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Abstract

The study of traffic flow as given rise to many models aiming to realisti-

cally predict the behaviour of traffic. Here we discuss a macroscopic method,

closely related to the Bando [1] microscopic model. A similarity solution is

found for the inhomogeneous case and the homogeneous case is solved for a

Riemann problem. We use Roe decomposition with the first order upwind

scheme to find a numerical solution and investigate the effect of the source

and relaxation terms on the system.
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Chapter 1

Introduction

Much interest has been focused on traffic flow models over the last few

decades as the amount of traffic on the roads continues to increase. Conges-

tion is becoming more of a problem and as a consequence the accident rate is

also increasing. Today there exist many schemes which not only aim to safely

control the traffic but also to maximise its flow. Consider, for example, the

variable speed limits on motorways. Information of the amount of vehicles

and the traffic conditions on the road is recorded and the speed restrictions

altered accordingly. Such schemes depend on the realistic modelling of the

flow of traffic, given certain road conditions, in order to accurately predict

the behaviour of the traffic over time.

Similarities can be drawn between the flow of traffic and that of a shallow

fluid and as such many models have been based on the shallow water equa-

tions. Chapter 2 describes some of these models and outlines the drawbacks

of such an assumption. Furthermore, we see in Section 3.1 that granular

avalanche flow can be described by similar means, and we can apply some of

the techniques involved in this field to our traffic model. Chapter 2 continues

with the derivation of the continuum BMW [5] model from the car-following

Bando [1] model.

In Chapter 3 we derive an alternative continuum model and, by introduc-

ing a moving coordinated system, we find a similarity solution to the system.
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The behaviour of this solution, as time increases, is discussed and we later

use this information as a comparison to our numerical scheme.

In Chapter 4 we consider the homogeneous system. Given sets of ini-

tial data with a single discontinuity we solve the Riemann problem of the

homogeneous system to determine the behaviour and type of discontinuity.

Chapter 5 develops the First Order Upwind Scheme with Roe decomposi-

tion and we use the results of the Riemann problem to compare the programs

output for the homogeneous system. The results for the homogeneous system

and the inhomogeneous system, including the similarity solution, follows in

Chapter 6.

Lastly, we draw conclusions on the method from the numerical results

and suggest improvements and areas of further study.

Throughout the text we take the word car to be synonymous with vehicle.
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2.1.1 The Bando Model

In 1995 Bando et al. [1] published a paper on The Dynamical Model

of Traffic Congestion and Numerical Simulation which aims to model the

“d56“d56“



Both models are studied with the initial data L = 200 and N = 100 where L

is the length of the circuit (assuming periodic boundary conditions) and N is

the number of cars on the road, and b = L
N

. This initial data produces a stable

model. The conditions for stability are analysed in [1]. A small perturbation

is introduced in the movement of the first vehicle and the solution is advanced

with time. The model with the optimal velocity function (2.3) generates

spontaneous congestion and appears to realistically describe actual traffic.

2.2 Macrosopic Models

Alternative models come from a continuum or macroscopic approach

which is an Eulerian, fluid-like approach. These models describe the av-

erage velocity and density of the traffic at a point. Unlike the car-following

method the movement of all the vehicles is described by two coupled partial

differential equations (except for the LWR model, see below), and is therefore

less computationally expensive to solve.

All continuum models consist of a conservation equation, namely

‰t + (‰v)x = 0; (2.4)

where v(x; t) is the velocity. The density ‰(x; t) of the traffic is the mass

of vehicles per kilometre at time t. This conservation equation conserves

the mass of vehicles in the system which is dependent on the flow (flux) of

cars entering, leaving and already in the system. It amounts to saying that

vehicles cannot appear or disappear. The conservation of mass equation is

then coupled with a second conservation of momentum equation (or dynamic

equation) dependent on the characteristics of the traffic. The non-linearity of

such a system automatically generates congestion given smooth initial data.

