Tsr chemore-

ceptors to serine in their active and inactive states, respectively [69]. In addition to this � a and

� s denote the abundance ratio of the two chemoreceptor types, de�ned as � a : � s = 1 :277.g75155(e)-304.285(t)-0.575155(h)-0.224915(e)-304.275(a)0.0492351(b)-0.224915(u)-0.224915(n)-0.226034(d)-0.222498(l)-1.02498(e)-0.671387]TJ
/R461 10.28]TJ
/R461 10.909c-0.228272(d)-0.223796(i)-67TJ
23789 Td
[(a)-0.651(9)0.0492351]TJ
ET
Q
0 0 0 1 K
0 0 0 1 k
q
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a single response. In order to consider the ability of cells to accumulate about serine we look to

Figure 6.14. It is clear from these results that the � value at which cells begin to accumulate

toward MeAsp is fairly similar in each of the three examples.This would suggest that a ligand



toward a ligand concentration for which they are most sensitive rather than the largest absolute

concentration. In the case of two competing gradients it is necessary to compare the sensitivity

of cells to each in order to assess which gradient will be preferred, with some intermediate regime

in which some cells will be attracted to the peak of each gradient.

The results discussed within this chapter demonstrate someof the potential uses of ABM in

the study of bacterial chemotaxis. In fact, they would tend to suggest that approaches such as



Chapter 7

R. sphaeroidesChemotaxis Signalling

In this chapter we investigate the chemotaxis signalling pathways of R. sphaeroidescells. We









for adaptation. They also went on to state that in spite of uti lising homologues of the same

proteins, the mechanism for adaptation in R. sphaeroidesdoes not appear to be the same as

that of B. subtilis or E. coli.

Recently, the work of Hamadeh et al. [176] and Kojadinovic et al. [161] demonstrated the ex-

istence of fold-change detection (FCD) within chemotacticR. sphaeroidescells. The theoretical

work of Kojadinovic et al. [161] is of particular interest here since it extends the work of Tindall

et al. [174] and couples this with an MWC-based adaptation mechanism similar to those consid-

ered for E. coli chemotaxis modelling for both the polar and cytoplasmic receptor clusters. This

model therefore represents the most complete description of the chemotaxis signalling pathways

of R. sphaeroideswithin the literature.

7.2 Motivation

Since the work summarised in Section7.1, new experimental data has become available that

has sought to provide new insight into the chemotaxis signalling pathways of R. sphaeroides

cells [162]. In particular, this work examined the e�ects on chemotactic swimming behaviour of

various di�erent cellular mutations (alterations from the



It is clear from Section 7.1 that a number of mathematical models have been used to study

certain features ofR. sphaeroides



complete model to date does not represent an adequate descri



cluster activity (� C ) is also borrowed fromE. coli and is described by the expression

� C =
1

1 + eFC
; (7.4)

in which FC represents the free-energy of a cytoplasmic cluster chemoreceptor signalling team.

This free-energy is represented by

FC = NC

"

1 �
mC

2
+ ln

 
1 + [L ]=K of f

C

1 + [L ]=K on
C

!#

; (7.5)

whereNC indicates how many receptors constitute a signalling team within the cytoplasmic clus-

ter, [L ] is the ligand concentration, K on=of f
C are the ligand dissociation constants of cytoplasmic

cluster chemoreceptors in their active and inactive states, respectively and mC



Table 7.2: A base set ofR. sphaeroidesparameter values from experimental and theoretical
literature sources. Here the superscripta denotes a value taken directly from experimental
data, b shows that a parameter was obtained by �tting a mathematical model to experimental
data and c indicates that a value was inferred fromE. coli experimental values.

