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Abstract 
 

In this dissertation we will discuss the finite difference method for approximating 
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1 Introduction 
 
Recently, the numerical solution of conservation laws with a source term, i.e. 



 
 

 
 

 

4 
 
 

 

 

 

 

 

 

 

Figure 1-1: Shallow Water Equation. 

 

The solution of (1.1) can be difficult to numerically approximate accurately even 

when the source term is not present, i.e.  
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Throughout Chapter 2, we will use finite differences to approximate (1.2) and discuss 

the accuracy and stability of the schemes derived.  We will look at the truncation error 

and show that first order finite difference schemes are dissipative and second order 

finite difference schemes are dispersive.  Flux-limiter methods will also be discussed 

so that we can minimise the dispersion present in second order finite difference 

schemes.    

In Chapter 2, we will see that the majority of difficulties encountered when 

approximating (1.2) can be overcome but we now need to consider how to 

approximate (1.1), where the source term is now present.  A great deal of research has 

been carried out in conservation laws with source terms but how to handle source 

terms, especially when they are stiff, is still an open issue.  In Chapter 3, we will 
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2 1-D Conservation Law 
 
 
In this chapter, we will look at some numerical schemes for approximating the 1-D 

scalar conservation law  

0
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uf

t

u
      (2.1) 

 
where u(x,t) is the conserved quantity and f(u) is the flux.  We can also rearrange (2.1) 

to obtain the quasi-linear form 
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t
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where a(u) = f ′(u), which is called the wave-speed.  If a(u) = c, where c is a constant, 

then (2.1) becomes the linear advection equation. 

 
 

2.1 1-D Linear Advection Equation 
 
The most basic form of the conservation law is the linear advection equation 
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where c is a constant and f(u) = cu.  Here, the constant c is known as the wave speed 

since a(u) = c.  There are a variety of numerical techniques for approximating the 

linear advection equation, such as finite element methods and finite volume methods.  

Another class of numerical technique used for approximating the linear advection 

equation are finite difference methods.  Finite difference methods
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2.1.1 First Order Schemes 
 
In order to obtain a first order scheme, we use a forward difference approximation in 

time and a backward difference approximation in space and assume both of these 

finite differences to be approximations at (i,n), i.e.  
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Substituting these into (2.3) gives 
 

,01
1

=⎥
⎦

⎤
⎢
⎣

⎡
Δ
−

+
Δ

− −
+

x
uu

c
t

uu n
i

n
i

n
i

n
i  

and hence, 
 ( )uuvuu n

i
n
i

n
i

n
i 1

1
−

+ −−=     
 

where 
x

t
cv

Δ
Δ=  and is known as the Courant number.  This scheme is one of the most 

basic numerical approximations of the advection equation.  However, it can be shown 

that this scheme is numerically unstable if c < 0, in which case we use a forward 

difference approximation in space and time and assume that both are approximations 

at (i,n), i.e.  
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then substituting into (2.1) gives 
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This scheme is numerically unstable if c > 0.  Separately, these schemes can become 

numerically unstable, but if we combine them 
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we obtain the Upwind method with switching through v = 0.  This scheme can still 

become unstable but only for ⏐v⏐> 1.  This will be discussed later. 

Alternatively, we could obtain another first order scheme if we use a forward 
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Substituting (2.7) and (2.8) into (2.6) gives 
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 but if we use central difference approximations in space and assume that both are 

approximations at (i,n+1) instead of approximations at (i,n)  
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we obtain the implicit Lax-Wendroff scheme.  This scheme is implicit since terms 

involving n+1 appear on the right hand side of the equation.  Implicit schemes cause 

difficulties since we now have to solve a tri-diagonal system at each time step.  Re-

arranging (2.10) 
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great deal more and definitely too many to look at in this section.  For a more in depth 

discussion of finite difference schemes for the advection equation, look in Kroner[8], 

LeVeque[7] and Ames[14]. 

 

2.2 1-D Conservation Law 
 
In Section 2.1, we discussed some finite difference schemes for approximating the 

linear advection equation, which is a form of the scalar conservation law 

0
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∂
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x

uf

t

u
 

 
where f ′(u) = a(u).  However, we can adapt the techniques discussed in Section 2.1 so 

that we can numerically approximate the solution of the scalar conservation law but 

we must be careful how we approximate (2.1) since we wish to ensure conservation. 

