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Abstract

The aim of this work, is to develop a numerical model, that could be used to
in the calculation of optimal life cycle strategies of given organisms. The theory
used from [6] assumes that the organisims have either a two phase 'bang-bang’
life cycle strategy or a three phase life cycle strategy with the second phase being

a singular arc.
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Ch pter 1

Introduction

The aim of this work is to develop a numerical method, which will find the optimal
allocation of resources between growth and reproduction for a given organism and,
hence, an organism’s optimal life cycle strategy. A brief introduction to optimal
control theory and life cycle strategies is given here. In addition an overview of

the project’s content and it’s organisation is included.

1.1 What is Optimal ontrol Theory?

Optimal control theory arises from the consideration of physical systems, which
are required to achieve a definite objective as “cheaply” as possible. The trans-
lation of the design objectives into a mathematical model gives rise to what is

known as the control problem. The essential elements of a control problem are:-

e The system which is to be “controlled”
e A system objective

e A set of admissible “controls” (inputs)



o A performance functional which measures the effectiveness of a given “con-

trol action”

The system objective is a given state or set of states which may vary with
time. Restrictions or constraints, as they are normally called, are placed on the
set of controls (inputs) to the system; controls satisfying these constraints are said
to belong to the set of admissible controls. A formal definition of the optimal
control problem and associated theory of Pontryagin’s principle is looked at in

chapter two.

1.2 Life ycle Strategies

An organism’s life cycle strategy is determined by the way in which it allocates
energy between growth and reproduction. There are just two main ways in which

organisms allocate energy. These are:-

o Determinate growth results in a bang-bang allocation strategy. All energy
is initially allocated to growth until maturity, when maturity is reached all

energy is switched to reproduction.

o Indeterminate growth results in a split energy allocation. This allows both

growth and reproduction to take place simultaneously.

The general analytical model of the resource allocation problem developed in
[6] considers the process of resource allocation as an optimal control problem.
It uses Pontryagin’s maximum principle to find the optimal allocation of energy

between growth and reproduction for a given organism.



The idea of finding the optimal allocation of resources between growth and re-
production is the motivation behind this work. The aim is to develop a numerical
method for the optimisation problem.

The work begins by looking at the optimal control problem and Pontryagin’s
Maximum principle before moving on to look at the biological problem and it’s
analytical solution in greater detail. The numerical method for this problem is
then developed in chapter four. The method begins by solving the state and
adjoint equations for an arbitrary control u, before looking at ways of making the
control u optimal. The model developed is assessed by using trial problems to

which analytical solutions can be found.






Pontryagin’s principle was developed to deal with control problems where the

variables were subject to magnitude constraints of the form:-  ;( ) ;. This



In time dependent problems Pontryagins principle can be used to determine either

a minimum or a maximum of the functional J(u).

Consider the angular motion of a ship which is given by

— t—= (27)
where the rudder setting u is subject to 1. Find u to minimise the time
required to change course from =1, % =0 when =0to =0, % = (0 when

= . The first order equations are formed by taking = , 5= . Then
= 1= 1(0)=1 4()=0 (28)
= 5= 2 2(0):0 2( ):0 (29)
Hence we wish to
min T
1 (2 10)
0
12 12 12 2 2



where A and B are constants to be determined. Applying Pontryagins Principle

we get
L4 Aah + X5 (u™ —ay) < T4+ a4+ Aj(u — 23) (2.16)
As(u™ —u) <0. (2.17)

Hence
uw=—1 if A>0 (2.18)
u=1 of A <O. (2.19)

From equation (2.15) we can see that Ay can change sign at most once. The

equations for x; and x4 are now found to be
zy=ut —Ce "+ (2.20)

o =u+ Ce™, (2.21)

where C and D are constants to be found. There are two possible cases to consider:
u=latt=0u=—-latt=T, andu=—-latt=0,u=1att=7T. From
equations (2.15), (2.18) and (2.19) it can be determined that u = 1 at ¢t = 0 is

the correct case, x; and x4 can now be found in terms of known values. Hence

rr=t+e " for t <t

t1=—t—el P TH+1 for t>1, (2.22)

to=1—¢e" for t<Ht,

zy=—14+¢€el"t for t>t,, (2.23)

from which we can determine the switching time ¢, by equating the pairs of
equations (2.22) and (2.23) for x; and x, at the switching time ¢, giving ¢, =

7



%(T —1). All that remains is to calculate the final time T. This is straight forward

and gives T' = ZCosh_l(e_%).