Symbol Description Value Source

k1 Rate of CheA2 autophosphorylation 0.12s� 1 [177]a

k2 Rate of CheA3 phosphorylation by CheA42 Ra177
]



and conservation laws may also be applied to the reactions involving CheY proteins, yielding

the following ODEs for the behaviour of CheY3-P, CheY4-P and CheY6-P. These are of the form

d[Y3p]
dt

= k3[A2p] ([Y3]T � [Y3p]) � k� 3[Y3p] ([A2]T � [A2p]) � k10[Y3p]; (7.9)

d[Y4p]
dt

= k4[A2p] ([Y4]T � [Y4p]) � k� 4[Y4p] ([A2]T � [A2p]) � k11[Y4p]; (7.10)

d[Y6p]
dt

= k5[A2p] ([Y6]T � [Y6p]) + k8[A3p] ([Y6]T � [Y6p]) � k� 8 ([A3]T � [A3p]) [Y6p](7.11)

� k12[Y6p] � k15 ([A3]T � [A3p]) [Y6p] � k16[A3p][Y6p]:

I]) [6



7.4 Model Analysis

7.4.1 Non-Dimensionalisation

Here we consider a non-dimensionalisation (re-scaling) ofthe mathematical model presented

in equations (7.1)-(7.13). In particular we make the choice to re-scale each of the chemotaxis

protein concentrations with respect to the relevant total concentration, eg. [A2p



within which lower case ai (i = 2 ; 3), yi (i = 3 ; 4; 6) and bi (i = 1 ; 2) denote the (non-

dimensional) fractions of the relevant chemotaxis proteins that are phosphorylated, �ki



Those conditions for variablesmP and mC





arrange these two expressions in order to obtain the steady-state expressions for the average

chemoreceptor methylation level at the polar and cytoplasm



c15 = 3 :3667� 10� 4 + 4 :4652� 10� 4a�
2p + 2 :2002� 10� 4a� 2

2p + 3 :0993� 10� 4a� 3
2p (7.50)

+ 7 :9690� 10� 5a� 4
2p;

where each term is expressed to four decimal places. Examining these values shows that in the

range 0 � a�
2p � 1 coe�cients c10-c13 are negative whilst c15 is positive. Coe�cient c14 may

be either positive or negative depending upon the magnitudeof a�
2p. In spite of the fact that

the sign of c14 may change it is clear that there exists just one sign change between consecutive

polynomial coe�cients. Hence there will be just one positive steady-state value for this equation.

Furthermore we may examine the coe�cients of the polynomial q(a�
2p; � a�

3p), within which the

coe�cients c10, c12 and c14 will take the opposite sign to the previous case. As such we �nd that

there are four changes in sign between consecutive polynomial coe�cients. It will therefore be

the case that this polynomial will have either:

� Case i: one positive real, four negative real and zero complex roots;

� Case ii: one positive real, two negative real and two complex roots; or

� Case iii: one positive real, zero negative real and four complex roots.

However, in each of the above three cases these four roots arenot biologically feasible and as

such they may be neglected.

Analysis of the coe�cients in the polynomial equation ( 7.43) using Descartes' rule of signs

is inconclusive, i.e. the signs of the coe�cients are not all
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@g4
@a3p

= � �k2� C � �k8(1 � y6p) � �k� 8y6p � �k9(1 � b2p) � �k� 9b2p; (7.64)

@g4
@y6p

= �k8a3p + �k� 8(1 � a3p); (7.65)

@g4
@b2p

= �k9a3p + �k� 9(1 � a3p); (7.66)

@g5
@a2p

= � 1�k3(1 � y3p) + � 1�k� 3y3p; (7.67)

@g5
@y3p

= � � 1�k3a 4





and as such damped oscillatory behaviour is likely a �xed feature of this system under realistic

conditions.

7.4.4 Model Sti�ness

As discussed in Section3.2.5



Table 7.4: Alterations to kinetic rates required for the creation of eachR. sphaeroideschemotaxis
mutant model used in this chapter.