 

2.2.1 Non-Conservative Schemes 
 
If a scheme is non-conservative, then the scheme will move discontinuities at the 

incorrect wave speed.  For example, if we approximated the quasi-linear form of 

equation (2.1) by using the finite difference method then we would obtain a non-

conservative scheme.  Consider inviscid Burger’s equation, i.e. 

0
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re-writing in quasi-linear form gives 
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and by using a forward difference approximation in time and a backward difference 

approximation in space and assuming that both are approximations are at (i,n), i.e. 
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2.2.2 Conservative Schemes 
 
To ensure conservation, we require that the method be in conservation form, i.e. 

( ) ( )[ ]uuuFuuuFsuu n
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i 111

1 ,...,,,...,, −+−−−++−−
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where F is called the numerical flux function and is of  p + q + 1 arguments.  We can 

ensure conservation by numerically approximating (2.1) and using a similar approach 

as we did in the previous sub-section.  For example, when we derived the Upwind 

scheme, we used a forward difference in time and either a forward or a backward 

difference in space depending on the value of v.  Here, we take a same approach but 

we will apply finite differences to f  instead of u, i.e. 
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Table 2-1: Finite difference schemes for the 1-D conservation law. 
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discretisation error, which is the error caused by using finite difference 

approximations to approximate the derivatives of (2.3).  As an example, consider the 

Lax-Friedrichs scheme (2.5) for the scalar conservation law 
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and by re-arranging 
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So, for stability we require 
 

1sincos1 22 ≤Δ−Δ+− xkvixkvv . 

 
Here, we can see that the amplification factor lies on an ellipse:  
 

xkvixkvv Δ−Δ+−=ξ sincos1 22  
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xkvvx Δ+−= cos1 22  
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So, the interval of absolute stability is an ellipse with centre (1-v2) and crosses the x-

axis at x = 1 and x = 1-2v2. Figure 2-3 shows the unit circle with the ellipse of the 

amplification factor inside the unit circle.  Here, we can see that for the ellipse to stay 

inside the unit circle, 121 2 −≥− v  and 01 2 ≥− v .  Hence, for the Lax-Wendroff 

scheme to be stable, 1≤v .  This condition on v
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Figure 2-3: Interval of stability for Lax-Wendroff 
 

 

 

Name of Scheme 
Order 

(space + time) 
Overall Order 

of Scheme 
Interval Of  

Absolute Stability 

Upwind (first order) 1 + 1 1 | v | ≤ 1 

Lax-Friedrichs 2 + 1 1 | v | ≤ 1 
Upwind (second order) 2 + 2 2 | v | ≤ 2 

Leapfrog 2 + 2 2 | v | ≤ 1 
Lax-Wendroff 2 + 2 2 | v | ≤ 1 
MacCormack  

Predictor-Corrector 
2 + 2 2 | v | ≤ 1 

Table 2-2: The interval of absolute stability and the order of some schemes. 
 

Earlier, Figure 2-2 showed the Upwind scheme becoming unstable for v = 1.25.  This 

is because the Upwind scheme is stable for 0 ≤ v ≤ 1, when c > 0, and since v lies 

outside the interval of absolute stability, the scheme will become unstable. 
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2.4 Dissipation, Dispersion and Oscillations 

2.4.1 Dissipation 
 
It can be show that all first order schemes suffer from dissipation which can result in a 
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Earlier, we saw that this scheme had a truncation error of 
 

)()(
622

23
3

32

2

22

2

2

tOxO
x

ux

x

u

t
x

t

utn
i Δ+Δ+

∂
∂Δ+

∂
∂

Δ
Δ−

∂
∂Δ=Τ  

 
and by using (2.8) 
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So, the Lax-Friedrichs scheme is a second order approximation to 
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      (2.12) 

[ ]v
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xD 2
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1
2

   where −
Δ

Δ= .  Equation (2.11) is known as the linear advection-diffusion 

equation and is ill-posed if D < 0.  In this case, equation (2.12) is well posed 

since 0
2

   
2

≥
Δ

Δ
t

x  so, for (2.12) to be well posed [ ] 1 01  2 ≤⇒≥− vv .  Hence, since for 

stability, 1≤v , equation (2.12) is well posed as long as the scheme is stable.  So, the 