2.2 Singular Intervals

In the special case where the Hamiltonian H is linear in the control vector u, it
is possible for the coefficient of the linear term to vanish over a finite interval of
time. This gives rise to a singular interval and Pontryagin’s principle gives no
information about the control variable w. During this phase an additional condi-
tion is needed. The additional condition is a condition for local optimality, which
holds through out the singular interval, and is the second order Clebsch-Legendre

condition stated here without proof. The required condition for a maximum is

ol () ()] - -

For proof of this see [2], examples can also be found in this reference.
Example

Consider the control strategy that causes the response of the system
xq(t) = xo(t), xo(t) = u(t) (2.25)

subject to x1(0) = a, x5(0) = /3, to minimise

2/ 1)+ 23(1)) dr. (2.26)

The final time T and the final states are free, and the controls are constrained by

the inequality | u(?) |[< 1. We now form the Hamiltonian function

1 1
—z? + §x§ + Ay + Au. (2.27)

H($17x27u7t7)‘17)‘2) = 5

8



Applying Pontryagin’s principle,

1 2 1 . 1 1
SiHg Tt it pi4grtiit: @)
207 ) 0 (2 29)
Hence
=1 2 0
=1 2 0 (2.30)

Consider the existence of a singular interval [ ; 2], in which case 5 = 0 for all

[1 2]. Thus, for [ 3],

[\l )



or

1 2=0 (2 37)
Differentiating equation (2.36) and substituting in the state equation gives
‘2 — 2 (2 38)

which implies
()= 30) [1 2] (239)

and, therefore, 7( ), 3( ) [ 1 1]. Similarly, differentiating equation (2.37), it

can be shown that

()= 30) [1 2 (2 40)

and (), 3() [ 1 1]. Equations (2.36) and (2.37) define the locus of a point

in the state plane ( | ) where singular intervalss may exsist. Since the system

= 1= 2
-1 L 1()
= 1= 2
-1
moves away from the origin on the line ;| = 5, this segment cannot form part

10






whilst

(1) 0 i+ 2 0 (2 49)

Comparing with equation (2.44), it follows that switching is only allowed in the

case when 1+ 5 0. There are three possible cases:

12,3
1. 5 ~+3
12,3 1 2
2. 5 ~+3 5 +4
3 1244
1 2
1 2
12 1
1 2 2 2
12
1 2 2



Possible controls three phase

X2
. X,=-0.5(x,)’+4
1 @ (2) 3)

. X,=-0.5(x,)’+1.5 x
0 L S B S B B B N B B B N B E B S N e s [
} 1 2 3 4 5

1

1 %=0.5(x,)’

- x,=0.5(x,)’+0.5
3

| X, =X,



= age
= final time
( ) = body weight, (0) = initial weight

() = total resources available for allocation,

—rt

—rt



3.2 Biological Problem

The biological problem of resource allocation is considered as an optimal control
problem , where fitness is maxismised by the choice of the control variable. Fitness

of a life cycle strategy is measured by it’s rate of increase r, defined by

| = /0 et dt, (3.1)

where T' is the maximum age of reproduction, [4]. A strategy which maximises
fitness is used as this is the most probable result of evolution.

The resources P(w) available to a given organism of size w are always subject
to the competing demands of growth and reproduction. Since L(t) = e "(t),
it can be thought of as a single factor which weights reproduction in equation
(3.1) and decreases with time at the rate r 4+ p(w). Reproduction decreases in
value with time due to the population increasing at a rate of r and the decrease
in survival probability by a rate of p(w). u denotes the proportion of resources
directed to reproduction, the remainder of the resources are directed to growth.
Using the model of growth and reproduction developed in [6] we have an optimal

control problem in which we choose u to maximise r subject to the following

constraints.
= (1 —u(t))P(w), w(0)= specified (3.2)
L=—~(r+p(w)L, L(0)=1 (3:3)
0= W, 0(0)=0 O(T)=1 (3.4)
P =0 (3.5)

with 0 < u < 1. The dot () denotes differentiation with respect to time. Equation

