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properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale 

processes.  

 

1. Introduction 

The Lorenz system [1] has a central role in modern science as it has provided the first example of 

low-dime



Palmer [17] introduced artificially 
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where g is the gravity acceleration, ( ) ( )ψψ xzwuv ∂∂−== ,,r , θ+∆−= HTzTT 0 , with H  

uniform depth of the fluid and T∆  imposed temperature difference. The suitable boundary g



See [3] for a detailed derivation in the case 0=Ec , considering that the sign of the term 

proportional to R  is wrong in both Eqs. 34 and 35.  In the case 0=Ec , the seminal Lorenz system 

can be derived by severely truncating the system, considering the evolution equation for the real 

part of  and for the imaginary parts of 1,1Ψ 1,1Θ  and 2,0Θ , and performing suitable rescaling (see 

below). While  has no real part because of the boundary conditions [3], neglecting the 

imaginary (real) part of 

2,0Θ

1,1Ψ  ( ) amounts to an arbitrary  selection of the phase of the waves in 

the system. An entire hierarchy of generalized Lorenz models, all obeying to this constraint, can be 

derived with lengthy but straightforward calculations. See, e.g., [4-6] for detailed discussion of 

these models. 

1,1Θ

 

3. Symmetries of the extended Lorenz system 

In this work we include the modes , 1,1Ψ 2,2Ψ , 1,1Θ , 2,2Θ  in our truncation, and retain both the real 

and the imaginary parts, whereas the considered horizontally symmetric modes  and  2,0Θ 4,0Θ  are, 

as mentioned above, imaginary. Finally, we assume, in general, a non vanishing value for . If we 

define 

Ec
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with I being the 2X2 identity matrix and  being the 2X2 rotation m

a



properties of  do not depend on the initial conditions, and agree with those of the z variable of the 

classical Lorenz system. Moreover, the statistical properties of the quadratic quantities 

, , and 

1Z

2
2

2
1

2 XXX +≡ 2
2

2
1

2 YYY +≡ 1221 YXYXXY −≡  do not depend on the initial conditions 

(whereas those of each term in the previous sums do!), and agree (for all values of r , σ , !) with 

those of  and , and 

b

2x 2y xy  of the classical Lorenz system, respectively. Analogously, since the  fined0022Eq.and5029iallbeyed,ly, sstatistthe cproperti all valuee of ,  fnz system



determining a chaotic dynamics for the ( )22121 ,,,, ZBBAA  variables and a trivial or periodic 

behavior for the  variables. ( )12121 ,,,, ZYYXX

With the “classical” Lorenz parameter values 28=r , 10=σ , 38=b , the variables 

 obviously have an erratic behavior, whereas the variables , 

which describe the faster spatially varying wave components, do not feature any time variability 

when asymptotic dynamics is considered, as they converge to fixed values 
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derivation) of the model discussed above, the fact that we recover the classical results of the 3-

component Lorenz system is quite reinsuring. The Kaplan-Yorke dimension [24] of the system is: 
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where k is such that the sum of the first k (4, in our case) Lyapunov exponents is positive and the 

sum of the fi
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highlights on these variables, in Fig. 2 we show, from top to bottom, the projection on  of three 

typical trajectories for , , and , respectively. Going from the top via 

the middle to the bottom panel, the time scale increases by a factor of 10 and 100, respectively. The 

striking geometric similarity underlines that the time scales of the dominating variability for the 

slow variables can be estimated as 
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exponent coincides with that of the Lorenz system, and the value of one of the six negative 

exponents agrees with that of the negative Lyapunov exponent of the Lorenz system. 

Therefore, the Lorenz system contains already all the interesting unstable dynamics 

described by this extended ODEs system, and features exactly the same value for the metric 

entropy.  Correspondingly, while the five variables (fast) describing the modes 1,1Ψ , 1,1Θ , 

and 0,2Θ  have an erratic behavior, the other five variables (slow) converge to fixed values. 

2. When 0≠Ec , the symmetry of the system is broken, and coupling occurs between the fast 

and slow variable over a time scale ( )1EcO − . This is clarified by adopting standard 

multiscale formalism. If we select, as in the original Lorenz system, 28=r , 10=σ , 

3/8=b , the system is chaotic for 0.0450 ≤Ec< , whereas for higher values of Ec  a quasi-

periodic regime is realized. In the chaotic regime, the symmetry-break is accompanied by 

the establishment 12.bg9.o.7976lP <</MCID ol2.0dyineShape3nv 
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modulation occurring on time scales of 1Ec−  which superimposes on the fast dynamics controlled 

by the ( )1O  time scale 1/1 λ . 

The system introduced in this paper features very rich dynamics and, therefore, may have 

prototypical value for phenomena generic to complex systems, such as the interaction between slow 

and fast variables and the presence of long wee2ls40 1.900.81 24 16.98 re
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2. extension of the present analysis to higher order truncation ODEs systems, with detailed 

investigation of the 0=Ec  invariance properties, of the impact on these symmetries 

resulting from setting 0>Ec , and the ensuing multiscale analysis. This is especially 

relevant in the context of the results presented by Franceschini and Tebaldi [26] and 

Franceschini et al. [27], who emphasized that spectral truncation and modes selections 

procedures have to be critically addressed.  

3. definition, following [7], of the minimal truncated 3D model of convection able to represent 

the thermal impact of viscous dissipation; 

the thermnim
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(a)  

(b)  

(c)  
Figure 1: Four largest Lyapunov exponents (a), metric entropy h (b) and Kaplan-Yorke dKY dimension (c) as a 

function of Ec. Note the continuity for Ec = 0 of all parameters and the distinct linear behavior - see specifically 

the dashed lines in (b)  and (c) - for Ec < 0.008.  The linear behavior of the second and fourth Lyapunov 

exponents branching off zero in (a) extends throughout Ec ≈ 0.018.  Details in the text. 
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Figure 2: Impact of the viscous-thermal feedback on the time scales of the system. From top to bottom: typical 

evolution of the variable A1 for different values of the Eckert number (Ec = 10-3, Ec = 10-4, Ec = 10-5, 

respectively).  Note that the time scale is magnified by a factor of 1, 10 and 100 from top to bottom. Details in the 

text.   
 
 

 
Figure 3: Impact of the viscous-thermal feedback on the time scales of the system. From top to bottom: typical 

evolution of the variable X1 for different values of the Eckert number (Ec = 10-3, Ec = 10-4, Ec = 10-5, 

respectively).  Note that the time scale is magnified by a factor of 1, 10 and 100 from top to bottom. Details in the 

text.  

 
 



 
Figure 4: Power spectrum of A1 and X1 (multiplied times 10-8) for Ec = 10-3, Ec = 10-4
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