Lax-Friedrichs scheme qualitatively behaves like the solution of (2.12).  Now, by 

using the Fourier Transform of u with respect to x  

( ) ( )∫
π

=ξ
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ξ dxetxutu ix,
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1
,ˆ  

and substituting into (2.12), we may obtain that (2.12) is an ODE with solution 
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and by using an inverse transform, we may obtain 
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Here, we can see that the solution is of the form ( )( )e xti ξ−ξω , which represents a 

travelling wave with decreasing amplitude, ( )eu tD ξ−ξ 2
0,ˆ .  The frequency is ω(ξ) and 

is dependent on the wave number ξ.  In this case the frequency is ω(ξ) = cξ, this is 

also known as the dispersion relation.  Also, 

( )
ξ
ξω

 

is known as the phase velocity and gives us the wave speed of each wave. 

For the Lax-Friedrichs scheme, the phase velocity is 

( )
c=

ξ
ξω

. 

Hence, the waves all travel at the same speed and so, the Lax-Friedrichs scheme is 

non-dispersive.  However, the Lax-Friedrichs scheme suffers from dissipation, due to 

the wave travelling with decreasing amplitude.  Hence, the Lax-Friedrichs scheme 

suffers from dissipation but not dispersion.  We can also show that the Upwind 

scheme with v > 0 suffers from dissipation, since the truncation error of the scheme is 

[ ] )()(
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the scheme is a second order approximation to (2.12) with 

( )vx
c

D −Δ= 1
2

. 

 
Hence, the Upwind scheme is also dissipative and since 
 

( ) ( )vx
c

v
vx

c −Δ>⎟
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⎝
⎛ +−Δ 1

2

1
11

2
, 

 
where the left-hand side represents the value of D for the Lax-Friedrichs scheme, we 

can see that the Lax-Friedrichs scheme is more dissipative than the Upwind scheme 

for v > 0. 
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For stability, we require 01    1        1  22 ≤−⇒≤⇒≤ v vv , which means that for η < 0, 

0
6

2 ≥Δx
c

 and since c = 1 and Δx > 0, verifies that η < 0 creating oscillations behind 

the discontinuity. 

In general, all first order schemes suffer from dissipation but are non-dispersive, and 

all second order schemes suffer from dispersion but are non-dissipative.  For a more 

in depth discussion on wave theory, see Whitham[9] and Ames[14]. 

 
 

2.5 Flux-limiter Methods 
 
So far we have seen that, in general, all first order schemes suffer from dissipation and 

all second order schemes suffer from dispersion, which creates oscillations around the 

discontinuity.  However, there is a method which switches between a second order 

approximation when the region is smooth and a first order approximation when near a 

discontinuity.  This method considerably reduces the size of the oscillations by using 

a first order approximation near discontinuities and is called the flux-limiter method.   

Figure 2-6 shows some numerical results of the Lax-Wendroff scheme with and 

without the Superbee flux-limiter method applied to the scheme and with the exact 

solution for initial data 

⎩
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⎧
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3.0  if   0

3.0  if   1
)0,(

x

x
xu . 
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Lax-Wendroff scheme for advection equation with c = 1, dx = 0.002, dt = 0.001 and t = 
0.5.
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We can re-write this equation as the first order Upwind scheme plus a second order 

correction term.  Assuming that vi+1/2 > 0, the Lax-Wendroff scheme can be written as  
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and we may obtain 
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Here, FL(u;i) represents the Upwind scheme and FH(u;i) represents the second order 

correction term.  Similarly, assuming that vi+1/2 < 0, we may obtain 
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We now need to measure the smoothness of the data so that we may choose the flux-

limiter to obtain second order accuracy and the TVD property.  The TVD property is 
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Figure 2-7: TVD region for finite difference schemes. 
 

 

 

 
 

 

 

 

 

 

 
 

Figure 2-8: Second order TVD region for finite difference schemes. 
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3 Conservation Law with Source 
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,  

 
as a test problem to illustrate some numerical results. 
 
 
 

3.1 Basic Approach 
 
The most basic finite difference approach used to numerically approximate (3.1) is to 

‘add’ the source term to a scheme that numerically approximates the conservation law 
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Upwind (first order) with dx = 0.01, dt = 0.001 and t = 0 to 0.5.
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Lax-Wendroff + TVD with dx = 0.01, dt = 0.001 and t = 0 to 0.5.
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Figure 3-3: The Lax-Wendroff scheme with Superbee flux-limiter and source term 
‘added’. 

