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Abstract

Data Assimilation is the incorporation of observational data into a numerical model to pro-

duce a model state which accurately describes the observed reality. It is applicable to many

dynamical systems as it can provide a complete set of accurate initial conditions for input

into a numerical model. One situation where data assimilation is used is numerical weather

prediction, where the size of the state is very large (of order 107).

In this thesis we consider a data assimilation scheme known as the particle �lter. The

particle �lter uses information on the probability density of the model to forecast an estimate

of an ensemble of model forecasts, the state and its uncertainty. Unfortunately the number

of ensemble members required to accurately forecast the state grows exponentially as the

size of the state increases. For this reason the idea of mode tracking is introduced. When

mode tracking, the state is split into two sections. One section is forecast using the particle

�lter, the other is treated so its values are equal to the mode of the marginal pdf. Previous

work has shown that introducing mode tracking to the particle �lter reduces the number of

particles required to achieve a given �lter accuracy. This hypothesis is tested by solving the

stochastic Lorenz equations using both the particle �lter and particle �lter with mode tracking

with varying numbers of particles. For both the particle �lter and particle �lter with mode

tracking it is found that increasing the number of particles increases the accuracy of the the

solution obtained. However contrary to previous work it is found that for small ensemble sizes

the particle �lter can provide more accurate results than the particle �lter with mode tracking.

The results appear to be sensitive to the speci�cation of the observation and model errors.



Contents

List of Figures vi

List of Tables vii

List of Symbols viii

List of Abbreviations xi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Principal Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Data Assimilation 5

2.1 Data Assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Ensemble Data Assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 The Prior and Sampling From It . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Sequential Importance Sampling . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2.1 The Forecast Step and Bayes Theorem . . . . . . . . . . . . . 11

2.3.2.2 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Problems with Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 14

i



2.3.4 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4.1 Strati�ed Resampling . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.5 Summarising the Particle Filter . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.6 Properties of the Particle Filter . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 The Particle Filter with Mode Tracking . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Initialisation and Importance sampling . . . . . . . . . . . . . . . . . . . 23

2.4.2 Mode Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Weighting and Resampling . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 The Model 26

3.1 The Lorenz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The Euler-Maruyama Approximation . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Convergence and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Convergence of the EM Scheme . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Stability of the EM Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 The Euler-Maruyama Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Sensitivity to Noise Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Implementation and Diagnostics for the PF and PFMT 40

4.1 The Particle Filter Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 The Particle Filter Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 The PFMT code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Root Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ii



4.3.2 Rank Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2.1 Creating the Rank Histograms . . . . . . . . . . . . . . . . . . 44

4.3.2.2 Interpreting Rank Histograms . . . . . . . . . . . . . . . . . . 44

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 The Particle Filter Solutions 46

5.1 Lorenz Trajectory solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Results for N = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.2 Results for N = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.3 Results for N = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.4 Results for N = 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Root Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Rank Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Particle Filters with Mode Tracking 58

6.1 Splitting the State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.1 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.2 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Changing the number of particles . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.2 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Sensitivity of MT to error variances . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.1 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.2 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusion 69

7.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

iii





List of Figures

2.1 A schematic of the sequential DA scheme . . . . . . . . . . . . . . . . . . . . . 6

2.2 Schematic of ensemble DA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 A schematic of one iteration of the particle �lter process. . . . . . . . . . . . . 9

2.4 Map of the corridor used for the robot experiment . . . . . . . . . . . . . . . . 13

2.5 Figures showing the position of the robot . . . . . . . . . . . . . . . . . . . . . 13

2.6 A plot of the number of occurrences of the maximum weights in particular

intervals. Figure from Snyder et al. [2008] . . . . . . . . . . . . . . . . . . . . . 15

2.7 Figures showing the position of the robot . . . . . . . . . . . . . . . . . . . . . 16

2.8 Maps showing the possible location of the robot after he has moved 5m (a),

more than 5m (b), 55(m). Figure from Fox [2003] . . . . . . . . . . . . . . . . 17

2.9 Number of Particles Required required . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 The stability region of Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Solution to stochastic Lorenz equation with no added noise. . . . . . . . . . . . 32

3.3 EM solution to stochastic Lorenz equations. . . . . . . . . . . . . . . . . . . . . 33

3.4 Two di�ering EM solutions of the Lorenz equations from identical initial con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Two similar EM solutions of the Lorenz equations from identical initial conditions 35

3.6 Graph showing how the size of the timestep a�ects the error . . . . . . . . . . . 37

3.7 A�ect on solution of changing B . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Common rank histograms obtained. . . . . . . . . . . . . . . . . . . . . . . . . 44

v





List of Tables

2.1 A simple DA algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The sequential importance sampling algorithm. . . . . . . . . . . . . . . . . . . 11

2.3 The Strati�ed Resampling Algorithm. . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 The Bootstrap Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 The PFMT Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii





R Observation error covariance matrix

t (subscript) Time

t Time

T (superscript) Truth

w Weight

~w Ordered weight

W Value of Wiener process

x Lorenz Variable

X Stochastic Lorenz variable

�x Particle mean for x dimension

y Lorenz Variable

Y Stochastic Lorenz variable

�y Particle mean for y dimension

z Lorenz Variable

Z Stochastic Lorenz variable

�z Particle mean for z dimension

Greek

� Order of weak convergence

� Lorenz parameter

� Timestep size

� (superscript) Timestep size

� Error

"t Observation error

 Order of strong convergence

� Model error

ix



� Complex number

� Lorenz parameter

� Lorenz parameter

 State vector

	 State vector

~	 Numerical approximaion

	r Part of the state to be mode tracked

	s Part of the state not to be mode tracked

! Normalised weight

x



List of Abbreviations

DA Data Assimilation

EM Euler-Maruyama

EnKF Ensemble Kalman Filter

KF Kalman Filter

LHS Left hand side

MT Mode Tracking

NWP Numerical Weather Prediction

pdf Probability density function

RHS Right hand side

PF Particle Filter

PFMT Particle Filter with Mode Tracking

RH Rank Histogram

RMSE Root Mean Squared Error

SIS Sequential Importance Sampling

xi



Chapter 1

Introduction

1.1 Background

Data Assimilation (DA) is the incorporation of observational data into a numerical model to

produce a model state which accurately describes the observed reality [Kalnay, 2002]. It is

applicable to many situations as it provides a complete set of accurate initial conditions for

input into a numerical model.

One situation where DA is used is numerical weather prediction (NWP) [UKMO, 2009].

To create an accurate weather forecast a numerical model must be run from accurate initial

conditions. We have some information in the form of observations taken by satellites, radioson-

des and weather stations etc., however these observations may contain measurement errors.

There are also some areas of the globe where observations cannot be made. DA combines a

previous weather forecast along with these incomplete observations to provide a complete and

accurate set of data. These are initial conditions from which the forecast is run.

Unfortunately the exact state of the atmosphere cannot be determined, and just small

perturbations in these initial conditions can cause large di�erences in the forecast. We must





MT is combined with the PF to produce a ensemble DA scheme that allows the accuracy of

the PF but is less computationally costly [Vaswani, 2008].

1.2 Aims

The aims of this dissertation are:

• To investigate the particle �lter (PF) and the associated problem of ensemble size.

• To investigate the use of mode tracking (MT) with the particle �lter (PFMT) and

consider whether this can help to reduce the number of particles required.

The aims are achieved by implementing the PF with a simple model, carrying out experiments

with varying numbers of particles and comparing the results. The same model is implemented

in the PFMT and experiments are carried out to show how use to MT e�ectively. This includes

determining the best way to split the state, and �ltering varying numbers of particles. The

results of the PF and PFMT are compared to show if MT can help reduce the number of

particles required.