Strain Parameters set to zero Other

#1 No alteration -
#2 k7, k� 7, k9, k� 9, k14, gB 2 b2p = 0
#3 gR2 -
#6 k� 3



Table 7.5: Steady-state values for CheY3-P, CheY4-P and CheY6-P in a number of R. sphaeroides







Chapter 8

Understanding R. sphaeroidesusing

Simpli�ed Modelling Approaches

Within this chapter we further investigate mechanisms associated with chemotaxis in R.

sphaeroides. In particular, we formulate and analyse two simpli�ed math ematical models in

order to elucidate the workings of various system components. Firstly, we formulate a simple

model of the cytoplasmic cluster in order to understand the roles of processes acting there.

We then consider a simpli�ed Kojadinovic et al. [161] model, in which adaptation is removed.

This is �rst used to verify that the correct intracellular re actions are considered regardless of

whether or not adaptation mechanisms are included. In addition to this, the creation of various

models based on mutations considered within the experimental data allows us to further our

understanding of the cell's 
agellar response. This chapter concludes with the proposal of a



A3 A3P
Y6

Y6P

B2 B2P



�



Here, ~ki (i = 8 ; � 8; 9; � 9; 12; 14; 15;



signalling teams. This yields the non-linear ODEs

d[A2p]
dt

= k1� �
P ([A2]T � [A2p]) � k3[A2p] ([Y
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Considering steady-state and dynamic results together, we



The results presented within this section clearly demonstrate the roles of each cytoplasmic

cluster process. Whilst useful in its own right, this model considers only the cytoplasmic cluster.

Thus, in order to improve our understanding of other cell features it is necessary to consider the

two chemosensory pathways together in the same model.

8.3.2 Validation of the Signalling Pathways

In Section 8.3.1 a simpli�ed mathematical model of processes occurring at the cytoplasmic

cluster in R. sphaeroidescells was investigated. Studying the steady-state and dynamic proper-

ties of this simpli�ed ODE model with various processes systematically removed allowed us to

assign likely roles to each of the relevant signalling proteins acting at the cytoplasmic cluster.

Within this section we utilise Simpli�ed Model 2 (Section 8.2.2) in order to investigate a key

outstanding question relating to the polar cluster. This is as follows.

� A reverse phosphotransfer from CheB2-P onto CheA2 has been observed inin vitro ex-

perimental work. However, to date, this has not been shown tooccur in vivo. Would we

expect to see this reaction occurring?

Within the previous literature, all phosphorylation react ions included within the Kojadi-

novic et al. [161] model have been shown to occurin vitro . In fact, all apart from the reverse

phosphotransfer from CheB2-P onto CheA2 have also been demonstrated to existin vivo. An

investigation into the existence of this reaction allows usto create a full, validated set of phos-

phorylation/dephosphorylation reactions occurring with in R. sphaeroidescells. This is explored

in-depth within the next section.

Is Reverse Phosphotransfer from CheB2-P onto CheA2 Expected in vitro ?

As discussed in Section8.3.2, all phosphorylation/dephosphorylation reactions in the sig-

nalling pathways of R. sphaeroidescells have been validated except for one. This is the reverse

phosphotransfer from CheB2-P onto CheA2 which has been shown to be possiblein vitro but

not demonstrated in vivo



Using a steady-state analysis of the two systems discussed here, the e�ects of a reverse phos-

photransfer from CheB2-P onto CheA2 can be investigated. In particular, the di�erences between

the steady-states of each signalling protein can be studiedwhich should allow a prediction to be



this process is acting to limit the CheB2-P concentration.

8.3.3 Understanding the Motor Response

Within this section we seek to elucidate mechanisms underly



Table 8.3: Steady-state CheY concentrations for wild-typeand �CheY 3;4 cell types. All con-
centrations listed in this table are expressed in�M and are shown to four decimal places.

Cell Type [CheY3-P] [CheY4-P] [CheY6-P]

W-T 5.27087� 10� 5 5.2514 68.9646
�CheY 3;4 0 0 68.1697

the steady-state concentration of CheY6-P. In fact, this particular mutation only leads to an

increase of � 0:8�M (of the total 225�M ) in the steady-state CheY6-P concentration. We

would anticipate that this small increase would not be su�ci ent to allow for the experimentally

observed behavioural di�erences if CheY6-P dominantly controls 
agellar rotational behaviour.