 
 

Comparison of schemes with source term added on explicitly.  dx = 
0.01, dt = 0.001 and t = 0.5.
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This approach will work with all schemes discussed in Chapter 2 and, in general 
 

tRuu n
i

SCHEME
i

n
i D+=+1 .          (3.4) 

 

Here, uSCHEME
i  represents a numerical scheme of the conservation law without a 

source term present.  Also, by assuming the source term to be an approximation at 

(i,n+1), we can obtain a semi-implicit scheme 

tRuu n
i

SCHEME
i

n
i D+= ++ 11 .         (3.5) 

 
Figure 3-1, Figure 3-2, Figure 3-3 and Figure 3-4 are all results of schemes of the 

form (3.4) applied to (3.2) with initial data (3.3).  Figure 3-1 shows the Upwind 

scheme with the source term ‘added’, Figure 3-2 shows the Lax-Wendroff scheme 

with source term ’added’ and Figure 3-3 shows the Lax-Wendroff scheme with 

Superbee flux-limiter and source term ‘added’.  Figure 3-4 shows the Upwind 

scheme, Lax-Wendroff scheme and Lax-Wendroff scheme with Superbee flux-limiter, 

all with the source term explicitly ‘added’ on.  Here, we can see that the Upwind 

scheme with source term ‘added’ suffers badly from dissipation and that the Lax-

Wendroff scheme with source term added suffers badly from dispersion resulting in 

very large oscillations being present.  The most accurate scheme was the Lax-

Wendroff scheme with Superbee flux-limiter and source term ‘added’.  In addition, 

we can see all schemes are conservative since the discontinuity was moved at the 

correct wave speed.   
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),( txR
x

u
c

t

u =
µ
µ+

µ
µ

             (3.10) 

 
which is also known as the advection transport equation.  The author states that this 

algorithm uses a similar approach to that of the Lax-Wendroff, which can be viewed 
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Here we can see that (3.12) is a better approximation of the advection-diffusion 

equation, 
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, 

and is only first order in space and time.  However, we can construct a numerical 

estimate of the error and subtract it from (3.12) which will make the scheme second 

order.  This approach is similar to that of the Lax-Wendroff scheme for the advection 

equation, which uses central differences to approximate the right hand side of (3.12) 

whereas MPDATA uses special properties of the Upwind scheme for approximating 

and compensating the error.  We can re-write the error term as 
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is a pseudo velocity.  Then by using 
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where the superscript (1) denotes the first approximation of the advection equation 

(3.11), we may obtain the first order accurate approximation 
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of the pseudo velocity.  In order to obtain a second order approximation, we subtract 

the error in the second pass 
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Hence, we may now obtain the basic MPDATA algorithm 
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MPDATA approach which numerically approximates (3.10) is derived by assuming 

the source term approximation to be at (i,n+½) giving  

( ) tRCuMPDATAu n
i

n
i

n
i D+= ++ 2/11 ,  

where ( )CuMPDATA n
i ,  corresponds to the basic MPDAT
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So, the MPDATA approach is considerably less dispersive than the Lax-Wendroff 

approach but, near the discontinuity, the Lax-Wendroff is considerably more accurate.  

But overall, the MPDATA approach is a lot more accurate than the Lax-Wendroff 

approach for approximating (3.10).  In general, the MPDATA approach (3.21) is very 

accurate when numerically approximating the advection-transport equation (3.10). 

3.3.3 MPDATA Approach for Conservation Law 
with Source Term R(x,t) 

 
So far we have only looked at MPDATA algorithms for the advection-transport 

equation.  Let us now consider MPDATA algorithms for the scalar conservation law 

with source term present (3.1), i.e. 