15



(3.1) can now be rewritten as

/OT wPlw) p oy 1. (3.6)

w0
When maximising r directly using Pontryagin’s principle we need to define the
Hamltonian H and from this we get the equations for the adjoint variables by
differentiating with respect to the state variables. H is defined as

u(t)L(t) P(w)

w

H = (L= w(t)P(w) — Ao(r + p(w))L(2). (3.7)

A3 does not appear in the hamiltonian as # = 0. The adjoint equations are given

by
Xo =0, (3.8)
Xo=Aom L — “Afvgpl — (L= u®)MP, M(T)=0 (3.9)
Xy = dom(w) — W, M(T) =0 (3.10)
X3 = A L(t),  As(0) =0, A(T)=1. (3.11)

We note that m(w) = r + p(w) and m'(w) = p'(w) where () denotes differentia-

tion with respect to w.

3.3 Two phase solution

In a two phase solution the control u switches instantly from zero to one. The

switching point can be found by setting % = 0, which in this case gives

OH  M\LP
- = - NP =0. A2
Ju w0 ! 0 (3:12)
The control u is dependent on the relationship between %, and \; giving
.. Aol
=0 — <A 3.13
U Zf w0 < A1 ( )

16






Now using equation (3.6) we get

| = /T P(w,)L(1) dt = Plwi) Ly /T o~ (rtu(w)(t=t1) g1 _
t

) w0 w() t
P(w) Ly (1 _ e—(r-l—u(m))(T—tl)) . (3.18)
w0(r + p(wr))

This equation gives a relationship between r and w;. This can be shown graphi-
cally and the optimal strategy determined from this by observation. This reduces
the optimal control problem to a simple static problem of finding w; to maximise

r. A necessary condition for optimality is that

dr Of ai_

dwr = wy or = (3.19)

Since we assume % does not equal zero, we require % to be equal to zero. Hence

from equation (3.18) we obtain

. P
m; (wl)(T . tl)e_ml(T_tl) 4 (

my

P(w)

my

) (1—emm=m) —1=0  (3.20)

where my = r + p(w,) and m; = p’. We now have three equations (3.16, 3.18,
3.20) and three unknowns r, w; and #; from which the exact solution can be

determined.

18



Variation of control with time

control
o
[6)]
|

Figure 3.1: Two phase control

Example-linear

The functions are given as
P(w) = 0.0702w
p(w) = 0.01w
w(0) =0.25
k= 0.0602
T =100
w(0)

wl = ==

which on substitution into equations (3.16, 3.18, 3.20) give the following equations

_ 0.0702w, ( = Jac) Srozandw ) (1 _ e—(T+0.01w1)(100—t1))
r+ 0.01w,

(

0.0702t
wy = 0.25¢ '

Y

100 —¢ —(T-|—0.01w1)(100—t1)
+ 01w1) ( 1) ‘ +

!

r 4 0.1w,

(M) (1 — emtrommno-w) ) — g

19
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A general three phase solution is looked at, in the simple case where the functions
P(w) and p(w) are any general linear function. The first and second switching
points are denoted by the subscripts 1 and 2 respectively. Equation (3.16) relating
wy and ?; remains valid as does equation (3.17) relating w; and L;. In the three
phase optimal control problem, it is assumed that A; = % for a non- zero period
of time. During this phase % = 0 and the trajectory is a singular arc. Since

A = % during the singular arc we can differentiate to get
A= (3.24)

Substituting equation (3.9) into this equation and using equation (3.3) as well as

the relationship A\, = 2ok

= 22 gives

Ay = (3.25)

where (') denotes differentiation with respect to w. A, can now be found during

the final phase from equation (3.10) giving

_ _ )\ Pl(wz)
A= 1 emmua)(T-n) Aol (w2) 3.26
2 € wom(w2)7 ( )

which on substitution into equation (3.9) gives

M0 P iy

)\0 my my

[L(t) L(T)]. (3.27)

At the start of the final phase Alﬁo = L(T)em(w2)(T=%) which on substituting into

equation (3.27) gives the criterion equation

!