1.3 Principal Results

The principal results from this thesis are:

• The PF produced very poor results when too few particles are used. The mean of the

pdf lies far from the truth and there is not enough variability in the particles. As the

number of particles is increased the mean of the pdf becomes much closer to the truth

and the ensemble variability is improved (see Chapter 5).

• The best results from the PFMT are seen when both the x and y dimensions are mode

tracked. MT only the z dimension produces the worst results. As with the PF the

PFMT the accuracy of the solution increases as the number of particles is increased,

however the variability properties of the PFMT are worse than the PF (see Chapter 6).
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• The most surprising result is that for small numbers of particles (N = 5 and N = 50) the

PF performs better than the PFMT. It is only when the number of particles is increased

to N = 500 that the results from the PFMT are usually better than the PF results. This

performance of the PFMT appears to be rather sensitive to the choice of observation

and model noise (see Chapter 6).

1.4 Outline

We begin this thesis by reviewing previous work that considers DA and PF. This previous

work and a more detailed investigation in to how PFs work is considered in Chapter 2. In this

chapter we also consider the idea of MT introduced by Vaswani [2008]. In Chapter 3 the model

system used for experiments in this thesis is discussed. The initial results from the numerical

scheme are also shown. Chapter 4 describes our implementation of the PF and PFMT code.



Chapter 2

Data Assimilation

In this chapter previous work on the mathematics of data assimilation (DA) is considered.

We start by considering conventional DA [Kalnay, 2002] then ensemble DA. After this we

discuss the idea of particle �lters (PF) [van Leeuwen, 2009][Doucet et al., 2000a] and some

of the problems associated with them [Snyder et al., 2008]. Finally we consider how the

introduction of mode tracking (MT) [Vaswani, 2008] into the PF can overcome some of the

problems encountered.

2.1 Data Assimilation

We �rst consider the linear dynamical system,

 t+1 = F t + �t; (2.1)

where  t is the state vector of length n at time t, F is a constant matrix of size n× n and �t

is the model noise at time t. We assume we have observations dt at time t, these observations

are related to the state of the system by,

dt = H t + "t; (2.2)

where dt is the observation vector of length p at time t, "t is the observation error (a vector

of size p) at time t and H is known as the observation operator, a matrix of size p × n. The

5



observation operator maps model space to observation space. In the simple case of direct

observations considered here, it picks out the components of the  vector that corresponds to

the the observations we have.

Next we consider a qualitative description of the DA process. A schematic picture is seen

in Figure 2.1.

Figure 2.1: A schematic of the sequential DA scheme

Figure 2.1 shows that DA works by taking dt, an observation at time t and a model

prediction,  bt , known as the background.  bt and dt are combined to produce an analysis

 at , this value is then forecast to the next timestep using equation 2.1. This forecast value

becomes the new background state. The process of combining observations and backgrounds

to create an analysis which is then forecast is repeated until the time at at which the model

state is required.

The Data Assimilation Algorithm [Swinbank et al., 2003]

1. Calculate the analysis:

 at+1 =  bt+1 +K(dt+1 −H bt+1),

where K (of size n× p) is known as the gain matrix, and is prescribed by the

particular assimilation scheme in use.

2. Given the dynamical system in 2.1 forecast the analysis using

 bt+1 = F at + �t

to obtain a background state at the next time.

Table 2.1: A simple DA algorithm.
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The equations of the assimilation scheme can also summarised in a simple algorithm [Swin-

bank et al., 2003], this is seen in Table 2.1.

Although a fairly simple idea DA can be a very computationally costly exercise, this is

due to the large state spaces that are often dealt with. For NWP the size of the  a and  b

vectors is of the order 107, with the d vector being of size 106 [Nichols, 2003].

2.2 Ensemble Data Assimilation

So far only one initial state has been assimilated. Unfortunately the exact state of the atmo-

sphere often cannot be determined and as small perturbations from the set of conditions can

lead to a large change in the outcome of the forecast it is important that uncertainty in our

initial conditions is taken into account. To do this a number of initial states are considered

and each one is assimilated. Each of these di�erent states is known as an ensemble or parti-

cle. Figure 2.2 shows a number of these ensembles being forecast from the initial probability

density function (pdf) to give a pdf at the forecast time.

This forecast pdf has uses throughout DA and we would like to have some idea of it at each

Figure 2.2: Schematic of ensemble DA: Each ensemble is forecast from slightly di�erent initial

conditions. The red line represents the initial pdf. The grey lines are the trajectories of the

ensembles sampled from the initial pdf, the black line is the ensemble mean trajectory. The

blue line represents the forecast pdf. Figure from Bannister [2009]
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time step. An assimilation method known as the Kalman �lter (KF) [Kalnay, 2002] keeps the

pdf information during the assimilation. At each timestep the pdf of the analysis is forecast

as well as the analysis. The ensemble Kalman �lter (EnKF) [Evensen, 2006] assimilates an

ensemble of states and these forecasts are used to determine the background pdf at the new



(a) (b)

(c) (d)

(e)

Figure 2.3: A schematic of one iteration of the particle �lter process. See text for details.
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Now we have seen qualitatively how a PF works we describe the equations used in the

algorithm, following van Leeuwen [2009].

2.3.1 The Prior and Sampling From It

To start the PF we require a prior pdf, p( 0). Here  0 is the state vector of length n at the

initial time. Due to the vast amount of data required for situations such as NWP it is di�cult

to store all the information associated with p( t). There are many values associated with this

pdf including is mean, variance and other moments. Both van Leeuwen [2009] and Doucet

et al. [2000a] consider the mean of the pdf to simplify the handling of p( ). The mean of a

function, f , of the state is given by,

f( ) =
Z
f( )p( )d : (2.3)

However this quantity may still be di�cult to calculate due to the large size of the state. To

overcome this we sample from the initial pdf to gain a set of N particles, { i}Ni=1 ∼ p( t).

This allows us to represent p( ) as

p( ) =
1
N

NX
i=1

�( −  i); (2.4)

. where � is the Dirac delta function. The mean can now be represented by

f( ) ≈ fN ( ) =
1
N

NX
i=1

f( i): (2.5)

2.3.2 Sequential Importance Sampling

Now the prior pdf has been considered and sample of particles has been taken from it we must

consider how to deal with these particles. The second stage in the PF algorithm is known

as sequential importance sampling (SIS). SIS is the method of forecasting these particles,

weighting them according to their position relative to the observations and then normalising

these weights. The SIS algorithm is summarised in Table 2.2. We de�ne the notation seen

in Table 2.2, and later in Table 2.4, as follows.  0:k = { 0; :::;  t} represents the model

states up to time t. d0:k = {d0; :::; dt} represents the observations up to time t. �( 0:k|d1;k),

10



The Sequential Importance Sampling Algorithm [Doucet et al., 2000b]

For times k = 0; 1; 2; ::::

1. For i = 1; :::; N , sample  ik ∼ �( k| i0:k−1; d0:k) and  0:ki = ( i0:k−1;  
i
k).

2. For i = 1; :::; N , evaluate the importance weights up to a normalising constant:

wik = wik−1

p(dk| ik)p( ik| ik−1)
�( k| i0:k−1; d0:k)

(2.6)

3. For i = 1; :::; N , normalise the importance weights:

!ik =
wikPN
j=1w

j
k

(2.7)

Table 2.2: The sequential importance sampling algorithm.

the distribution of the model states up to time k given the observations up to time d, is an

arbitrary importance sampling distribution and is known as the importance function. This

follows the notation from Doucet et al. [2000a]. The steps of the algorithm are describ1 Tf3937.9796ns,



the forecast time. To do this we make use of Bayes Theorem.

Theorem 1 Bayes Theorem

p( |d) =
p(d| )p( )

p(d)
(2.8)

So if  is the model state and d the observations then Bayes Theorem tells us that the prob-

ability of the model state given the observations is equal to the probability of the observations

given the model state multiplied by the probability of the model state divided by the probability

of the observation. Here p(d) is a normalisation factor.