),(
)(

txR
x

uf

t

u =
µ

µ+
µ
µ

 

 
MPDATA can be adapted to approximate (3.1) by considering the velocity c of the 

advection-transport equation to no longer be a constant but to be a function of u
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However, wn
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+
+  is unknown since w is a function of u and u is only known at the grid 

points (i,n).  We could approximate wn
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+  by using the average 
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or by using linear interpolation 
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If we approximate by using linear interpolation, the method would require another 

scheme to initially start the algorithm off, since we require a value of u at (i,n-1), but 

if we use the average, the algorithm becomes impractical since we require the value of 

u at (i,n+1).  So far we have only considered the most basic MPDATA algorithm for 

the conservation law without source term and have encountered a lot of difficulties.  If 

we now consider a source term then the corresponding MPDATA scheme is 
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where ö
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õæ

ç
å D+ +

+wR
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uMPDATA n
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i

n
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2/1
2/1,

2
 corresponds to the basic MPDATA algorithm, 

for the conservation law without source term, discussed in Section 3.1.  However, care 

must be taken when using this scheme since if the source term is a function of u then 

even more difficulties arise when using this algorithm as we will see later. 

 
 

3.4 Comparison of Schemes Using Test Problem 
 
Now, by using the test problem (3.2) with initial data (3.3), we can obtain the 

numerical results in Figure 3-8 and Figure 3-9 and compare the numerical solution of 
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4 Conservation Law with Source 
Term R(x,t,u) 

 
 
In Chapter 3, we discussed some finite difference schemes that numerically 

approximate conservation laws with a source term which is a function of x and t.  In 

this chapter, we will discuss some finite difference schemes that numerically 

approximate conservation laws with a source term which is now a function of x, t and 

u, i.e. 
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     (4.1) 

 
where R(x,t,u) is the source term.  We shall see that difficulties will arise since the 

source term is now a known function of u as well as x and t, resulting in the numerical 

approximation of the source term no longer being exact.  Throughout this chapter, we 

will be using the following test problem considered by LeVeque and Yee[1]. 
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to illustrate some numerical results. 
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but we would then encounter other difficulties since we only know the values of un
i  

and un
i

1− , except initially when we do not know the values of ui
1− .  We could also 

calculate the derivative analytically and then approximate the derivative, i.e. ⎥⎦
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⎡
∂
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but the derivative of the source term may be extremely difficult to find since the 

source term is a function of u and u is a function of x and t.  Another approach we 

could take is to re-arrange ⎥⎦
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 in (4.6) by using the chain rule, i.e. 
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We then used a forward difference approximation in space and time, to obtain 
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However, if the source term is now also a function of u, then (4.8) becomes semi-

implicit since we no longer know the value of Rn
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as we did in the previous sub-section, but this would only create more problems.  

However, we could replace Rn
i

1+ with  

( ) ...11 +⎥⎦
⎤

⎢⎣
⎡
∂
∂−+≈ ++

u

R
uuRR

n

i

n
i

n
i

n
i

n
i  

and obtain 
 

( ) ( ) ( )[ ]

( ) ( )[ ]RRvRRv
t

u

Ru
Rt

ffvffv
s

ff
s

uu
u

Rt

n
i

n
ii

n
i

n
ii

n

i

n
in

i

n
i

n
ii

n
i

n
ii

n
i

n
i

n
i

n
i

n

i

12/112/1

12/112/111
1

42
                                  

222
1

−−++

−−++−+
+

−−−Δ−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡
∂
∂−Δ+

−−−+−−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡
∂
∂Δ−

 

the Lax-Wendroff approach for approximating (4.1). We can also apply flux-limiter 

methods to the Lax-Wendroff approach and obtain  
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where 
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and 
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Here φi denotes the flux-limiter method, which can be any of the flux-limiters in Table 

2-3.  If we use (4.4) to numerically approximate the test problem (4.2), we may obtain 

the results shown in Figure 4-2.  Here, we can see that the Lax-Wendroff approach 

has numerically approximated (4.2) very accurately.  Also, the numerical results in 
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and by substituting into (3.24), to obtain 
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where ( )CuMPDATA n

i ,  corresponds to the basic MPDATA algorithm with flux-

limiter 
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the first order approximation is 
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and φi  can be any of the flux-limiters listed in Table 2-3.  Here, we can see that the 

MPDATA approach for numerically approximating (4.1) is becoming very 

impractical.  This is because we are approximating approximations resulting in the 

accuracy of the algorithm reducing rapidly and we also require another scheme to start 

the algorithm off.  However, MPDATA can be used to accurately numerically 
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Here we can see that the first term on the right hand side of (4.11) can cause 

difficulties if the Courant number is not an integer.  This is because we are using a 

mesh where we only know the values at the grid points (iΔx,nΔt) and if v is not an 

integer, then the value of u required no longer lies on the mesh and is thus unknown.  

