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tessellation, which in the 2D case is the hexagonal honeycomb one, is obtained. In any case, it is found 
that the gamma distributions provide excellent fits for a very large range of values of  δ [46]. 

In this paper we approach the problem of understanding general properties of the Voronoi 
tessellations by joining on the two extreme situations of perfectly deterministic, regular tessellation, to 
the tessellation resulting from a set of points X generated with a Poisson point process.  

We first consider three regular polygonal tessellations of the plane, the honeycomb hexagonal, the 
square, and triangular tessellations. They are obtained by setting the points xi as vertices of regular 
triangles, squares, and hexagons, respectively. Hexagonal tessellation has such peculiar properties of 
robustness relies on the fact that it is optimal both in terms of perimeter-to-area ratio and in terms of 
cost [50, 51]. The extremal properties of such a tessellation are clearly highlighted by [52], where it is 
noted that a Gibbs system of repulsive charges in 2D arranges spontaneously for low temperatures 
(freezes) as a regular hexagonal crystal. Moreover, a regular hexagonal structure has been found for 
the Voronoi tessellation built from the spontaneously arranged lattice of hot spots (strongest upward 
motion of hot fluid) of the Rayleigh-Bènard convective cells, with the compensating downward motion 
of cooled fluid concentrated on the sides of the Voronoi cells [23]. This is related to the fact that, under 
specific parameters ranges, the stationary solutions of the 2D Swift-Hohemberg equation generate 
naturally hexagonal tessellations [53]. 

Moreover, we analyze three cubic crystals covering the 3D Euclidean space, namely the simple 
cubic (SC), the face-centered cubic (FCC) and the body-centered cubic (BCC) lattices [15]. The 
corresponding space-filling Voronoi cells of such crystals are the cube, the rhombic dodecahedron, and 
the truncated octahedron.  The cubic crystal system is one of the most common crystal systems found 
in elemental metals, and naturally occurring crystals and minerals. These crystals feature truly 
extraordinary geometrical properties. The cube is the only space-filling regular solid. The FCC 
(together with the Hexagonal Close Packed structure) features the largest possible packing fraction: the 
related 1611 Kepler’s conjecture has been recently proved by [54] The Voronoi cell of BCC has been 
conjectured by Kelvin in 1887 as being the space-filling cell with the smallest surface to volume ratio, 
and only recently two counter-examples have been given in [55] and [56]. Interestingly, Gabbrielli 
[56] found a novel space-filling cell by imaginatively looking at the patterns generated as stationary 
solution of the 3D Swift-Hohenberg equation, thus methodologically mimicking the more usual 2D 
case. Finally, the truncated octahedron is conjectured to have the lowest cost among all 3D space-
filling cells [51]. These mathematical properties correspond to very important physical features. 
Because of its low density, basically due to the low packing faction, the SC system has a high energy 
structure and is rare in nature, and it is found only in the alpha-form of Po. The BCC is a more 
compact system and have a low energy structure, is therefore more common in nature. Examples of 
BCC structures include Fe, Cr, W, and Nb. Finally, thanks to its extremal properties in terms of 
packing fraction and the resulting high density, FCC crystals are fairly common and specific examples 
include Pb, Al, Cu, Au and Ag. 

The extremal properties in terms of surface–to-area ratio of the hexagonal (in 2D) and truncated 
octahedral (in 3D) tessellations imply that they may serve as optimal tool for achieving data 
compression [57]. Another similarity of these two tessellations is related to their topologically stability 
with respect to infinitesimal perturbations to the position of the lattice points [58]. 
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Using an ensemble-based approach, we study the break-up of the symmetry of the 2D and 3D 
crystals and quantitatively evaluate how the statistical properties of the resulting Voronoi cells change 
when we perturb the positions of the lattice points xi, with a spatially homogeneous Gaussian noise of 
param
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In the 2D case, we analyze n, P, and A, corresponding to the number of sides, the perimeter and the 
area of each Voronoi cell, respectively.  In the 3D case, we focus our interest on f, A, and V, 
corresponding to the number of faces, the surface area and the volume of each Voronoi cell, 
respectively. 
 