If the importance function is chosen to be the prior distribution, then by substituting the

summation notation in equation (2.4) into Bayes Theorem we obtain equation 2.9,

p( t|dt) =
NX
i=1

wi�( t −  it); (2.9)

where wi is the particle weight. We can now calculate the probability of the model state given

the observations. The particle weights, wi, can be used to give us information on how close

each of the particles is to the observation, this is discussed in the following section.

2.3.2.2 Weighting

We are interested in knowing how close each particle,  it, to the observation at this time. For

this reason the wit from equation (2.9) is known as the weight at time t of particle  it.

wit =
p(dt| it)PN
j=1 p(dt| 

j
t )
; (2.10)

However we must remember that these weights are only for when the importance function

is equal to the prior pdf. Weights for a general importance function are shown in equation

(2.6) in Table 2.2.

This weighting of the particles gives the relative importance of each particle in the PDF. It

is important as we may �nd that some of the forecast values do not �t with the observations.

As weighting represents the importance of the particles, particles that fall in areas of high

probability, i.e. near an observation, are given a weighting to make them more important
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where as particles that are in areas of low probability are given a low weighting. We consider

an example from Fox [2003] to see how weighting works.

Example 1 Weighting Example

A robot is somewhere on the map seen in Figure 2.4 and he is trying to �nd his location.

Doors are shown on the map and the robot can recognise doors but he cannot tell the di�erence

Figure 2.4: Map of the corridor used for the robot experiment. The white areas represent the

corridors where the robot can walk. Figure from Fox [2003].

Figure 2.5: Figures showing the position of the robot, graphs of the associated probability of

his position and graphs of the particles representing the possible location of the robot. The

top of both plots (a) and (b) show the location of the robot relative to the doors. The x vs w

plots in (a) and (b) show the distribution of particles across the location seen and their relative

weights. Here we use the notation as in Fox [2003], wi represents thew weight of particle i.

Here x is the equivalent of  , the state and z is the observation. The remaining plot in (b)

shows the observation likelihood p(d| ). Figure from Fox [2003]
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Figure 2.7: Figures showing the position of the robot, graphs of the associated probability of

his position and graphs of the particles representing the posible location of the robot. Notation

and plots as in Figure 2.5. Figure from Fox [2003]

has increased the number of particles where the weights had been increased and decreased the



Figure 2.8: Maps showing the possible location of the robot after he has moved 5m (a), more

than 5m (b), 55(m). Figure from Fox [2003]

2.3.4.1 Strati�ed Resampling

There are many ways to resample including Multinomial resampling, Residual resampling,

Strati�ed resampling and Systematic resampling. Douc et al. [2005] show that residual, strat-

i�ed and systematic resampling in general produce comparable results that are better than

those produced by multinomial resampling. Systematic resampling is most simple to imple-

ment, but there is a lack of theoretical analysis of its behavior and for this reason the method

implemented in this thesis is Strati�ed resampling. The Strati�ed resampling algorithm seen

in Kitagawa [1996] is presented in Table 2.3.
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The Strati�ed Resampling Algorithm [Kitagawa, 1996]

1. Rearrange the normalised weights !1; : : : ; !N in ascending order.

The reordered weights are expressed as ~!1; : : : ; ~!N .

2. Split the interval in to N equal sections of length 1
N . Label sections j where

j = 1; 2; :::; N .

3. Calculate values uj , where uj is the midpoint of section j.

4. Set i = 1, j = 1, !L = 0 and !R = ~!1.

5. Test !L < uj ≤ !R

If this inequality holds then accept the particle associated with

~!i and set j = j + 1.

If the inequality does not hold set !L =
Pi

l=1 ~!l,

!L =
Pi+1

l=1 ~!l and i = i+ 1.

6. Repeat step 5: until i = N and j = N

7. There should now be N particles accepted, some of which are

duplicates. These are the resampled particles.

Table 2.3: The Strati�ed Resampling Algorithm.



Test !L < uj ≤ !R where u1 = 0:1, !L = 0 and !R = 0:05.



This is true so take the particle associated with ~!5. The value of j can no longer be

increased so the algorithm is �nished.

The new particles are those associated with the original !1, !2, !4, !4 and !5. We

have lost the particle with the lowest weight, but have two copies of the particle with the

highest weight.

This resampling is the �nal step in the PF algorithm. From this point we return to the

forecast step, we forecast the resampled particles, weight them and then resample. This

process is repeated until the �nal time is reached.

2.3.5 Summarising the Particle Filter

The algorithm containing this resampling step is known as the Bootstrap Filter [Doucet et al.,

2000a], this is shown in Table 2.4.

The Bootstrap Filter

1. Initialisation, t = 0

For i = 1; : : : ; N , sample  i0 p( 0) and set t = 1.

2. Importance Sampling Step

For i = 1; : : : ; N , sample e it p( t| it−1) and sete i0:t = ( e i0:t−1;
e it).

For i = 1; : : : ; N , evaluate the importance weights,ewit = p(dt| e it).
3. Normalise the importance weights.

4. Selection Step

Resample with replacement N particles ( i0:t; i = 1; : : : ; N)

from the set ( e i0:t; i = 1; : : : ; N) according to the

importance weights.

Reset weights to 1
N .

Set t = t+ 1 and repeat step 2.

Table 2.4: The Bootstrap Filter
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The algorithm in Table 2.4 implies that we must resample at every step, however this is

not the case. It is possible to resample only at timesteps when the weights di�er signi�cantly

in value. This will save computational cost as at times when the weights are nearly equal it is

possible just to keep each of the particles as this is likely to be what the particle �lter would

do. The only di�culty with not resampling at each timestep is deciding when resampling

should take place. This may be done when the highest weight reaches a particular value or at

say every other timestep. As this choice is complex to make and code we chose to resample

at every timestep. We see in section 6.1 that this resampling at every timestep leads to a lack

of variability in the particles. Resampling less often may be a way to overcome this problem.

2.3.6 Properties of the Particle Filter

Resampling the data removes the problem of all the weight ending up on one particle, and

for small scale systems the PF now works well. It is expected that the PF will converge to

the true distribution in the limit of large particle samples. However for the NWP problem

our system is large, this leads to some more complications. Snyder et al. [2008] shows us that

the main issue is the number of particles we require. As the dimension of the state increases

the number of particles required for the PF to converge to the true distribution increases

exponentially. This is shown in Figure 2.3.6. This large number of particles required makes

the PF computationally expensive.

2.4 The Particle Filter with Mode Tracking

To reduce the computational cost of the PF Vaswani [2008] introduced the idea of mode



Figure 2.9: Number of Particles Required required ‘for the posterior mean estimated by the

particle �lter is to have averaged square error less than the prior or observations’[Snyder

et al., 2008]. As the dimension of the state increases (along the horizontal axis) we see that

the number of particles required increases exponentially. Nx and Ny are the state dimensions,

Ne is the number of ensembles required. The asterisks represent the the simulation results, a

best �t line is then plotted. Figure from Snyder et al. [2008]

[Bannister, 2009].

We present, in Table 2.5 the PFMT algorithm from Vaswani [2008]. We shall consider

each stage of the algorithm to see how PFMT works in detail.

The PFMT Algorithm

1. Importance Sample 	t;s: ∀i sample 	i
t;s p(	

i
t;s|	i

t−1).

2. Mode track 	t;r: ∀i set 	t;r = mi
t where

mi
t(	

i
t−1;	

i
t;s; dt) = arg min	t;r [− log p(dt|	i

t;s)p(	t;r|	i
t−1;	

i
t;s)].