However, Roe[6] deduced that the only reasonable way to approximate this term is to 

use 
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then we may obtain a scheme that is second order accurate in the steady state, i.e. 
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Unfortunately, this scheme is only a first order approximation toi
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Also, we can apply the flux-limiter method to obtain  
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4.2.3 Some Numerical Results for the Explicit 
Upwind Approach 

 
Now, by using (4.24) to numerically approximate the test problem (4.2), we may 

obtain the numerical results in Figure 4-4. 

  

C o m p a r i s o n  o f  s c h e m e s  b a s e d  o n  R o e ' s  U p w i n d  a p p r o a c h  w i t h  d x =  1  c 1 ,  d t  =  0 . 0 0 1  a n d  t  =  1  5 . - c . 2 0 0 . 2

0 . 4 0 . 6

0 . 8 1

1 . 2 1 . 4 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 x u ( x , t )

E x a c t  U p w i n d  ( f i r s t  o r d e r )L a x - W e n d r o f fL a x - W e n d r o f f  +  T V D  F i g u r e  4 - 4 :  C o m p a r i s o n  o f  s c h e m e s  b a s e d  o n  R o e ’ s  U p w i n d  a p p r o a c h .   

 

H e r e ,  w e  c a n  s e e  t h a t  R o e ’ s  u p w i n d  a p p r o a c h  i s  g i v i n g  s o m e  v e r y  a c c u r a t e  r e s u l t s ,  

e s p e c i a l l y  f o r  t h e  s e c o n d  o r d e r  L a x - W e n d r

o f f  p l u s  S u p e r b e e  f l u x - l i m i t e r ,  b u t  t h e  

r e s u l t s  a r e  n o t  a s  a c c u r a t e  a s  i n  F i g u r e  4 - 1 ,  w h e r e  w e  ‘ a d d e d ’  t h e  s o u r c e  t e r m ,  a n d  

F i g u r e  4 - 2 ,  w h e r e  w e  u s e d  t h e  L a x - W e n d r o f f  a p p r o a c h .   H o w e v e r ,  w e  w i l l  s e e  l a t e r  

t h a t ,  i n  g e n e r a l ,  R o e ’ s  U p w i n d  a p p r o a c h  i s  a  l o t  m o r e  a c c u r a t e  a t  n u m e r i c a l l y  

a p p r o x i m a t i n g  ( 6 
 1 )  t h a n  ‘ a d d i n g ’  t h e  s o u r

c e  t e r m  a n d  t h e  L a x - W e n d r o f f  a p p r o a c h ,  

e s p e c i a l l y  w h e n  t h e  s o u r c e  t e r m  i s  s t i f f .  
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and, by re-arranging we may obtain 
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Here, A is a penta-diagonal matrix and unfortunately requires a lot more calculations 

than before resulting in the interval of absolute stability and the accuracy of the 

scheme being reduced.  However, Embid, Goodman and Majda[2] discussed using the 

first order tri-diagonal matrix for the second order Upwind approach based on the 

Engquist-Oscher scheme to increase the interval of absolute stability.  Using the same 

approach, we can obtain the second order implicit Upwind approach, i.e. 
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They also state that by using the first order matrix, the interval of absolute stability 
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Implicit Upwind approach with dx = 0.01, dt = 0.001 and t = 0.5.
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Figure 4-5: Comparison of schemes based on the implicit Upwind approach. 
 

 

4.4 LeVeque and Yee’s MacCormack Approach 
 
In this sub-section we will look at how the MacCormack scheme, which is listed in 

Table 2-1, can be adapted to numerically approximate (4.1).  This approach is 

frequently used and was discussed by Yee[5], LeVeque and Yee[1] and Embid, 

Goodman and Majda[2].   

 

4.4.1 Explicit MacCormack Approach 
 
We can approximate (4.1) by expanding on the explicit MacCormack scheme.  The 

MacCormack method is the Lax-Wendroff scheme re-written in predictor-corrector 

form, i.e. 
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for the conservation law without source term. We can adapt (4.35) to include the 

source terms explicitly and still maintain second order accuracy, i.e. 
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4.4.2 Semi-Implicit MacCormack Approach 
 

Yee[5] and LeVeque and Yee[1] also discuss an approach which considers the source 

term approximation to be at (i,n+1) but still uses the explicit MacCormack scheme 

resulting in a semi-implicit scheme.  This approach is obtained by re-writing (4.36) as 
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Yee[5] discusses various choices of θ and deduces that we can obtain second order by 

setting 
2

1=θ .  We can also apply the modified flux described in the previous sub-

section by re-writing (4.38) as 
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and Qi 2/1+ is chosen from Table 4-2. 