Thus, we must consider what is the cause of this behavioural di�erence if it is not a di�erence

in CheY6-P concentration?

One possible cause of the di�erence between W-T and �CheY3;4 cells is that the 
agellar

motor of R. sphaeroides



How is Flagellar Rotation Controlled?

In this section we consider a number of alterations to Simpli�ed Model 2 (Section 8.2.2),

each of which represents one of the mutant cell types described in Table 7.1. In order to

investigate how the 
agellar rotational behaviour is controlled we conduct steady-state analyses

of each mutant model. This, alongside the experimental dataof de Beyer [162] (Figure 7.2) then

allows us to investigate how protein phosphorylation levels act to control the 
agellar rotational

behaviour.

Table 8.4: Kinetic rate alterations required to create eachR. sphaeroidesmutant model.
Strain Parameters set to zero Other

#1 No alteration -
#2 | -
#3 | -
#4 k� 3 k� 4 k� 6 k� 7 -
#5 � �

P -
#6 k� 3 k� 4 k� 6 k� 7 � �

P -
#7 k5 k8 k� 8 k9 k� 9 k12 k15 k16 � �

C y6p = 1
#8 k5 k8 k� 8 k12 k15 k16 � �

C y6p = 1
#9 k3 k� 3 k10 y3p = 0
#10 k4 k� 4 k11 y4p = 0
#11 k3 k� 3 k4 k� 4 k10 k11 y3p = 0 = y4p

#12 k3 k� 3 k4 k� 4 k10 k11 y3p = 0
#13 k3 k� 3 k4 k� 4 k10 k11 y3p = 0 = y4p

#14 k3 k� 3 k4 k� 4 k10 k11 -
#15 | -
#16 | -
#17 | -
#18 | -
#19 | -
#20 k� 8 k� 9 � �

C -
#21 � �

C -
#22 k5 k8 k� 8 k12 k15 k16 y6p = 0
#23 k3 k� 3 k10 y3p = 1
#24 k4 k� 4 k11 y4p = 1
#25 k3 k� 3 k4 k� 4 k10 k11 y3p = 1 = y4p

#26 k3 k� 3 k4 k� 4 k10 k11 y3p = 1
#27 k3 k� 3 k4 k� 4 k10 k11 y4p = 1
#28 k3 k� 3 k4 k� 4 k5 k8 k� 8 k10 k11 k12 k15 k16 -
#29 k5 k8 k� 8 k12 k15 k16 y6p = 1
#30 k4 k� 4 k11 -
#31 k3 k� 3 k10 -
#32 k5 k8 k� 8 k





Table 8.5: Steady-states of eachR. sphaeroides



Table 8.6: Eigenvalues associated with the steady-state of
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Based on these suggestions we must now propose a mechanism for the cytoplasmic cluster

that relieves the issue of CheY6-P saturation when CheB2 is deleted from the cell and also

allows for the sensing of a metabolic signal (see Figure8.6). In order to do this we look to the

simpli�ed cytoplasmic cluster model considered in Section8.2.1. This mechanism clearly solved

the issue associated with the deletion of CheB2 and is easily adjusted to consider metabolic

signals. As such, here we utilise the law of mass action (see Appendix A), conservation laws and

a non-dimensionalisation similar to those in Section7.4. This yields the set of non-dimensional

ODEs

dmP

d�
= 
 R2(1 � � P ) � 
 B 1b2

1p� P ; (8.18)

da2p

d�
= � P (1 � a2p) � �k3a2p(1 � y3p) + �k� 3(1 � a2p)y3p � �k4a2p(1 � y4p) (8.19)