3. Weight: ∀i compute wit = !i
tPN

j=1 !
j
t

where 	i
t = [	i

t;s;	
i
t;r].

and !it = wit−1p(dt|	i
t)p(	

i
t;r|	i

t−1;	
i
t;s).

4. Resample: Set t← t+ 1, return to step 1.

Table 2.5: The PFMT Algorithm.
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2.4.1 Initialisation and Importance sampling

When mode tracking we must �rst decide how to split the state. Vaswani [2008] suggests

that it is best to split the state so ‘	t;s contains the minimum number of dimensions ... [such

that] p(	t;r|	i
t−1;	

i
t;s; dt) [the probability of the r section of the state at time t given the

probability of the state at time t−1 and the s part of the state and the observations at time t]

is unimodal’. Once we have chosen how to split the state we can begin the PFMT algorithm.

The �rst step shown in Table 2.5 is the importance sampling step. This step is identical to

the PF, the only di�erence being that we only treat the 	s dimensions in this way. Here we

sample from the prior pdf and forecast the 	s dimensions one timestep.

2.4.2 Mode Tracking

The second step in the PFMT algorithm is MT. The mode tracking �nds values for the 	r

part of the state for each particle by minimising the cost function in equation (2.12) with

respect to 	t;r.

J i(	i
t;s;	t;r) =

1



2.4.3 Weighting and Resampling

The weighting for the PFMT di�ers from the ordinary PF. The weights are calculated using,

wit = !i
tPN

j=1 !
j
t

(2.15)

where !it = !it−1p(dt|	i
t)p(	

i
t;r|	i

t−1;	
i
t;s). We see these normalised weights are similar to

that given in equation (2.7).

Now the particles have been weighted the PFMT continues as the ordinary particle �lter.

We resample the particles using the same strati�ed resampling algorithm. Once the particles

have been resampled we reset the weights for each particle to wi = 1
N . As with the PF we

return to the forecast step to continue the assimilation. We repeat the iteration until the �nal

forecast time is reached.

Vaswani [2008] found that the introduction of MT signi�cantly decresed the number of

particles required to achieve desirable results. The experiments carried out by Vaswani [2008]

showed the ‘superior performance of the PFMT ... over the PF-original’ when both codes

were run with the same number of particles.

2.5 Summary

In this chapter previous work has been considered. Kalnay [2002] showed how DA is used

to combine observations and a numerical model to produce a model state which accurately

describes the observed reality. Bannister [2009] showed how ensemble DA forecasts a number

of states to give us a pdf associated with the forecasts. We have then considered work by van

Leeuwen [2009] and Doucet et al. [2000a] to show how the PF makes use of Bayes Theorem

to improve on the simple ensemble DA. We considered the idea of weighting, giving particles

a value that represent how close they are to the truth, and then use this to resample the

particles. From Snyder et al. [2008] we saw that as the state of the system increased the



of particles required to solve the system and hence decrease the computational cost of the

assimilation. We test this hypothesis in Chapter 6. In order to test these ideas we require a

model dynamical system, this is seen in Chapter 3.
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Chapter 3

The Model

In this chapter we describe a suitable model that can be used with the PF and PFMT al-

gorithms. A fairly simple model has been chosen so it is not complex to implement and not

too computationally costly to solve. The chosen model has previously been used with a PF

[Pham, 2000][Bengtsson et al., 2003] allowing us to compare the results we obtain.

We consider how to solve the model numerically, some numerical solutions are produced

and these are compared to previous work [Pocock, 2008][Pham, 2000][Bengtsson et al., 2003]



where x, y and z are the dimensions of the state, t is time and �, � and � are constants. The

constants �, � and �



approximation [Kloden and Platen, 1999]. Given a SDE of the form in (3.4) the EM approxi-

mation has the form

	t+1 = 	t + a(	t)�t + b(	t)�Wt; (3.8)

where �t is the timestep and �Wt = Wt+1 −Wt. Wt is the value of the Wiener process at

timestep t and hence �Wt is the di�erence between the W values at two consecutive timesteps.

These random variables �Wt are independent and from the distribution N(0;�t). In practice

we take �Wt directly from N(0;�t) rather than calculating values of Wt at each timestep.

Thus the size of the timestep a�ects the noise added to the model. Here the values of �t may

vary in length, for simplicity we consider equal length timesteps �. The EM approximation

for the model is given in equations (3.9) to (3.11),

Xt+1 = Xt + �(Yt −Xt)� +BX�WX ; (3.9)

Yt+1 = Yt + (Xt(�− Zt)− Yt)� +BY �WY ; (3.10)

Zt+1 = Zt + (XtYn − �Zt)� +BZ�WZ : (3.11)

3.3 Convergence and Stability

It is also important to verify that the scheme is numerically stable and converges to the true

solution of the continuous problem as � goes to zero. We now present some Theorems that

give some information on convergence and stability of the scheme.

3.3.1 Convergence of the EM Scheme

We start by considering the convergence criteria of the scheme. Kloden and Platen [1999] and

Kliemann and Namachchivaya [1995] state both strong and weak convergence results for the

EM approximation. First we de�ne the meanings of strong and weak convergence, then the

results for the EM approximation are stated in Theorems 2 and 3. We also include Theorem

4, the convergence results for one timestep of Euler’s method.

De�nition 1 Strong Convergence

If 	T
t is the true value of 	 at time t, ~	�

t is an approximation of 	 obtained from a numerical
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model with timestep � and E is the expectation operator. Then an approximation ~	 converges

with strong order  > 0 if there exists a �nite constant G > 0 such that

E(|	T
t − ~	�

t |) ≤ G�

for all step sizes � ∈ (0; 1).

De�nition 2 Weak Convergence

If 	T
t is the true value of 	 at time t, ~	�

t is an approximation of 	 obtained from a numerical

model with timestep � and E is the expectation operator. Then an approximation ~	 converges

with weak order � > 0 if for any polynomial g there exists a �nite constant Gg > 0 such that

|E(g(	T
t ))− E(g( ~	�

t ))| ≤ Gg��

for all step sizes � ∈ (0; 1).

Theorem 2 Strong Convergence for the EM approximation

The EM approximation converges with strong order  = 0:5.

Theorem 3 Weak Convergence for the EM approximation

The EM approximation converges with weak order � = 1

Theorem 4 Convergence for one timestep of Euler’s method

For one itteration of Euler’s method it is expected that �� = O(�2)

We omit the proofs of these Theorems here. However the proof of Theorems 2 and 3 can be

found in Kloden and Platen [1999] and the proof of Theorem 4 in Lee and Schiesser [2003].

3.3.2 Stability of the EM Scheme

Both Saito and Mitsui [1996] and Kloden and Platen [1999] discuss the stability of the EM

approximation, however only linear systems are dealt with. As stability of nonlinear systems

is complex, even in an ODE case, we shall consider the stability of the EM approximation for

the linear equation

d	t = �	tdt+ dWt; (3.12)
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where � is a complex number with <(�) < 0. The EM scheme for equation (3.12) with an

equidistant step size � is given in equation (3.13),

	�
n+1 = 	�

n (1 + ��) + �Wn: (3.13)

From this we obtain,

|	�
n − ~	�

n | ≤ |1 + ��|n|	�
0 − ~	�

0 |; (3.14)

where ~	�
n is the solution obtained from starting at ~	�

0 . From equation (3.14) we see the addi-

tive noise terms cancel out, giving us the same region of absolute stability as the deterministic

Euler method shown in Figure 3.1.

Figure 3.1: The stability region of Euler’s Method. The stable region lies within the circle on

the complex plane.

As we can not compute the stability region directly for the EM approximation with the

Lorenz equations we look to the literature to try and �nd a stable timestep to use. Xiao

et al. [2009] use the Lorenz equations with parameters � = 10, � = 30 and � = 8
3 , the only

parameters that di�er are � and the noise parameter we have called B. To solve the equations

Xiao et al. [2009] use the EM approximation and a timestep of � = 0:01. In our experiments

we have also used a timestep of � = 0:01 and have seen no evidence of numerical instability

with this timestep.