 

4.4.3 LeVeque and Yee’s Splitting Method for the 
MacCormack Approach 

 
LeVeque and Yee[1] also discuss a splitting method for the semi-implicit 

MacCormack approach discussed in this sub-section.  The splitting method alternates 

between solving the conservation law with no source term 
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where ( )tS f Δ  denotes the numerical solution of (4.40) and ( )tS Δψ  denotes the 

numerical solution of (4.42).  LeVeque and Yee[1] also state that in order to obtain 

second order accuracy, we can use the Strang splitting [11] to obtain 
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numerical solution of (4.42).  They also give a splitting method of the form (4.42) for 

the semi-implicit MacCormack approach with TVD discussed in the previous sub-

section: 
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4.4.4 Some Numerical Results for the MacCormack 
Approach 

 
If we apply (4.37), (4.39) and (4.43) with and without TVD to the test problem (4.2), 

we may obtain the numerical results in Figure 4-6 and Figure 4-7.  Here, we can see 

that all three approaches give practically the same results but, as with the Lax-

Wendroff approach, this will not always be the case. 

Throughout this chapter, we have seen that there are a variety of methods used for 

approximating conservation laws with a source term present, which is a function of x, 

t and 





 80 

 
 
 
 
 
 

5 Some Numerical Results 
 
In this chapter, we will apply the different approaches discussed throughout this 

dissertation to a specific test problem (5.1) which was considered by LeVeque and 

Yee[1], i.e.  
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and whose exact solution, which is shown in Figure 5-1, is 
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Here, Δtμ determines the stiffness of (5.1) and as sμ becomes greater than 1 the 

propagation speed of some approaches can be greatly affected. When Δtμ > 1, the 

source term is said to be stiff since, for most approaches, we can no longer choose an 

adequate step-size in time to produce accurate results.  A stiff source term moves the 

discontinuity to a cell boundary for each time step resulting in the discontinuity being 

moved at entirely the wrong speed.  For example, if we apply the Lax-Wendroff 

approach  (4.8) to the test problem (5.1), with μ = 1, 10, 100 and 1000, then we may 

obtain the numerical results in Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5 
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respectively.  Here, we can see that as Δtμ increases, the source term becomes stiff 

and the numerical approximation becomes less and less accurate.  This is because as 

Δtμ increases, the discontinuity moves slower and slower which means that when the 

source term is stiff, the scheme is no longer conservative.  However, not all of the 

schemes discussed in Chapter 4 will exhibit this behaviour, as we will see later. 

We will use test problem (5.1) to compare the results of some of the methods 

discussed throughout this dissertation to ascertain which approach produces the most 

accurate results by seeing which approaches are conservative as the source term 

becomes stiff.  

 
Name Of Approach Reference No. Order Paper 

Explicit ‘adding’  (4.5) 1 / 2 - 
Semi-implicit ‘adding’ (4.7) 1 / 2 - 

Lax-Wendroff (4.8) 2 - 
MPDATA (4.9) 2 Smolarkiewicz + Margolin[3] 

Roe’s Explicit  
Upwind I 

(4.21) 1 
Roe[6], 

 Vazquez + Bermudez[4] 
Roe’s Explicit 

Upwind II 
(4.23) 2 

Roe[6],  
Vazquez + Bermudez[4] 

Implicit Upwind I (4.30) 1 Embid, Goodman + Majda[2] 
Implicit Upwind II (4.34) 2 Embid, Goodman + Majda[2] 

Explicit  
MacCormack 

(4.37) 2 
Yee[5], 

 LeVeque + Yee[1], 
 Embid, Goodman + Majda[2] 

Semi-Implicit 
MacCormack 

(4.39) 2 
Yee[5],  

LeVeque + Yee[1] 
Splitting Method  
( MacCormack ) 

(4.43) 2 LeVeque + Yee[1] 

Table 5-1: Some different approaches for numerically approximating (5.1). 
 