2.b. Some Exact Results  

2.b.1. 2D Tessellations 

If we consider a regular square grid of points xi with sides 2121 , vvvvl rrrr
⊥== , the Voronoi cell Πi 

corresponding to xi is given by the square centered in xi with the same side length and orientation as 
the xi grid, so that the grid of the vertices yi of the tessellation is translated with respect to the xi grid by 
l/2 in both orthogonal directions (the verse is not relevant). Therefore, the vertices of the Voronoi 
tessellation resulting from the points yi are nothing but the initial points xi. If 21

21
0 vvll grid by 

==䉖





Symmetry 2009, 1 
 

 

8

variance 2ε . We define 222
Slαε = , thus expressing the mean squared displacement as a fraction  

of the natural squared length scale, where  in the 2D case and 

2α
1

0
2 −= ρSl

32
0

2 −= ρSl  in the 3D case. When 

ensembles are considered, the probability distribution of the points xi  is still periodic. The parameter 
 can be loosely interpreted as a normalized temperature of the lattice. By def

l4

t702.02 12.015 540.29987 763.28027 Tm
(2)Tj
/C2_0 1 Tf
0.5.015 0 0 12.015 530.81989 757.88031 Tm
<00445
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have consistently verified that when choosing any tolerance smaller than  we obtain basically 
the same results.  

810−=ξ

 

Figure 1. Ensemble mean of the mean  - (a) -  and of the standard deviation – (b) – of the number of 
sides (n) of the Voronoi cells. Note that in (a) the number of sides of all cells is 4 (3) - out of scale - for 

α=0 in the case of regular square (triangular) tessellation. Half-width of the error bars is twice the 
standard deviation computed over the ensemble. Poisson-Voronoi limit is indicated. 

(a)  

(b)  
 

3. Results 

3.a Two-dimensional case 
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3.a.1 Number of sides of the cells 

In the case of the regular square tessellation, the introduction of a minimal amount of symmetry-
breaking noise induces a transition in the statistics of ( )nµ  and ( )nσ , since ( )nµ  and ( )nσ  are 

discontinuous in 0=α . In Figs. 1a)-1b) we plot the functions ( )nµ  and ( )nσ ; the half-width of the 
error bars are twice the corresponding values of ( )[ ]nµδ  and ( )[ ]nσδ , whereas the Poisson-Voronoi 
values are indicated for reference. We have that ( ) ( ) +==

=≠=
00

64
αα

µµ nn , where by 
+=

•
0α

we 

mean the limit for infinitesimal noise of the quantity • , practically obtained by considering very 

small positive values of the parameter α . The regular square tessellation results to be structurally 
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range. Since the presence of a Gaussian noise induces for each point xi a probability distribution with – 
an unrealistic- non-compact support, it is possible to 
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3.a.2 Area and Perimeter of the cells 

For all of the perturbed regular tessellations considered in this study, the parametric dependence on 
α  of the statistical properties of the area of the Voronoi cells is more regular than for the case of the 
number of sides. Results are shown in Figs. 2a)-2b). 

In general, the ensemble mean value ( )Aµ  of the area of the Voronoi cells is, basically by 

definition, constrained to be ( ) 10 =Aµρ  for all values of α , whereas for all perturbed tessellations 
the size of fluctuations ( )[ ]Aµδ  increases with α  and reaches for 3>α  an asymptotic value, 
coinciding with that observed in the Poisson-Voronoi case. The α -dependence of ( )Aσ  is more 

interesting. We first note that the functe that the fT
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triangular tessellation has a worse agreement with this low-noise approximation. Moreover, for 2>α , 
( )Pσ  becomes undistinguishable from the asymptotic value realized for Poisson-Voronoi process, 

given by ( ) 98.00 ≈
PV

Pσρ . 

Figure 3. Ensemble mean of the mean  - (a) -  and of the standard deviation – (b) – of the perimeter (P) 
of the Voronoi cells. Half-width of the error bars is twice the standard deviation computed over the 

ensemble. Poisson-Voronoi limit is indicated. In (b), linear approximation for small values of α is also 
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The results of the three perturbed regular tessellations basically agree for 5.0>α , thus confirming 
what shown previously. In particular, for 2>α , the results coincide with what resulting from the 
Poisson-Voronoi case. In this regime, we verify the Lewis law [61], i.e. ( ) ( 201 anaA

n
+≈ ρµ ) . Our 

data give , which is slightly less than what resulting from an asymptotic computation  [48], 
where obtained a linear coefficient of 0.25 is reported. Secondly, and more interestingly, we confirm 
that Desch's law [62] is violated, i.e. 

23.01 ≈a

( ) ( )21 bnbP
n

+≠µ , as shown, e.g., in [46]. Nevertheless, 

instead of a polynomial dependence on n, we find that a square root law can be established, i.e. 
( ) ( )201 cncP

n
+≈ ρµ . Our data give 71.11 ≈c , again slightly less than the asymptotic 

computation [48], where 77.11 ≈= πc  is obtained. We note that the Lewis law and such a law allow 

the establishment of a weakly n-dependent relationship such as ( ) ( )[ ]2

nn
PA µµ ∝ , which seems to 

fit properly with a well-defined 2D isoperimentric ratio 24 PAq π=
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corresponds to expressing .  Therefore, if ( ) ''4
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( ) 20 == +
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16, whereas, as shown in [58], the disappearance of the quadrivalent vertices in the rhombic 
dodecahedron case (FCC crystal) causes an increase of two units (up to exactly 14) in the average 
number of faces. Near 0=α , for both SC and FCC perturbed crystals, ( )fµ  depends linearly on α  

as ( ) ( ) γαµµ
α

+≈
+=0

ff . The proportionality constant has opposite sign in the two cases, with 

05.05.1 ±−≈γ  for the SC case and 05.01±≈γ  for the FCC case.  
 