There are many macroscopic models that have been developed over the

last fifty years. In 1955 Lighthill and Whitham published two papers on kine-

matic waves. The latter paper [2] models the traffic solely by the conservation

law (2.4) where the velocity v is assumed to be a decreasing function of the
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density ‰. In the following year a similar paper was published by Richards

independent of Lighthill and Whitham, and the single equation model,

‰t + (‰V (‰))x = 0;

is known as the LWR model. Zhang [6], who gives a clear introduction to

macroscopic modelling, states that the LWR model is capable of describ-

ing some features of traffic such as vehicles approaching and leaving traffic

congestion where a shock forms, and the anisotropic nature of real traffic.

However, due to certain assumptions, the LWR model is incapable of de-

scribing other aspects of traffic flow, in particular flow through narrow spaces

(bottlenecks) or when the traffic stops and starts.

In the 1970s Payne and Whitham [3] developed a different approach to

the macroscopic model. They drew similarities between the flow of traffic and

fluid and based their model on the Navier-Stokes equations of incompressible

flow. The PW model is

vt + vvx =
V (‰) ¡ v

¿
¡ c(‰)

‰
‰x (2.5)

where ¿ , the relaxation term, is the driver’s reaction time, V (‰) is a velocity

function of the density and c(‰) is an anticipation term as described in [8].

However, the PW model can give negative speeds allowing the cars to travel

backwards. Also the assumption that traffic flow is fluid-like does not agree

with the anisotropic nature of physical traffic flow. This is because fluid

particles are isotropic and as such react equally to information from behind

as well as from in front.

The following years saw several attempts to improve the PW model. Mod-

ifications have been made by, amongst others, Kerner and Konhäuser [4] who

included a viscosity term to stop the formation of unrealistic shocks,

vt + vvx =
V (‰) ¡ v

¿
¡ c2

0

‰
‰x + „

vxx

‰
; (2.6)

and Zhang who replaced the constant, c2
0 in (2.6) with the function c(‰) in

order to solve the problem of negative velocities. These models all yield some
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unrealistic traffic properties due to the close link with fluid flow. Aw and

Rascle [7] develop a different second equation, Lagrangian in nature, in an

attempt to overcome this problem.

2.2.1 The BMW Model

In 2000 Berg, Mason and Woods [5] (BMW) proposed a continuum model

derived from the Bando car-following model (2.1) written in terms of the

density ‰ rather than the headway b. Usually the density is defined as

‰ =
1

b
: (2.7)

Berg et al., however, state that this definition is inaccurate. They consider

the open interval (1; y) with cars at positions x = 1; 2; 4; 8; : : : ; n; : : : so the

car at the point x has a headway b = x.

Assuming that (2.7) holds, ‰ = 1
x

and thus the number of cars in the open

interval (1; y) is Z y

1

1

x
dx = logey: (2.8)

From the above diagram we see that the headway of car n is b = y =

2n. Therefore, the number of cars in the interval is n = log2y: Hence the

assumption that ‰ = 1
b

is, in fact, incorrect by a factor of loge2. As illustrated

below, Berg et al. find an alternative definition relating the density to the

headway by calculating a higher order approximation to ‰(b).

Berg et al. state that a more accurate relation between ‰ and b is
Z xn+b

xn

‰(x; t)dx = 1;
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for all i where xi is the position of car i at a given time. They set up a

consistent mapping between the positions of the vehicles, fxig, and their

associated density function, ‰(x). This mapping is not unique. However,

given the position of the first car the inverse mapping is unique and it is this

which is required to derive a macroscopic momentum equation from (2.1).

Considering all cars on a road, Berg et al. expand (2.8) as

Znction,



and substituting in (3.8) to give

b … 1

‰
¡ ‰x

2‰3
¡ ‰xx

6‰4
+

‰2
x

2‰5
(2.12)

as an approximation to the headway in terms of the density.