+ �k� 4(1 � a2p)y4p � �k5a2p(1 � y6p) � �k6a2p(1 � b1p) + �k� 6(1 � a2p)b1p

� �k7a2p(1 � b2p) + �k� 7(1 � a2p)b2p;

a3p

d�
= �k2�



y6p = y6p0; b1p = b1p0 and b2p = b2p0:
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have been examined. In doing so a number of features of the signalling pathway have been

investigated. Speci�cally, steady state analyses of these



behaviour of R. sphaeroidescells. In support of this idea it was shown that the relative con-

centration of CheY6-P against the cumulative concentration of proteins CheY3-P and CheY



Chapter 9

Discussion

The main achievements of the work in this thesis have been theanalyses of ODE models of

E. coli and R. sphaeroideschemotaxis signalling pathways.

In particular, analysis of the E. coli ODE model system revealed key features associated

with the phenomena of fold-change detection (FCD) and overshoot. These studies illustrated

the importance of receptor dynamics, methylation and phosphorylation timescales as well as

total protein concentrations. Further to this, agent-based modelling allowed an investigation in

to the e�ects of these features/phenomena upon the overall behaviour of a cell population to be

investigated.

Analysis of the E. coli chemotaxis signalling network equipped us with a number of tools that

were used in order to study the more complexR. sphaeroidessystem. This allowed us to assign

roles to a number of signalling proteins as well as identifying areas that require improvement

within future work.

Here we summarise the main �ndings of this work in addition to giving areas for future

theoretical and experimental work. This will help to furthe r elucidate the signalling cascade

characteristics of E. coli and R. sphaeroidesas well as other biological systems.

9.1 Summary & Conclusions

In Chapter 2 we provided a summary of the past literature most relevant to the work con-

tained within this thesis. In particular, we began by summarising the biological work that sought

to identify key components of chemotaxis signalling cascades and their respective roles. Addi-

tionally, throughout this chapter we focused on how experimental results inspired mathematical

modelling and vice versa, leading to the modern understanding ndo t70.2502498(s)-0.38(v)-1.0026.2130.0492351(r)]TJ
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2810962 0 Td
[(o)0.0492351(t)-0.575155(a)0.0492351(x)-1(i)-1.02275(s)52-60498(s)-0.349121(i)-1.02498(g)0.0492351(n)-0.223796(a)0.0492351(l)-1.02498(l)-1.02498(i)-1.02051(n)-0.228272(g)52-03795(c)-0.671387(a)0.0492351(s)-0.349121(c)-0.675863(a)0.0492351(d)-0.223796(e)-0.675875(s)52-60498(i)-1.02498(n)-0.223791(c)-0.675862(l)-1.02051(u)-0.228274(d)-0.223796(i)-1.02498(n)-0.223796(g)0.0492393]TJ
-2810964 -21.9238 Td
[(t)-0.575155(h)-0.224915(e)-33.058[(r)-0.875042(o)0.0492351(l)-1.02498(e)-0.675863(s)v)549531(o)0.0492351(f)v)518268(v)547298(a)0.0492351(r)-0.875041(i)-1.02498(o)0.0492351(u)-0.224915(s)51844663(s)-0.35024(i)-1.02498(g)0.0492351(n)-0.226034(a)0.0492351(l)-1.02498(l)-1.02275(i)-1.02498(n)-0.226034(g)51888457(p)-0.226034(r)-0.875042(o)0.0492351(t)-0.575155(e)-0.675863(i)-1.02498(n)-0.223796(s)-0.351359(,)6chemoreceptorse





an ABM framework in order to investigate E. coli population level phenomena. Using the

ABM we were able to extrapolate single cell �ndings to study the e�ect of variation in protein

concentration on the e�ciency of the chemotactic response within ligand gradients of varying

steepness. Also considered here was the ability of cells to perform chemotaxis when two separate



used within a recent experimental study (neglecting those relating to CheR and CheB proteins

associated with adaptation). Within this work it was possible to show that a model without



9.2.1 Modelling Assumptions

Within this thesis a number of di�erent mathematical models have been formulated and



ter. In order to understand how spatial organisation such asthis a�ects the cell's chemotactic

response, it is possible to use a PDE model. This would allow for the consideration of protein

di�usion within the cytoplasm as well as restriction of cert ain components to speci�c regions of
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cells in a �xed, exponential ligand �eld over a time period of � 12 minutes requires� 45 minutes



ABM simulation is completed for some region of interest. This has the potential to signi�cantly

reduce computational costs; however a signi�cant amount ofwork would be required to allow

the matching of results between the two di�erent simulation regions/regimes.