P
my (T tz)e_m2(T_t2) + (102)

mg md? w

1 eI = (328)

21






Variation of control three phase

L1

0.5

control

L1

0.25—

L1

[ e e e s N S N L L A H m s s

Figure 3.2: Three phase control

Example-linear

The functions are given as
P(w) = 0.0702w

p(w) = 0.01w

w(0) =0.25

k= 0.0602

T =100

which on substitution into equations (3.16), (3.28), (3.29), (3.32), (3.33) give the
following equations

wy = 0.25¢%070% (3.34)

— | (100 — ¢ —(r+0.0111 )(100—#1)
T+&hm>( 1)e n

!

P(wl) _ _
1 (T+0.1w1)(100 tl) 1 _ .
(r + 0.1w1) ( ‘ ) . (3:35)

23






The development of the numerical method begins by deriving numerical schemes
for solving the state equations for an arbitary control vector . The adjoint
equations are then solved for this arbitary control vector using similar numerical

methods. Since the equations for the adjoint variables are dependent on the



to a final time =
We commence with the state equation for , equation (3.2), which is inde-
pendent. The remaining state equations are solved simultaneously. The function
() given in equation (3.2) is assumed to be problem specific and user defined.

A simple trapezium rule discretisation is applied to equation (3.2) for , giving

= g ) O+ ) () (41)
where is the step length ( = where is the final time and  is the number
of steps), and j denotes the number of steps taken from = 0.

It can be seen that ( ;41) cannot be evaluated as ;41 is unknown and so
this form of simple discretisation cannot be used. Instead it is used to form an

iterative method, such that

?—l—fll: J+§(1 ]) ( J))+§(1 j-I—l) ( ?4_1) (42)

. 1 _ )
where ¢ is known and where ., = ; at each step.

The iteration process is stopped when ?:'11 o at each step. Having

developed a numerical scheme to find , we must now show that the method

converges. It is assumed that  satisfies the Lipschitz condition.

() ) (43)

Then for convergence it is necessary that
J+1 ?:—11 J+1 ;L-|-1 1 (4 4)
Using equation (4.2) and (4.4), we obtained

. n+1 o . . n
Jt+1 j+1 Jt+1 Jt+1 741



which from equation (4.3) gives

41 5(1 it1) i 4 (46)

Hence for convergence

1 ) 1 (47)

Do |

which gives a bound on the size of h as % where A is the Lipshitz constant.
The Lipshitz constant A is dependent on the function ( ). If ( ) is a linear

function such that ( )= | then

- (4.8)

which gives the Lipshitz constant A as . If ( ) is a non-linear function then

the Mean value theorem is used to determine A.

() (4.9)

giving a bound on the Lipshitz constant A as A ().

We now continue by developing a numerical scheme to solve the remaining

J+1 B n 4 J 0
2 J+1

J+1 J J i g J+1 J+1 g+l 0



iterations for the value of r with two initial guesses and evaluating L and 6
respectively for each guess. If the end condition 6(7T) = 1 is not satisfied, a
Secant method is used to update the value of r, which is then used to recalculate

the value of L and # until the end condition on # is satisfied. r is updated by

gt g ST =) (4.12)

g(rm) —g(rm=1)

stopping only when r"*! — ™ is small enough. The function ¢(r") is defined to

force the end condition §(7') = 1; hence
g(r")y=0(T) — 1. (4.13)

The solutions found for w, L, # and r are now used in determining the nu-
merical solutions of the adjoint equations. Due to the interdependence of the

equations, the equations for Ag, A\ and A3 are solved simultaneously.

4.2 Solving the adjoint equations

The adjoint equations are equations (3.8), (3.9), (3.10) and (3.11). To begin
solving the adjoint equations f Ay, Ay and A3 the end conditions are used.