Taking the derivative of (2.9) using Leibnitz’s Rule gives the conservation

equation (2.4) and hence v is consistent in the model. Equation (2.12) is then

applied to the Bando model (2.1) using

VB(bn) = VB

ˆ
1

‰
¡ ‰x

2‰3
¡ ‰xx

6‰4
+

‰2
x

2‰5

!

= VB

ˆ
1

‰

!
+

ˆ
¡ ‰x

2‰3
¡ ‰xx

6‰4
+

‰2
x

2‰5

!
V
′

B

ˆ
1

‰

!

= V̄ (‰) + V̄ 0(‰)

ˆ
‰x

2‰
+

‰xx

6‰2
¡ ‰2

x

2‰3

!
;

where V̄ (‰) = VB

‡
1
‰

·
which gives a second dynamic equation of type (2.1)

in the form

vt + vvx = a[V̄ (‰) ¡ v] + aV̄ 0(‰)

"
‰x

2‰
+

‰xx

6‰2
¡ ‰2

x

2‰3

#
; (2.13)

to be coupled with (2.4). Here the pressure-like term ‰x (cf. gas kinetics)



This chapter has given a brief insight to the car-following and continuum

methods of traffic modelling and, in particular, the derivation of the BMW

model from the Bando model. In the next chapter we discuss a limitation in

this derivation and consider a new conservation of momentum equation also

based on the Bando model.
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Substituting for v and replacing ¿ with t

@‰

@t
¡ v0

@‰

@»
+

@(‰v̆)

@»
+

@(‰v0)

@»
= 0

which reduces to
@‰

@t
+

@(‰v̆)

@»
= 0 (3.5)

since v0 does not depend on ».

We substitute for v in the second equation (3.2) of the system to give

v̆t + v0t + vvx + v0v̆x = a(V̄ ¡ v̆ ¡ v0)

and, using the relation for v0t above, this reduces to

v̆t + v̆v̆x + v0v̆x = ¡av̆ + Cbx:

After applying the transformation of variables (3.4)

@v̆

@¿
¡ @v̆

@»
v0 + v̆

@v̆

@»
+ v0

@v̆

@»
= ¡av̆ + C

@b

@»

and, again setting ¿ = t,

@v̆

@t
+ v̆

@v̆

@»
¡ C

@b

@»
+ av̆ = 0: (3.6)

To obtain a similarity solution we suppose that v̆ varies linearly with », i.e.

v̆ = »f(t) a 185.44 6.42 615such (3.6) becomes

»f 0 + »f 2 ¡ C
@b

@»
+ a»f = 0: (3.7)



Recall the conservation of mass equation after the change of variables

(3.5)
@‰

@t
+

@(‰v̆)

@»
= 0:

We replace ‰ by 1
b

giving

@b

@t
¡ b

@v̆

@»
+ v̆

@b

@»
= 0 (3.9)

and then substituting in for b, given in (3.8), where

@b

@t
=

»2

2C
(f 0 + f 2 + af)0 + b0

0

and
@b

@»
=

»

C
(f 0 + f 2 + af);

we next make our substitution for v̆ to obtain (3.9) in the form

»2

2C
(f 0 + f 2 + af)0 + b0

0 +
f»2

2C
(f 0 + f 2 + af) ¡ fb0 = 0:

This holds for all » if

b0
0 = fb0 (3.10)

and

(f 0 + f 2 + af)0 = ¡f(f 0 + f 2 + af) (3.11)

Rewriting equation (3.10) in terms of ‰0 where b0 = 1
‰0

gives

‰0
0 = ¡f‰0 (3.12)

which we substitute into (3.11) and integrating with respect to t, we arrive

at

f 0 = A‰0 ¡ f 2 ¡ af (3.13)

where A is a positive constant of integration. This system of two ordinary

differential equations has a fixed point at (‰; f) = (0; 0). We plot ‰0 against

f to investigate their behaviour as time t ! 1. Hence we can deduce the

behaviour of the system as time evolves.
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rho 0

f

rho 0

f

Figure 3.1: Plot of f ′ = A
‰0

¡ f2 ¡ af = 0. The shaded region indicates where f ′ < 0.