9.2.3 R. sphaeroides

In Chapters 7 and 8 of this thesis, the chemotaxis signalling pathways ofR. sphaeroides

cells were our focus. In spite of being able to show that the ODE model of the phosphotransfer

network appears, in the most part, to re-produce experimental data the adaptation mechanisms

included in the modelling work were shown to be inadequate. As such, a new modelling ap-

proach is required in order to fully explain this data. There are a number of ways in which



d[L ]=dt = 0). Using currently available experimental techniques it is possible to experimentally

determine both d� =dt and @� =@m. As such, we could then formulate a functional description

of the methylation/demethylation ODE ( dm=dt) that provides a good �t to the experimental

data.

9.2.4 Experimental Work

We have so far discussed a number of assumptions and limitations associated with the work

in this thesis. Another key area in which further work would help to improve our knowledge

of chemotaxis signalling is through comparison of results from this work with theory and new



cells in which the total concentration of all signalling proteins may be controlled. In ad-

dition to this it would be necessary to create a well-controlled ligand gradient that very

closely matches those in our ABM simulations. These newly created cells could then be

placed into the controlled ligand gradient. Observing their behaviour over time, it should

then be possible to compare the migration of cells in this experimental work to our ABM

simulations, thus either con�rming or invalidating this wo rk.

In conclusion, a number of phenomena associated with chemotaxis of E. coli cells have

been investigated. It is hoped that the modelling framework/methodology, observations and

predictions within this work will be useful to future work on bacterial chemotaxis and other

biological systems. In the case ofR. sphaeroidesa number of areas have been identi�ed that

would bene�t from further theoretical and experimental wor k. In addition to this, a new model

was postulated that helps to remove some of the issues of previous models. As such it is hoped

that this work proves a useful step in providing a more complete understanding of chemotaxis

in R. sphaeroides







Appendix B

Descartes' Rule of Signs

Descartes' rule of signs may be used to investigate solutions of polynomial equations. More

speci�cally it may be used to �nd the number of positive, negative and complex roots that can

possibly be obtained from a polynomial equation.

In order to utilise this rule it is �rst necessary to arrange t he polynomial equation in order

from highest to lowest power of the relevant variable, for example

p(x) = a1x3 � a2x2 � a3x � a4 = 0 ; (B.1)

within which x is the variable of interest and ai (i = 1 ; 2; 3; 4) are the polynomial coe�cients

expressed such that everyai > 0, i.e. the relevant signs should be expressed in the equation

rather than hidden in the coe�cient de�nitions. It is then po ssible to apply Descartes' rule of

signs in two main forms (Rule 1 and Rule 2), which are as follows.

� Rule 1: For a polynomial equation p(x) with real coe�cients, the maximum number of

positive real roots of this equation will be equal to the number of sign changes in the

coe�cients (with zero coe�cients not constituting a sign ch ange). Then, the number of

positive real roots will either be equal to this maximum or will be less than this by some



� Rule 3: It is also sometimes possible to obtain some information about the minimum



and so there will exist one negative, real root to the polynomial equation (B.4).

In order to use Rule 3 we may then see thatq = 0 and r = 1, from above. We may then

calculate that there will be two complex roots sincen � (q + r ) = 3 � (0 + 1) = 2.
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Appendix C





Appendix D

Protein Synthesis

Within Chapter 5 it was discussed that there exists a signi�cant amount of variation in the

concentrations of signalling proteins inE. coli cells. One of the causes of this is the stochastic

nature of gene expression which has been studied in some depth for E. coli cells. Here we brie
y

summarise the process by which proteins are synthesised within cells.