The numerical solution is found using the same technique as that used for
finding r, L and # and so only the outline is given here. Two initial estimates of
the constant Ay are obtained and equation (3.10) for Ay and equation (3.11) for
A3z are solved for these values, with only the conditions at t = T' being used. The

end condition on Az for ¢ = 0 is used in the secant update to give

A5(0)(A6 = A7)
A5(0) = A5 (0)

Mt =) — (4.14)

28



Equations (3.10) and (3.11) for Ay and A3 are again solved by using a trapezium

discretisation, working backwards in time from the final time ¢ = T', so that

(0 )+ B0 P) g Pl)
= (L4 50+ a) )

As

—h
;= 7()\2]%‘ + A2 Ljvr) + A (4.16)

It is now possible to solve equation (3.9) for A;; this is again done with a

trapezium discretisation, stepping back in time from ¢t = T to ¢t = 0. This gives

B (1+ %(1 - uj+1)Pl(wj+1)))‘1j+1

T R ) P w)

h (A ,u/(w]‘)[zj + )\2]+1N/(wj+1)[fj+1)

2 (1= 51— uj) P’ (w;))

hdo (i Li P (w)) + ujpr L P (wjsn)
2w0 (1= 5(1 = uy)P'(w;))

(4.17)

from which A{ can be found.

4.3 Ways of finding optimal solutions

A numerical method for finding the optimal control u, and hence the optimal
solutions to equations (3.2-3.5) and (3.8-3.11) is needed, assuming such an optimal
exists. To optimise the value of the control vector u, starting from an arbitrary
control vector, two methods have been tried, the projected gradient method, and
the conditional gradient method. The basic algorithms were taken from [1] and

adapted as necessary to suit this problem.

29



4.3.1 Projected gradient method

A basic outline to this method is shown in the flowchart in Fig 4.1 The new

approximation to the optimal control u* is chosen such that

Upew = Uold + Ste 4.18
ld pauolda ( )
where step is the step size, and % is specified by equation (3.12). If wyey, is

greater than one then it is set to the maximum value of one; similarly if u,,.,, is
less than zero then it is set to zero. If the value of r (which we wish to maximise)
has not increased, then the step size is halved and the process of finding a new

control u is repeated until r has increased in value. The adjoint variables are

oH
Unew

then evaluated for the new control, as is , which is used to determine if the

solution has converged to the optimal control u. A new variable @ is evaluated

such that @ equals zero if

9H_ 5 ]ess than zero and one otherwise, where =22 is
AUnew OUnew
evaluated using equation (3.12). Convergence is then measured by the inner

product

oH .

which is determined numerically as

k=1 .
This maximises the first variationof the functional over all possible choices of wu.
It this is sufficiently small then the process is said to have converged and the
optimal control u has been determined; otherwise the step size is set to one again

and the whole process repeated until the optimal value of u is determined.
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JoH JoH
4’{ set Uold = Unews Told = Tnews EI — Dtmew

:
‘ step =1 ‘

:

calculate ey,
Upew = Uold + StEP

OH
duera

Is
Upew < 0.0,0r > 1.0

or between?
0.0 < Upey < 1.0

unew - unew

Unew = 0

Unew = 1

solve state equations

1no step = step/Z‘

yes
solve adjoint equations

:

calculate

oH

Unew

kalculate c=< aa—H, U — Upey >
Unew

Is
no
c < tol
yes
‘ U = Unew ‘

Figure 4.1: Projected Gradient Algorithim
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set U = Uy, = Up, Told = Tpew ‘

:

} step = Lup, = u,roig = Thew ‘

calculate u
u = (1 — step)u, + stepu,

:

solve state equations

no

step = step/2

yes
solve adjoint equations

:

calculate

oI
u

—_ oH
calculate ¢ =< 57, u, — up, >

Is

no

c < tol

Figure 4.2: Conditional Gradient Algorithim
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In this chapter the results from a series of test problems are presented. Due to the
difficulty in calculating analytical solutions even in the case of linear functions for
( )and ( ) theanalytical solutions have only been fully calculated for a linear
test problem. Tests are made which look at the sensitivity of the method to the
initial approximation of , the effect on the solution of the initial arbitrary control
and the effect of changing the length of the step taken in the gradient direction

on the rate of convergence and accuracy of the solution for both optimisation



are

i) (0), weight of at =0

ii) = final time

iii) The number of steps ( = )

iv) Two initial approximations to the value of

v) Two initial approximations to the value of ¢

vi) The switching point (zero to one) for the arbitrary initial control

which is not dependent on the optimisation method used. Points iv and vi are of

primary interest.