Since both f and ‰0 are positive ‰0
0 is always negative. The shaded area in



Chapter 4

The Homogeneous System

In this chapter we look at the case when a = 0. This homogeneous

sub-problem of (3.2) is

‰t + (‰v)x = 0

vt + vvx = Cbx

; (4.1)

where the zero relaxation term a means there is no source term (V̄ ¡ v) . In

Section 4.1 we find a solution to a Riemann problem of the system. In order

to do this we start by writing the system in conservation form



and simplifying, we obtain

(‰v)t + (‰v2)x = ‰a(V̄ (‰) ¡ v) + ‰Cbx:

We now assume that the usual relation between the density and the headway

holds, i.e. b = 1
‰
. Therefore, bx = ¡‰x

‰2 and so ‰bx = (ln ‰)x. Substituting



such that (A ¡ ‚kI)rk = 0, for k = 1; 2. The system is non-linear and, in

general, an analytic solution of such is not possible. However, we can find

an exact solution of the Riemann problem, consisting of initial data giving a

single discontinuity between two constant states.

4.1 The Riemann Solution

We now consider the non-linear, homogeneous system (4.1) which gives

R = 0 in the conservation form. The eigenvalues are real and distinct thus

ensuring strict hyperbolicity.

Given the initial data at time t = 0

u =

8
<
:

uL x • 0

uR x ‚ 0

there is a discontinuity at the origin. We decompose the initial discontinuity

into n (here n = 2) separate waves between n + 1 constant states. Each new

k-wave, with k = 1; : : : ; n



uR =

0
@ ‰R

(‰v)R

1
A =

0
@ 0:6

0:09

1
A

where 0 • x • 30 so the discontinuity lies at x = 15. This initial data is used

in [8] to test the Riemann problem for the PW, Zhang and Aw and Rascle

models. Here we have normalised ‰ and v such that ‰ 2 [0; 1] and v 2 [0; 1].

The initial data models a situation where traffic travels from low density to

high density, for example when approaching congestion.

The Rankine-Hugoniot jump condition is

f(u) ¡ f(û) = s(u ¡ û);

where the fixed state û is either uL or uR, f is the flux and s is the shock

speed. Applying this to our system yields the two equations

‰v ¡ ‰̂v̂ = s(‰ ¡ ‰̂)

‰v2 + C ln ‰ ¡ ‰̂v̂2 ¡ C ln ‰̂ = s(‰v ¡ ‰̂v̂);

giving shock speeds

s =
‰v ¡ ‰̂v̂

‰ ¡ ‰̂
;

where v is given by solving the quadratic

(‰v ¡ ‰̂v̂)2 ¡ (‰v2 + C ln ‰ ¡ ‰̂v̂2 ¡ C ln îs either



0.2 0.4 0.6 0.8 1
rho

0.05

0.1

0.15

0.2
rho v

Figure 4.1: The two curves given by (4.5)

through uL.

0.2 0.4 0.6 0.8 1
rho

0.05

0.1

0.15

0.2
rho v

Figure 4.2: The two curves given by (4.5)

through uR.

will, therefore, ensure smooth Hugoniot curves by selecting the correct sign.

At each state, uL or uR, there are two possible Hugoniot curves. We

require the k-Hugoniot curve, vk, that is tangent to the k-eigenvector, rk, at

û. Figures 4.3 and 4.4 show the two possible smooth Hugoniot curves and

the eigenvector, rk, at each end state û. The red lines show the eigenvector,

rk, the green and blue lines show the Hugoniot curves where v takes the

negative and positive signs respectively.

Figure 4.3: The solid green line indicates

the correct 1-Hugoniot curve which is tan-

gent to the 1-eigenvector at uL.h

0.2 0.4 0.6 0.8 1
rho

0.05

0.1

0.15

0.2
rho v

Figure 4.4: The solid blue line indicates

the correct 2-Hugoniot curve which is tan-

gent to the 2-eigenvector at uR.