30



3.4 The Euler-Maruyama Code

The Euler-Maruyama scheme (equations (3.9), (3.10) and (3.11)) was implemented in MAT-

LAB. The noise terms �WX , �WY and �WZ are independent and from the distribution

N(0;�t). To calculate these values in MATLAB the randn command was used [Moler, 2006].

The randn command produces pseudo-random numbers from the distribution N(0; 1). As we

require values from N(0;�n) the values of �WX , �WY and �WZ are calculated scaling the

output of randn by
√

�, (i.e
√

�N(0; 1)).

3.5 Model Validation

In this section we present results from both quantitative and qualitative experiments to val-

idate the scheme. The sensitivity of the model to the choice of the parameters BX , BY and

BZ is also considered.

3.5.1 Qualitative Results

First the qualitative results are considered. We plot various solutions of the Lorenz systems

to check they are as expected. Each Figure (3.2, 3.3, 3.4 and 3.5) contains four separate plots.

The graphs on the left are of x (top), y (middle) and z (bottom) against time t. The plot

on the right is a plot of x against z, this is the classic buttery plot produced by the Lorenz

Equations.

To gain an initial solution we run the Euler-Maruyama scheme from time t = 0 until

t



Figure 3.2: Solution to stochastic Lorenz equation with no noise added. Initial conditions

x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0 to t = 20 with a timestep � = 0:01.

expect, as seen in [Bengtsson et al., 2003], qualitatively verifying that the basic EM scheme

is working.

We now add some noise to the scheme. We run the scheme as before but with BX = 1,

BY = 1 and BZ = 1, the �nal time is reduced to t = 0:4 to simplify the solution and allow us

to focus on the added noise. The solution is plotted in Figure 3.3, it is similar to the solution

in Figure 3.2 but the trajectory is no longer smooth. The trajectory contains small bumps at

each timestep, these are related to the added noise.

The values of BX = 1, BY = 1 and BZ = 1 put a large amount noise in the scheme

and we do not necessarily require the noise to be this large. The sensitivity of the model to

these parameters is discussed later in section 3.6. In another experiment we set BX = B,

BY = B and BZ = B where B = 0:1. Even with this small amount of noise two solutions with

identical initial conditions can be completely di�erent over time, with di�erent realisations of
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Figure 3.3: Solution to stochastic Lorenz equation. Initial conditions x = 0:00001, y =

0:00001, z = 2:00001. From time t = 0 to t = 0:4 with a timestep � = 0:01. Noise parameters

BX = 1, BY = 1 and BZ = 1.
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Figure 3.4: Two solutions from identical initial conditions. The red and blue lines represent

two solutions from initial conditions x = 10:00001, y = 10:00001, z = 20:00001 but with

di�erent realisations of noise. From time t = 0 to t = 1 with a timestep � = 0:01. Noise

parameters B = 0:1.

noise. Figures 3.4 shows how solutions with the same initial conditions can di�er.

The location of the initial conditions in phase space also helps to determine how quickly

two solutions with di�erent initial conditions di�er over time. The initial conditions for Figure

3.4 lie in an unstable area of the system, the small amount of noise added pushes one solution

to the left wing of the buttery and the other to the right hand side. However the initial

conditions for Figure 3.5 lie in a more stable part of the system and the trajectories produced

follow similar paths over a longer time period.
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Figure 3.5: Two solutions from identical initial conditions. The red and blue lines represent

two solutions from initial conditions x = 10:00001, y = 10:00001, z = 20:00001 but with

di�erent realisations of noise. From time t = 0 to t = 1 with a timestep � = 0:01. Noise

parameters B = 0:1.

3.5.2 Quantitative Results

We have now seen that the Euler-Maruyama scheme provides the expected qualitative results,

producing the classic buttery plot we expect from the Lorenz attractor and showing the

chaotic nature of the system by giving di�ering solutions from the same initial conditions. We

now look for some quantitative results to support the results already obtained.

Theorem 2 and 3 showed that we expect the EM approximation to converge with strong

order  = 0:5 and weak order � = 1. This suggests that a plot of log(�) vs. log(Error) will

produce a line with gradient between 0:5 and one. We shall see that this gradient is dependent

on the noise parameter B. Setting B = 0 simpli�es the EM approximation to Euler’s method

[Ascher and Petzold, 1998], for one timestep of this scheme Theorem 4 shows this error should
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be O(�2). Therefore if we run our scheme with no noise we expect the plot of log(�) vs.

log(Error) to show a straight line with gradient two.

To be able to plot the log(�) vs. log(Error) graph we need to be able to calculate the the

error at a given timestep. Normally this would be calculated using equation (3.15)

	t − ~	�
t = ��; (3.15)

where �� is the error obtained from the di�erence between 	 is the true solution at time t

and ~	t the numerical approximation at the same time calculated with timestep �. As we do

not have an analytic solution we cannot do this directly. We expect our error � = O(�0:5), so

we would expect equation (3.15) to be,

	t − ~	�
t = O(�0:5): (3.16)

To calculate our error with a given timestep � we compute equation (3.16) using both timestep

� and timestep 2�. This leads to equations (3.17) and (3.18).

	t − ~	�
t = O(�0:5): (3.17)

	t − ~	2�
t = O((2�)0:5): (3.18)

subtracting equation (3.17) from (3.18) gives equation (3.19).

~	�
t − ~	2�

t = O((2�)0:5)−O(�0:5) = O(�0:5): (3.19)

Therefore to calculate the error at time � we calculate the numerical solution using � and

2� we then subtract one from the other. The resulting value is the error associated with the

timestep �. We carry out these calculations for 5 di�erent �’s and plot the results. As we

have three dimensions we must decide how to calculate an average of the error, we choose to

use a Root Mean Squared Error (RMSE).

In Figure 3.6 log(�) vs. log(Error) is plotted, we plot this for various values of B. We

include B = 0 when the EM scheme is reduced to Euler’s Method. The actual error for each

� is plotted as a cross, we then �t a line of best �t.
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Figure 3.6: Graph showing how the size of the timestep a�ects the error, for varying values

of B. log(�) is plotted against log �� the log of the error produced with a particular size

timestep. Crosses represent experimental results obtained as described in the text. A line of

best �t is then added to each set of data.

From Figure 3.6 we see that the line produced when B = 0 has a gradient of two suggesting

the error for one timestep for the Euler’s method is O(�2) which is what we expect. We see

that the remaining plots all have similar gradients, although the gradient reduces slightly as

the value of B increases. The gradients of the best �t lines for B = 5 and B = 10 are both

0:5 suggesting an order of convergence of 1
2 , this means the EM scheme is converging with the

expected order seen in Theorem 2. The best �t lines for B = 0:5 and B = 1 are slightly higher

than 0:5, they still fall between the strong and weak convergence values given in Theorems 2

and 3.
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3.6 Sensitivity to Noise Parameters

In equations (3.5), (3.6) and (3.7) we see that the parameters BX , BY and BZ a�ect the size

of the noise added to the equation. For simplicity we set each of these values equal, this value

is B (BX = BY = BZ = B). To see how the value of B a�ects the solution we run the model

as in Figure 3.3 but with a �nal time of t = 0:1 with various values of B and with identical

noise realisations for each trajectory. These are shown in Figure 3.7. The Figure shows that

the smaller the value of B the smoother the trajectory obtained. From now on we choose to

set B = 0:1, this value is chosen as it allows us to see relatively smooth, yet noisy solutions.