The numerical method developed solves eight first order differential equations

which are related in such away that seven of the eight differential equations are









time t =T, given by

P(w) = 0.0702w

p(w) = 0.01w

w(0) = 0.25

k= 0.0602

T = 100.

The analytical solution has already been calculated (chapter 3) for this problem
with both two and three phase solutions being found.

Projected Gradient Method

u switch point | no of iterations T Ao = A2(0)
t=15 266 -0.0009 | yes 0.0163
t=10 263 -0.0007 | yes 0.0166
t=15 254 -0.0005 | yes 0.0169
=20 224 -0.0004 | yes 0.0172
t=25 145 -0.0002 | yes 0.0175
t=30 1 0.0 yes 0.0176
t=35 19 -0.0002 | yes 0.0173
t=40 104 -0.0003 | yes 0.0170

Table 5.2: The effect of moving the switching point for the Projected gradient

method, N = 2000

The results in table 5.2 show that moving the switching point (;) has a quite
dramatic effect on the number of iterations required for the method to converge.

In all cases where a three phase solution is optimal, the projected gradient method

38






inability to cope with problems that have a possible three phase solution con-
taining a singular arc, which would render the method almost useless, or the

magnitude of T' causing some type of error propogation..

5.5 hanging the Step Length in the Gradient

Direction

The step length in the gradient direction directly concerns the optimisation meth-
ods. The aim is to try and improve the rate of convergence without loosing accu-
racy. The projected gradient method only was considered in detail. When using
the original step length of one the method appeared to be unusable, requiring
over eight hundred iterations to converge to a solution when the switching point
t, was not very close to the exact solution. This caused errors to effect the solu-
tion resulting in a sub-optimal solution being found. Increases in the step length
reduced the number of iterations required for convergence and the results are
shown in table 5.4 for a variety os switching times as it would be most unusual
for the initial guess to be almost identical to the exact solution.

It appears from the results in table 5.4 that very large increases in step length
are possible without the solution being effected, while reducing the number of
iterations required for convergence. However caution must be advised, as the step
length possible is dependent on the size of the functional gradient, which for this
example is very small. A step length of four would, however, be a good starting
point for most problems. The development of a scaling method to determine the

length of the step size based on the magnitude of the functional gradient would

40



be a useful addition to the numerical method and is an area of future work.
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Ch pter 6

Conclusions

This project set out to develop a numerical method that was capable of solving
the problem of finding optimal life cycle strategies for a given organism using the
model developed in [6]. The numerical method developed here provides a solution
to this problem.

The basic numerical method for solving differential equations (3.2-3.5) and
(3.8-3.11) is simple in concept and design and could easily be extended to deal
with further constraints in a more complex model. The two optimisation meth-
ods considered, the projected gradient and conditional gradient, have individual
problems which need further consideration. The projected gradient method is
very slow to converge if the arbitrary initial control has it’s switching point away
from the exact switching point. The conditional gradient method does not cope
very well with problems whose solution contains a singular arc, either failing to
converge or finding an alternative two phase solution if the switching point is
chosen to be in almost the exact position.

The linear problem looked at in chapter five converges to a slightly different
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solution for each switching point specified using the projected gradient method
with a maximum solution obtaining the value of » = 0 when the switching point
is chosen to be almost the exact solution. There are a number of possible reasons
why this may happen, it could be an inherent property of the problem caused by
the exact solution containing an almost flat basin around the minimum causing
the numerical method to converge to a series of sub-optimal solutions that are
very close to the optimal as can be observed in table 5.2 and table 5.4. The most
likely alternative is that the errors are a result of the convergence criteria not
being strict enough on the outer iteration loop. The reason for not making these
stricter lies in the number of iterations necessary for convergence being excessive
if the tolerance used is less than 0.005.

It would be interesting to test the method with some real data and compare
the strategies predicted by the numerical method and the observed strategies
used by the organism. This would not only provide a means of validating the
numerical method fully, but would also validate thoroghly the model developed

in [6].
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