The 1-Hugoniot curve at uL is

v1 = v̂ ¡ sgn(‰ ¡ ‰̂)

s
C(ln ‰ ¡ ln ‰̂)(‰ ¡ ‰̂)

‰‰̂

20



and at uR the 2-Hugoniot curve is

v2 = v̂ ¡ sgn(‰ ¡ ‰̂)

s
C(ln ‰ ¡ ln ‰̂)(‰ ¡ ‰̂)

‰‰̂
:

Since the two states do not lie on the same Hugoniot curve the discontinu-

ity is not a single shock, but rather the end states uL and uR are connected by

valid waves via uM some intermediate state. In order for the Hugoniot curves

to be valid we require the k-characteristic fields to be genuinely non-linear,

that is

(ru‚k):rk(u) 6= 0

for all u. The system yields

(ru‚1):r1(u) =

ˆ
1

2

s
C

‰3

1

‰

!
:

ˆ
1 v ¡

s
C

‰

!T

= ¡1

2

s
C

‰3
:

Similarly

(ru‚2):r2(u) =
1

2

s
C

‰3

and hence it is genuinely non-linear. Incidently, if (ru‚k):rk(u) = 0 then we

have a contact discontinuity. We now calculate where the Hugoniot curves

are valid by using Lax’s entropy condition at each constant end state

‚1(uL) > s > ‚1(u) and ‚2(uR) < s < ‚R(u)

which holds for hyperbolic, genuinely non-linear conservation laws. Figures

4.5 an 4.6 are plots of ‚k(û) (in red), s (in green) and ‚k(u) (in blue). Figure

4.5 shows the 1-shock is entropy violating to the left of uL, where the lines

are dashed, and a valid shock to the right where the lines are solid. Figure

4.6 shows a similar situation for 2-shock at uR.

We also find the k-Riemann invariants and thus the rarefactions/ simple

waves at û. The k-Riemann invariants are smooth functions wk(u) such that

ruwk(u):rk = 0

giving for the 1-shock



0.2 0.4 0.6 0.8 1

Figure 4.5: The entropy condition holds

to the right of uL

0.2 0.4 0.6

Figure 4.6: The entropy condition holds

to the right of uR

We seek solutions of (4.7) such that w1 is constant on the characteristics, i.e.

d(‰v)

d‰
¡ ‰v

‰
+

s
C

‰
= 0:

This is solved using the integrating factor e
R

1
ρ

d‰ = 1
‰
, to give the 1-Riemann

invariant

w1 = v ¡ 2

s
C

‰
:

We can solve for v by setting

w1 = v ¡ 2

s
C

‰
= constant = v̂ ¡ 2

s
C

‰̂

which gives v at uL as

vw1 = ‚1(uL) + 2

s
C

‰
:

Similarly the 2-Riemann invariant is

w2 = v + 2

s
C

‰

and v at uR is given by

vw2 = ‚2(uR) ¡ 2

s
C

‰
:
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In the figures below the rarefactions are represented by dashed curves and

the shocks by solid curves. The 1-shock and vw1 are in green and the 2-

shock and vw2 are in blue. The black points give the end states. Figure 4.9

shows the admissible rarefactions, given by vwk, and shocks, vk, and where

they cross at uM the red point. Figure 4.10 is an enlargement of the region

containing uM and uL where Mathematica finds uM = (0:62 0:10)T . The

left hand state uL is connected to the right hand state, uR by two Hugoniot

curves which intersect at uM .

0.2 0.4 0.6 0.8 1
rho

0.1

0.2

0.3

0.4

0.5

rho v

Figure 4.7: The intersection of the valid

Hugoniot curves and rarefaction waves con-

necting uL to uR via uM .

0.560.580.60.620.640.660.680.7
rho

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2
rho v

Figure 4.8: Close up of the intersection at

uM .