Figure 3.7: A�ect on solution of changing B. Each line shows the EM solution to the stochastic

Lorenz equations for a di�erent value of B. Initial conditions x = 0:00001, y = 0:00001,

z = 2:00001. From time t = 0 to t = 0:1 with a timestep � = 0:01.
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3.7 Summary

In this Chapter we have seen the stochastic Lorenz equations ((3.5),(3.6) and (3.7)) that will

be solved using the EM approximation and estimated by the PF and the PFMT. We have seen

the EM approximation, a simple generalisation of Euler’s method, this is used to forecast the

particles in the PF. We have seen that the EM approximation gives the expected solution to



Chapter 4

Implementation and Diagnostics for

the PF and PFMT

In this chapter the PF and PFMT codes are discussed. We explain how the codes are imple-

mented and consider some of the parameters used. We also consider some of the diagnostics

used to show the accuracy of the results obtained from the code.

4.1 The Particle Filter Code

4.1.1 Initialisation

To be able to compare and compute our numerical solution we require a true solution and a

set of observations, creating these is the �rst stage of the PF code. The true solution is given

by one run of the Euler-Maruyama approximation seen in equations (3.9, 3.10 and 3.11), these

truth values at time t are referred to as xTt , yTt and zTt . To create the observations the values

of the truth need to be perturbed slightly, these slight perturbations represent instrument

and human error that is involved with collecting observations. This error is represented by

"t in equation (2.2), for this code we choose "t to be taken from the distribution N(0; 0:04).

To perturb the truth values a pseudo-random number from N(0; 0:04) is added to each, this

is done using the randn MATLAB command that was used in the EM code in section 3.2.
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to forecast the particles one time step. However as we are MT we need to treat the state to

be mode tracked di�erently to the rest of the state. We must forecast the state to be mode

tracked state with no noise, we do this using the EM scheme with B = 0 for one timestep.

The EM scheme has been modi�ed so it only forecast the required state. The remaining states

are also forecast with this modi�ed EM scheme but with B = 0:01. Now each dimension has

been forecast we move on to the MT section. We mode track by minimising the cost function

in equation (4.2).

J ii(	i
t;s;	t;r) =

1
2

(Jo + Jb); (4.2)

where

J iq(	t;r) = (	t;r − fr(	i
t−1))TQ−1

rr (	t;r − fr(	i
t−1))

and Jo is as in equation (2.13). Equation (4.2) is a speci�c case of the cost function seen in

equation (2.12) in section 2.4.2. Here we have been able to simplify the model error matrix

to Qrr as our matrix Q contains only zeros o� the diagonal. By minimising this equation we

gain our forecast values for the dimensions of the state that we wish to mode track. Now we

have all the values we require we can weight the particles. The particles are weighted slightly

di�erently to the weighting in the PF code. We used our forecast values to calculate the value

of the cost function in equation 4.2 then we use this and

wi =
exp(−J i)

N
; (4.3)

to compute the weights. Now the weights have been computed they are normalised and the

particles can be resampled. The resampling in the PFMT is identical to the resampling in the

PF. Now the particles have been resampled the weights are reset to wi = 1
N and we return to

the forecasting stage. The iteration is repeated until the �nal time is reached. The results are

then plotted.
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overpopulation in the right half implies the particles are negatively biased. However these are

not the only possible reasons for these types of behavior.

4.4 Summary

In this chapter we have seen how the PF and PFMT are implemented. We have seen that they

both share the same intialisation which involves a truth run. The values from this are then

perturbed to give us the observations. The next stage of the PF code is an implementation of

the Bootstrap Filter seen in Table 2.4. Whereas the PFMT code continues with an implemen-

tation of the PFMT algorithm seen in Table 2.5. As well as considering the implementations

of the PF and PFMT code, the diagnostics for the solutions are also considered. We have seen

how to calculate the RMSE and the RH. How to interpret the RH has also been discussed.
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Chapter 5

The Particle Filter Solutions

In this chapter we use the PF to estimate solutions of the stochastic Lorenz system. The PF

will be run for a number of di�erent situations and the qualitative results will be compared.

Primarily we are interested in how the number of particles a�ects the results (Section 2.3.6)

so the experiments shall focus on this. Once the solutions to the Lorenz equations have been

seen, the RMSE and Rank Histogram plots are also presented for each of the solutions so we

can quantitatively assess the PF.

In section 2.3.3 we saw that if the resampling step was not included in the PF algorithm

all the weight ended up on one particle. We wished to check that our code produced the same

results. Results included in Appendix A show that if we run the code described in section 4.1

without the resampling step we see similar results to those in Snyder et al. [2008].

5.1 Lorenz Trajectory solutions

The solutions in this section show the trajectories obtained when the PF is run. We are

interested in how the solutions di�er depending on the number of particles used. For this

reason the only input data that di�ers when the code is run is the number of particles used.



following section, these �gures have the same format as in Chapter 3.

5.1.1 Results for N = 2

Figure 5.1: PF solution of the Lorenz equations with N = 2 particles. The red line is the true

solution, the dark blue line is observations, the green line is the particle mean calculated in

equation (4.4), the light blue lines represent the particle trajectories obtained for each particle.

Initial conditions x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0 to t = 1 with a

timestep � = 0:01. Noise parameter B = 0:1.

In Figure 3.4 we saw how, due to the chaotic nature of the system, two solutions from the

same initial conditions can di�er. The idea of resampling in the PF is that particles that do not

follow the true solution are discarded in favour of particles that are closer to the true solution.

Therefore if particles do start to di�er from the true solution as in Figure 3.4 we expect to

see their trajectories terminate as these particles are ‘resampled’ and the trajectory restart

from a new position corresponding to a di�erent particle. One of the problems with the PF is

that if too few particles are used then there is the possibility that none of the particles follow

the truth. This is the case in Figure 5.1, where we see that both the particles, and hence the
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is when the observation error is large. Similarly when the particles collapse down they are

hidden beneath the particle mean and the truth if the solution is accurate enough. In Figure

5.2 on the x against z plot we see some particles initially heading away from the true solution.

However some of the particles are following the true solution and we see the PF working

by terminating the particles that are moving away from the true solution and duplicating

particles that are following the true solution. Between t = 0 and t = 0:5 is when the particle

resampling of particles shows most, the resampling is particularly prominent in the x against t

and y against t plots. After some time, and due to the relatively low numbers of particles being

used, all the particles have very similar values and lie close to the particle mean. Although

this time there are enough particles to provide us with a solution that is similar to the truth,

after t = 0:5 all the x, y, and z particle mean results start to di�er from the observations and

the true solutions. We see that the x, y and z plots all show that the numerical solution is

similar to the true solution but shifted in time. This phase error is masked in the x vs. z plot

as this plot has no time dependence.

We would like to know how many particles we need for the particle mean to be su�ciently

close to the true solution over our time window. To do this we increase the number of particles

to see how this improves the solution.

5.1.3 Results for N = 50

The number of particles is now increased to N = 50, as there are more particles we expect

the particle mean solution to be closer to the exact solution. Although we expect the particle

mean to be closer to the true solution, we also expect to see more particles that diverge from

the true solution, the PF should terminate these particles and create duplicates of particles

that are following the true solution.

Figure 5.3 shows the PF solution to the stochastic Lorenz equations with N = 50 particles.

As expected we see that more particles do diverge from the true solution, it is also possible

to see these particles being resampled and becoming a duplicate of particle closer to the true

solution. We also see that in the x, y and z plots the particle mean follows the solution

more accurately than in Figure 5.2, this suggests that increasing the number of particles has
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Figure 5.3: PF solution of the Lorenz equations with N = 50 particles. Colours as in Figure

5.1. Initial conditions x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0 to t = 1 with

a timestep � = 0:01. Noise parameter B = 0:1.

improved the results produced by the PF. Comparing the x, y and z plots from Figure 5.3 and

Figure 5.2 it is possible to see that the particles have a larger spread. The resampling discards

particles that diverge from the true solution moving all the particles toward the truth. However

over time we still see some particles terminating and restarting from a di�erent position, this

is due to the stochastic system and the noise that is add in the Euler-Maruyama scheme.