Appendix E

FCD in a Model with Multiple



where all symbols retain their earlier de�nition. Substitu ting this into equation ( 3.9) gives

� =
1

1 +
�

[L ]R

x(m)

� N ; (E.4)

where R = � a + � s and x(m) = K of f



Glossary

� Adaptation

The process by which cells return to a pre-stimulus state. Inthe case ofE. coli this occurs



however a number of strains that may cause illnesses such as gastroenteritis, urinary tract

infections and neonatal meningitis.

� Eukaryote

A type of cell that contains a membrane-bound nucleus.

� Flagellum (Plural: Flagella)

A long, slender, whip-like extension of a cell used for movement. The rotational movement



� Methylation (Demethylation)

The addition of methyl groups onto, for example, a chemoreceptor is referred to as methy-

lation. Demethylation relates to the removal of methyl groups.

� Methylesterase

A protein that is able to remove methyl groups from chemoreceptors. This plays a key

role in the process of adaptation.

�



� Prokaryote

A single-cell organism lacking a distinct nucleus.

� Receptor Cluster

A number of chemoreceptors that are closely packed in an area. This is often necessary to

enhance the sensitivity of a cellular response.

� Response Regulator

The protein controlling the response of the cell. ForE. coli the response regulator (CheY)

controls the swimming behaviour of the cell.

� Rhodobacter sphaeroides(R. sphaeroides)



Bibliography



[13] E. Kort, M. Goy, S. Larsen, and J. Adler. Methylation of a membrane protein involved in







[49] D. Bray and T. Duke. Conformational spread: The propaga



[62] R. Endres, O. Oleksiuk, C. Hansen, Y. Meir, V. Sourjik, and N. Wingreen. Variable sizes

of Escherichia coli chemoreceptor signaling teams.





[88] E. Keller and L. Segel. Model for chemotaxis.Journal of Theoretical Biology, 30(2):225{

234, 1971.

[89] D. Horstmann. From 1970 until present: The Keller-Segel model in chemotaxis and its

consequences I.



[100] R. Erban and H. Othmer. From individual to collective behavior in bacterial chemotaxis.

SIAM Journal on Applied Mathematics, 65(2):361{391, 2004.

[101] C. Patlak. Random walk with persistence and external bias. The Bulletin of Mathematical

Biophysics



[114] R. Stewart, K. Jahreis, and J. Parkinson. Rapid phosphotransfer to CheY from a CheA

protein lacking the CheY-binding domain. Biochemistry, 39(43):13157{13165, 2000.

[115] R. Stewart, A. Roth, and F. Dahlquist. Mutations that a �ect control of the methylesterase

activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli.

Journal of Bacteriology, 172(6):3388{3399, 1990.

[116] J. Smith, J. Latiolais, G. Guanga, S. Citineni, R. Silversmith, and R. Bourret. Investigation

of the role of electrostatic charge in activation of theEscherichia coli response regulator

CheY. Journal of Bacteriology, 185(21):6385{6391, 2003.

[117] D. Bray. Research group data. http://www.pdn.cam.ac.uk/groups/comp-cell/Data.html.

Accessed: 08/05/2012.

[118] T. Shimizu, Y. Tu, and H. Berg. A modular gradient-sensing network for chemotaxis in

Escherichia coli revealed by responses to time-varying stimuli.Molecular Systems Biology,

6(1), 2010.

[119] A. Vaknin and H. Berg. Physical responses of bacterialchemoreceptors.Journal of Molec-

ular Biology, 366(5):1416{1423, 2007.

[120] P. Dunten and D. Koshland. Tuning the responsiveness of a sensory receptor via covalent

modi�cation. Journal of Biological Chemistry





[138] S. Kalir, J. McClure, K. Pabbaraju, C. Southward, M. Ro