4.1.1 Different Initial Data

We consider the situation where traffic moves away from congestion and

high density towards lower density, for example when leaving a traffic jam or

as traffic lights turn green. This circumstance uses the initial data where uL

and uR are reversed, and so

uL =

0
@ ‰TJ/F2 11.95 Tand10)4-332(a 7.97 TfR7.47 -99 TD[(to)]TJ9 3]TJ68 7.97 Tf  20.51 TD[(0)]A7.47 -1.79 TD[(R)]/F1.9-2/F3 .95 Tf 9.57 1.8 TD[(=)]TJ2F9 9.96 Tf 12.43 20.51 TD[(0)]TJ 0 -1m /Im9 Do Q 03237 11.95 Tf5 0 TD[(62)-978(0)5TJ/F 11.95 Tf 23.72 0 TD[(:)]TJ/F2 11.92gestion/F13am)-286(or)]5 0 TD[(62)-978(0)5TJ64 11.95 Tf 29.25 0 TD[(:)]TJ/F2 11.952f 9.57 1.8 TD[(=)6J/F2BT/678 7.97 Tf  20.51 TD[(0)]A7.47 -4.79 TD[(R)]TJ/ T-2/F3 .95 :nitial Data



0.2 0.4 0.6 0.8 1
rho

0.2

0.4

0.6

0.8

1
rho v

Figure 4.9: The intersection of the valid

Hugoniot curves and rarefaction waves con-

necting uL to uR via uM .

0.18 0.19 0.2 0.21
rho

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2
rho v

Figure 4.10: Close up of the intersection

at uM .
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Chapter 5

The Numerical Method



Recall (4.4) giving the Jacobian matrix A, we set

Ã =

0
@ 0 1

C
‰̃

¡ ṽ2 2ṽ

1
A

where we assume ṽ2 = ṽ2 and find expressions for the averages ṽ and ‰̃ in

terms of v and ‰. The method considers average values, denoted by tilde,

which satisfy the discrete system taken in each cell. These averages are not

unique and therefore the above assumption need not hold. It can, however,

be shown to be correct for our system. Equation (5.1) then gives

∆(‰v) = ∆(‰v)

and ˆ
C

‰̃
¡ ṽ2

!
∆‰ + 2ṽ∆(‰v) = ∆(‰v2 + C ln ‰):

The second equation holds if

C

‰̃
∆‰ = C∆(ln:



Expanding (‰RvR ¡ ‰LvL) and taking the negative root we obtain

ṽ =

p
‰RvR ¡ p

‰LvLp
‰R +

p
‰L

:

Next we seek the Roe averages fĩk and fl̃k where k = 1; 2, such that

∆u = Σ2
k=1fĩkr̃k and ∆f = Σ2

k=1fĩk‚̃kr̃k (5.3)

and the right hand side vector

R(u) = Σ2
k=1fl̃krk (5.4)

where

R(u) =

0
@ 0

a‰(V̄ (‰) ¡ v)

1
A

and ‚k = ṽ+
¡

q
C
‰̃

are the eigenvalues and rk =
‡
1; ‚̃k

·T
are the correspond-

ing eigenvectors. From the first equation of (5.3) we obtain

fĩ1 + fĩ2 = ∆‰

and

(fĩ1 + fĩ2) + (fĩ2 ¡ fĩ1)

s
C

‰̃
= ∆‰v:

Therefore, the fĩk



5.2 The Roe Scheme

The first order upwind scheme with Roe decomposition is known as the

Roe scheme. A numerical scheme approximates the solution to a problem in

(x; t







cars approach from behind and must slow down sooner, thus we see the

congestion (high density) propagates backwards along the road. As the cars

enter the congested region the density increases slightly, where drivers ‘ease

off’ on the brakes, so deceleration is slower, and thus the headway of the cars

approaching from behind decreases. The cars then slow down to the lower

constant velocity. At the right hand end all the cars are travelling at a low

speed because the headway is small.
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Figure 6.1: a = 0; ∆x = 0:1, ∆t = 0:001. Every 200th time step to t = 1:
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Figure 6.2: a = 0, ∆x = 0:5, ∆t = 0:01. Every 200th time step to t = 10:
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Figure 6.3: a = 0; ∆ x = 0:5; ∆t = 0:01. Every 2000th time step to t = 100:

6.2 The Inhomogeneous System

Now we consider the inhomogeneous system

‰t(‰v)x = 0

vt + vvx ¡ Cbx = a(V̄ (‰) ¡ v):

We run two programs, one where V̄ is constant and the second where it is a

function of ‰:

6.2.1 Constant V̄

The program was run with ∆t = 0:01 for 1000 time steps and various

values of V̄ and a. Figure 6:4, where a = 0:1; V̄ = 0:9 and ∆x = 0:3

(therefore, only 60 space steps), shows the constant velocity to the left of the

discontinuity increasing with time as cars here can accelerate, uniformly in

space, with each time step to the optimal velocity, V̄ , since there is no change

in the headway. Here the density is low and so the headway is large. When

the vehicles reach the congestion they decelerate rapidly as before. Now,

however, the density does not propagate backwards. The cars at the right

hand state increase their constant velocity, with each time step, towards V̄

The cars behind these adjust their speed and start to accelerate to reach the
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same velocity. This causes the region of high density to move forward with

each time step.

Figure 6:5 refines the space step size of the previous figures and gives a

smoother representation. Figure 6:6 is the case when a = 0:5 and so the

source term has a larger effect on the solution. The density behaves like

the previous situation after a large time, as we would expect. The smooth



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

v
Figure 6.5: a = 0:1, V̄ = 0:9; ∆x = 0:1, ∆t = 0:01. Every 200th time step to t = 10:

Figure 6.6: a = 0:5; V̄ = 0:9; ∆x = 0:3; ∆t = 0:01. Every 200th time step to t = 10:

has been normalised and so ‰ < 1 is not a physically possible solution. As a

increase the maximum values of v and ‰ do also.

6.3 The Similarity Solution

We run the inhomogeneous program with x = » and v = v̆. This gives

the system

‰t + (‰v)» = 0

vt + vv̆» ¡ Cb» = a(V̄ ¡ v̆)
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Figure 6.7: a = 0:1; V̄ = 0:5; ∆x = 0:3; ∆t = 0:01. Every 200th time step to t = 10:
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Figure 6.8: a = 0:1; V̄ = 0:9; ∆x = 0:3; ∆t = 0:01. Every 200th time step to t = 10:

and setting V̄ = 0 we can compare the results with the similarity solution.

In Figure 6:9 we see that given any initial data the solution of v̆
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Figure 6.9: a = A = 1; V̄ = 0; ∆» = 0:1; ∆t = 0:01. Every 200th time step to t = 10:
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Chapter 7

Conclusions and Further Work

The aim of this dissertation has been to develop a macroscopic traffic

flow model from a microscopic model and to solve it numerically. We based

our dynamic equation on Bando [1] and introduced an extra term governing

change in the headway.

A moving coordinate system is used to find a similarity solution to the

inhomogeneous model. The behaviour of the solutions approach the fixed

point (‰0; f) = (0; 0) as t ! 0. Thus the source term has a large effect on

the model causing the speed of the cars to approach the optimal velocity V̄ .

These results are also given by the numerical method.

The homogeneous system is considered with initial data giving a single



istically the optimal velocity is dependent on the density. Since, in constant

density, it would be foolhardy to drive at the same optimal velocity for con-

gested traffic as one would in light traffic flow.

Another refinement is to assume that C is also a function of the density ‰

and to develop a system that switches between two sub-problems at a defined

value of the headway. By these means we would hope to model the way the

traffic accelerates in low density and maintains a lower steady speed in high

density.
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