5.1.4 Results for N = 500

Finally we consider the results when 500 particles are used, these are shown in Figure 5.4. As

expected these are the best PF results obtained, the particle mean lies underneath the true

solution and the particles stay close to the true solution.

We have now seen that as the number of particles is increased it appears that the quality

of the solution also increases. However all the results we have seen so far are only based on

one truth solution. We would expect to obtain qualitatively similar behavior if the PF was
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Figure 5.4: PF solution of the Lorenz equations with N = 500 particles. Colours as in Figure

5.1. Initial conditions x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0 to t = 1 with

a timestep � = 0:01. Noise parameter B = 0:1.

run with a di�erent true solution and noise realisation. Due to time limitation we have not

veri�ed this. One other limitation of the PF is that we have compleate observations at every

timestep. In reality the set of observations would be incomplete and not avaliable at each

timestep. It would be desirable to decrease the number of observations we have to make the

situation more realistic, this is discussed in section 7.2.

5.2 Quantitative Results

We now present the quantitative results obtained. The RMSE is calculated and some rank

histograms plotted to verify the Lorenz results.

5.2.1 Root Mean Squared Error

In Figure 5.5 the RMSE for N = 5, N = 50 and N = 500 is plotted. The RMSE for N = 5,

N = 50 and N = 500 are calculated from the output given by the model runs that were used
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Figure 5.5: RMSE for various number of particles. Calculated from model runs with initial

conditions x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0 to t = 1 with a timestep

� = 0:01. Noise parameters B = 0:1.

to plot Figure 5.2, 5.3 and 5.4 respectively.

We see that the RMSE for N = 5 is much larger than than the RMSE for the other model

runs with a very high error between t = 0:5 and t = 1. There are also some sudden reductions

in the RMSE. The N = 50 RMSE is a signi�cant improvement on the N = 50 RMSE however

we still see that the error is highest between t = 0:5 and t = 1. There are also some occasions

where we see a sudden reduction in the error before it begins to rise again. The RMSE for

N = 500 is the smallest and smoothest, this supports the qualitative plots that the more





Figure 5.6: Rank Histograms for N = 5. Calculated from a model run with initial conditions

x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0 to t = 1 with a timestep � = 0:01.

Noise parameters B = 0:1. ‘Realisations’ refers to the number of occurrences of the observation

per bin.

this is easily seen in Figure 5.2 where the particle mean hides the actual particle trajectories.

This means that over time we expect the variability of our particles to decrease. Also when

considering Figure 5.2 we see that initially the particles are fairly similar to the exact solution,

however between t = 0:5 and t = 0:8 all the particles have a value below the observations, and

after t = 0:8 the particles all have a higher value than the truth. Therefore we expect all the

tallies from t = 0:5 and t = 0:8 to go into the �rst bin, where as all the tallies after t = 0:8

go in the last bin. This means more than half the tallies are guaranteed to go in the �rst and

last bins leading to a U-shaped rank histogram.

We now consider the rank histogram for the PF solution to the Lorenz equations with

N = 50. From the RH from N = 5 we know that the original solution can give us some

information on how we may expect the RH to di�er, so �rst we consider Figure 5.3. From the

x vs. t plot after t = 0:8 we see that all the particles have values higher than the truth so we
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Figure 5.7: Rank Histograms for N = 50. Calculated from a model run with initial conditions

x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0 to t = 1 with a timestep � = 0:01.

Noise parameters B = 0:1. ‘Realisations’ refers to the number of occurrences of the observation

per bin.

expect all the tallies from this time to be in the �rst bin making this bar higher. From the y

vs. t plot between t = 0:7 and t = 0:9 the particle values are higher than the truth and after

t = 0:9 the particle values are lower than the truth. This means the y RH is expected to be

U-shaped. The z vs. t plot also shows that after t = 0:7 all the particles fall to one side of the

truth. Until t = 0:8 the particles are lower than the truth, after this the particles are higher

than the truth, thus we expect to see a U-shaped rank histogram for z, but with the lowest

rank being fuller than the highest. The RHs for the solution for N = 50 are plotted in Figure

5.7.

We see that the RHs are as expected, with the x RH having large number of tallies in the

�rst bin, the y RH being U-shaped and the x RH being U-shaped but with more tallies in

the �rst bin. Although we have some explanation of the high tallies in the �rst and last bins

we would still like to see the values in the middle bins being uniform. Unfortunately the bins
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Figure 5.8: Rank Histograms for N = 500. Calculated from a model run with initial conditions

x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0 to t



vs. t plot do collapse down and it is di�cult to see the individual particle trajectories. It is

possible that it is the values here that contribute the the higher tally in the last bin of the z

RH.

5.3 Summary

In this Chapter we have seen both quantitative and qualitative results from the PF. We have



Chapter 6

Particle Filters with Mode Tracking

In this chapter we consider the both the quantitative and qualitative results for the PFMT

code. These are then used to determine the best way to split the state. The a�ect of increasing

the number of particles is also considered. We then go on to see how the di�erence between

the observation error variance and the background error variance a�ects the results from the

PFMT.

6.1 Splitting the State

When MT we must decide how we split the state. In section 4.1.1 we saw thhat Vaswani [2008]

proposed that it is best to split the state so ‘	t;s contains the minimum number of dimensions

... [such that] p(	t;r|	i
t−1;	

i
t;s; dt) is unimodal’. This suggests that the way we split the state



Figure 6.1: PFMT solution of the Lorenz equations with 	r = (z) and 	s = (x; y). Colours

as in Figure 5.1. Initial conditions x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0

to t = 1 with a timestep � = 0:01. Noise parameter B = 0:1. N = 500 particles.

t = 0 to t = 1 with a timestep � = 0:01, a noise parameter B = 0:1 and N = 500 particles.

It is only the way that the state is split that varies. We have chosen to use N = 500 particles

as this gave the best results from the PF and assume it will in the PFMT.

Figure 6.1 shows the solution when only the z dimension is mode tracked, 	r = z. We see

the solution is fairly good, although there is still a small phase error and the particle mean

can still be distinguished from the truth between 0:5 and 0:8. This appeared to be the worst

of the mode tracked solutions we obtained.





Figure 6.3: RMSE for the PFMT solutions of the Lorenz Equations with di�erent parts of the

state mode tracked

a strong nonlinearity region. It is clear that the solution with the highest error is as expected,

the one from MT the z dimension. The next highest error is nearly half of the highest error,

this is produced from the solution when y is mode tracked. The next highest errors are from

the solution when the y and z states and x and z are mode tracked. We have two solutions

left for which we have not considered the RMSE. From the quantitative results we could see

that the best solution was from the code when the x and y dimensions were mode tracked.

So we expect the the next error seen on Figure 6.3 to be the one associated with the solution

when x is mode tracked. The smallest error is from the solution obtained from the PFMT

solution when x and y and mode tracked. This error is much smaller than the previous errors,

and half the error of the x mode tracked solution implying that the best PFMT solution is

obtained when both the x and y dimensions are MT.

We look to equations (3.5) to (3.7) to give some idea of why choosing 	r = (x; y) gives the

most accurate result. As MT produces the more accurate result we expect the 	t;r dimensions

to be more accurate. When z is mode tracked its value depends on two non mode tracked
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Figure 6.5: PFMT solution of the Lorenz equations with 	r = (x; y) and 	s = (z). Colours

as in Figure 5.1. Initial conditions x = 0:00001, y = 0:





more obvious. The code is run for 	r = (x; y) with initial conditions x = 0:00001, y = 0:00001,

z = 2:00001. Time t = 0 to t = 1 with a timestep � = 0:01 and noise parameter B = 0:1.