Figure 7. Ensemble mean of the mean and of the standard deviation of the number of faces of the 
Voronoi cells for perturbed SC, BCC and FCC cubic crystals. The error bars, whose half-width is 

twice the standard deviation computed over the ensemble, are too small to be plotted. The Poisson-
Voronoi limit is indicated. 

 
Moreover, the introduction of noise generates the sudden appearance of a finite standard deviation 

in the number of faces in each cell ( )
+=0α

σ f , which is larger fo, whicc656 
Q
76f6122 Tr th22 6039 Tm
(o)Tj
12.0108 0 5 12887.0108 283.56 264.C, BCe Poisson-
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Figure 8. Ensemble mean of the standard deviation of the volume (V) of the Voronoi cells for 
perturbed SC, BCC and FCC cubic crystal. The ensemble mean of the mean is set to the inverse of the 
density. Values are multiplied times the appropriate power of the density in order to obtain universal 

functions. The error bars, whose half-width is twice the standard deviation computed over the 
ensemble, are too sm
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When considering the area of the 
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Figure 11. Ensemble m
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For 5.0≥α  the results for the SC, FCC and BCC crystals basically agree and converge to the 

Poisson-Voronoi limit for 1≥α . Therefore, whereas the Voronoi tessellation of the BCC crystal is the 
most stable against noise when the topological properties of the cells are considered (see Fig. 7), when 
analyzing the shape of the cells from a metrical point of view, the FCC crystal is actually the most 
stable.  

In order to further clarify the variability of the shapes of the cells, we take advantage of a strategy of 
investigation commonly adopted for studying Voronoi tessellations, i.e. the stratification of the 
expectation values of the geometrical properties with respect to classes defined by the number of sides 
of the cells [46, 48, 59]. In the present case, it would be profitable to study quantities such as ( )

f
Vµ  

and ( )
f

Aµ , where the pedix indicates that the averages are performed only on cells with f faces. It is 

readily observed that, in all cases,  both ( )
f
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In all cases we find that η  is larger than 3/2, with typical uncertainties of the order of at most 

. Therefore 3102 −⋅ 'η  is always larger than zero: such an anomalous scaling implies that, typically, a 

cell with a larger volume has a relatively smaller surface, and, in other terms, a larger isoperimetric 
quotient (which increases '2ηA∝  ).  

 

Figure 13. Ensemble mean of the scaling exponent η   fitting the power-law relation  for the 
Voronoi cells of  perturbed SC, BCC and FCC cubic crystals. The presence of an anomalous scaling 
(

ηAV ∝

23>η )  due to the fluctuations in the shape of the cells is apparent. The error bars, whose half-width 
is twice the standard deviation computed over the ensemble, are too small to be plotted. The Poisson-

Voronoi limit (see Fig. 12)  is indicated. Details in the text. 

 
In particular, in the Poisson-Voronoi limit 67.1≈η  - black line in Fig. 12 - which suggests the 

occurrence of a 5/3 exponent. It is also remarkable that, as soon as noise is turned on, anomalous 
scaling due to is observed in for the SC and BCC cubic crystals. In the SC case, ( ) 88.10 ≈= +αη , the 
exponent is monotonically decreasing for all values of α , and becomes undistinguishable from the 
Poisson-Voronoi limit for 2>α . In the BCC case, as opposed to what one could expect given the 
structural stability of the crystal, ( )

≈
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As mentioned before, the number of faces provides a good proxy indicator for the shape of the cell, 
or, more precisely, of its isoperimetric quotient. In order to find a robu 
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have that the topology of these tessellations is robust also against small but finite noise. For strong 
noise, the statistical properties of the tessellations of the perturbed crystals converge to those of the 
Poisson-Voronoi limit, but, quite notably, the memory of the specific initial unperturbed state is lost 
already for moderate noise, since the statistical properties of the perturbed tessellations are typically 
indistinguishable for 5.0>α . 

In the case of perturbed square (triangular) tessellation, for a specific intensity of the noise 
determined by 25.0≈= mαα  ( 5.0≈= mαα ), it is possible to minimize the mean isoperimetric ratio 
of the Voronoi cells, whereas by choosing 75.0≈= Mαα  we obtain a relative maximum for 
perime�
⅄
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