6.3.1 Qualitative Results

The PFMT solutions to the Lorenz equations when N = 50 were shown in Figure 6.5. For

these results the error variance of the observations was set to 0:04. We ran the code again but

with the variance set to 0:01, this makes the observation and model error variance equal. As we

have decreased an error we expect the results to improve. The results are shown in Appendix

C in Figure 7.6. Comparing Figure 6.5 to Figure 7.6 we see a signi�cant improvement and the

results when the observation error variance is set to 0:01 are similar to the results produced

from the PFMT code when N



Figure 6.7: RMSE for PFMT solutions to the Lorenz equations with varying error variances

the a�ect the B parameter has on this ratio. This decoupling is one section discussed in future

work (section 7.2).

6.4 Summary

In this Chapter we have seen the results from the PFMT code. We have discovered that the

best way to split the state when MT is 	r = (x; y) and 	s = z. Splitting the state in this

way gives us the most accurate solution, we have shown this in Figures 6.2 and 6.6. We have

also seen that the PFMT leads to ensemble variability collapse much sooner than in the PF.

Like the PF we also see that the solution improves as we increase the number of particles.

The most surprising result of this Chapter, and indeed this thesis, is seen in section 6.2. We

see that the PFMT, for small numbers of particles, does not produce a result that is better

than the PF. It is only when the number of particles is increased to N = 500 that the PFMT

produces more accurate solutions than the PF. These results di�er to those seen in Vaswani

[2008] which suggest that the results obtained from the PFMT are always superior to the
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Chapter 7

Conclusion

7.1 Summary and Discussion

In Chapter 2 the ideas of DA, ensemble DA, PF and PFMT were discussed. We saw that DA

combines observations and model data to produce more accurate state estimates. The use of

ensemble DA allows estimation of uncertainty in the resulting analysis. The PF allows us to

model non-Gaussian pdfs using Bayes Theorem (Theorem 1) to update the prediction pds to

give the �ltering pdf. Each particle in the pdf has a weight associated with it according to

how close they are to the observation. Unfortunately without resampling over time all the

weight goes onto one particle making our statistical information meaningless [Snyder et al.,

2008]. To overcome this weighting problem we have seen that we must resample the data.

Snyder et al. [2008] showed that the PF works well for small systems but for systems as large

as NWP it is very computationally costly, with the number of particles required increasing

exponentially as the dimension of the state grows. Vaswani [2008] proposed a scheme that

would reduce this computational cost by MT part of the state, this was discussed in section

2.4.

In Chapter 4.1 we considered results obtained from the PF. If too few particles were used

then a solution could be obtained that di�ered signi�cantly from the truth. Once the number

of particles was increased we obtained solutions closer to the truth, we also saw that the x, y
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and z plots showed phase errors in the solutions. As the number of particles increased we saw

that the solution improved. This was seen in both the qualitative and quantitative results and

is supported by Pham [2000] and Vaswani [2008] who see the RMSE reduce as the number of

particles is increased.

When considering the RMSE we discovered that due to the nonlinearity of the Lorenz

system the errors obtained were not smooth, this behavior was also seen in the RMSE obtained

by Pham [2000]. We saw that large errors were often associated with the strongly nonlinear

regions of phase space [Pham, 2000]. We also suggested that some of the sudden jumps in the

RMSE were due to the resampling of the particles. Another quantitative result that was used

to determine the accuracy of the PF runs was the RH [Hamill, 2000]. We saw that when all

the particles had equal weights a reliable forecast with no errors in its mean and spread should

produce a uniform RH. However due to the weighting of particles in the PF we used ensemble

means to determine any di�erences we expected. The RH showed that for small N there was

a lack of variability in the ensemble, increasing the value of N increased this variability.

In Chapter 6 we considered the results obtained from the PFMT code and compared these

to the PF results. When considering how to split the state we saw that the best results were

obtained when the x and y dimensions we mode tracked, whereas the z dimension gave the

worst results. This was explained by the model equations and is discussed in section 6.1.

It was also apparent that MT two dimensions did not always give better results than MT

one dimension. This was likely to be due to the multi-modal behavior of one or more of the

dimensions.

When the number of particles used with the PFMT was increased the accuracy of the

solution also increased. However a comparison of the PF and PFMT results showed that

with small values of N





It would be interesting to see the e�ect of remove the resampling from each timestep and only

include it when necessary.

One further limitation of the experiments seen in Chapters 5 and 6 is that they have only

been run for one realisation of the model. It would be bene�cial to run the code for di�erent

realisations to check that similar results are obtained.

7.2.2 Considering the use of Reliability Diagrams

In section 4.3.2 we used RH to asses the quality of our solutions. However we found that they

were not ideal as they assumed equally weighted particles and no resampling. We mentioned

that it may be more appropriate to use a reliability diagram [Brocker and Smith, 2007],

[Wilkes, 1995] to tell us about the quality of our forecast. The reliability diagram takes the

weighting of the particles into account and would therefore provide us with a more accurate

diagnostic to allow us to determine the reliability and quality of the forecast.

7.2.3 Investigating the Q matrix sensitivity

In section 6.3 we showed that by reducing the di�erence between the background error variance

and the observation variance we greatly increased the accuracy of the PFMT solution. It would

be of interest to see if the improvement in the solution was as great if the same experiment

was carried out for the PF. This would allow us to know if this decrease in error was more

advantageous for the PFMT. However setting the variances of the background and observation

equal was not the only result concerning the Q matrix that improved the solutions. When

the code was tested it was discovered that decoupling the Q matrix from the B parameter

also increased the accuracy of the solution. Unfortunately there was not time to pursue this

discovery, but it would be interesting and maybe important to know why this decoupling

increases the accuracy of the solution.
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Appendix B

This appendix includes a number of plots that support the work, seen in section 6, on splitting

the state. Each plot shows the PFMT solutions to the Lorenz equations with di�erent parts

of the states mode tracked. These solutions are obtained from code run with the following

parameters: Initial conditions x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0 to

t = 1 with a timestep � = 0:01. Noise parameter B = 0:1. N = 500 particles.

Figure 7.2: PFMT solution of the Lorenz equations with 	r = (x) and 	s = (y; z). Colours

as in Figure 5.1. Initial conditions x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0

to t = 1 with a timestep � = 0:01. Noise parameter B = 0:



Figure 7.3: PFMT solution of the Lorenz equations with 	r = (y) and 	s = (x; z). Colours

as in Figure 5.1. Initial conditions x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0

to t = 1 with a timestep � = 0:01. Noise parameter B = 0:1. N = 500 particles.
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Figure 7.5: PFMT solution of the Lorenz equations with 	r = (y; z) and 	s = (x). Colours

as in Figure 5.1. Initial conditions x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0

to t = 1 with a timestep � = 0:01. Noise parameter B = 0:1. N = 500 particles.
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Appendix C

This appendix includes a plot that supports the work in section 6.3.1. The plot shows the

PFMT solutions to the stochastic Lorenz equations with observation error variance = 0:01.

This solution is obtained from code run with the following parameters: State splitting 	r =

(x; y) and 	s = (z). Initial conditions x = 0:00001, y = 0:00001, z = 2:00001. From time

t = 0 to t = 1 with a timestep � = 0:01. Noise parameter B = 0:1. N = 50 particles.

Figure 7.6: PFMT solution of the Lorenz equations with 	r = (x; y) and 	s = (z). Colours

as in Figure 5.1. Initial conditions x = 0:00001, y = 0:00001, z = 2:00001. From time t = 0

to t = 1 with a timestep � = 0:01. Noise parameter B = 0:1. N = 50 particles. Observation

error variance = 0:01
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