We will be discussing the results of the schemes listed in Table 5-1 which can also be 

found in Appendix A where they are written in full. 
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The MPDATA approach is the first method that has ensured conservation when the 

source term is stiff.  This is because the MPDATA approach compensates for the 

terms in the truncation error due to the source term approximation resulting in a 

conservative method even when the source term is stiff. 

 

5.4 Roe’s Upwind Approach 
 
Now, by applying (4.21) and (4.23) to the test problem (5.1), we may obtain the 

numerical results in Figure 5-12.  Here, we can see that by using (4.21), the method 
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5.7 Overall Comparison 
 
So far, we have looked at each approach individually but we will now compare all of 

the different approaches listed in Table 5-1 to see which approach produced the most 

accurate numerical results when applied to the test problem (5.1).   

5.7.1 First Order Comparison 
 
If we apply all the first order approaches listed in Table 5-1 to the test problem (5.1), 

then we may obtain the numerical results in Figure 5-18.  Here, we can see that Roe’s 

Upwind approach has obtained the most accurate numerical approximation.  

However, Roe’s Upwind approach is not very accurate since the numerical 

approximation moved the discontinuity too fast resulting in the discontinuity being at 

x = 0.85 when t = 0.5 instead of at x = 0.8 when t = 0.5.  The explicit ‘adding’ 



 87 

MacCormack approach, explicit ‘adding’ approach, Lax-Wendroff approach, explicit 

MacCormack approach and Splitting method based on the MacCormack approach all 

gave similar inaccurate results.  They all moved the discontinuity too slow resulting in 

the discontinuity being at approximately x = 0.45 when t = 0.5 instead of at x = 0.8 

when t = 0.5.  Also, notice how Roe’s Upwind approach failed to move the 

discontinuity at all.  Hence, the most accurate second order scheme was the implicit 

Upwind approach followed by the MPDATA approach with the implicit Upwind 

giving very accurate results and the MPDATA approach giving accurate results.  

Here, most of the schemes were not conservative except for the second order implicit 

Upwind approach and the MPDATA approach. 

5.7.3 Second Order with TVD Comparison 
 
If we apply all the first order approaches listed in Table 5-1 to the test problem (5.1), 

then we may obtain the numerical results in
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failed to move the discontinuity at all in the second order comparison, also produced 

the second most accurate set of results.  However, the results of Roe’s upwind 

approach were not very accurate since the method moved the discontinuity too fast 

resulting in the discontinuity being at approximately x = 0.9 when t = 0.5.  The most 

accurate method for the second order approach with TVD was the MPDATA 

approach.  The MPDATA approach moved the discontinuity too slow resulting in the 

discontinuity being at approximately x = 0.78 when t = 0.5.  All of the schemes with 

TVD are no longer conservative when the source term is stiff. 

5.7.4 Conclusion 
 
Hence, overall the second order approach with TVD did not necessarily produce more 

accurate results than without TVD.  In fact the most accurate results were obtained by 

not using TVD where two of the approaches were conservative when the source term 

was stiff.  However, some of the approaches improved when TVD was applied and 

others became less accurate.  This is because in most cases, when TVD was applied 

the discontinuity would move faster.  In addition, the majority of first order 

approaches produced extremely inaccurate results except for Roe’s Upwind approach 

which slightly overshot the discontinuity.  

 

5.8 Changing the Step-Size when the Source Term is 
Stiff 

 
Throughout this section, we have only considered the numerical results using Δx = 

0.01 and Δt = 0.001, which implies that the Courant number is s = 0.1.  However, 

when the source term is stiff, the accuracy of some of the schemes can vary if the 

step-size is changed.  For example, if we use the first order explicit Upwind approach 
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(4.21) on the test problem (5.1) with Δx = 0.02 and Δt = 0.0025, which implies that 

the Courant number is s = 0.125, then we may obtain the results in Figure 5-21.  Here 

we would expect the results to be less accurate than the results shown in Figure 5-12 

but Figure 5-21 shows that the results of the first order explicit Upwind approach are 

more accurate since the approach moved the discontinuity slower than in Figure 5-12.  

I.e. when we used Δx = 0.01 and Δt = 0.001 the explicit first order Upwind approach 
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Comparison of MacCormack approach with dx = 0.01, dt = 0.001 
and t = 0.5.
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Figure 5-17: Comparison of MacCormack approach with stiff source term. 
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6 Conclusion 
 

6.1 Final Comparison 
 
Throughout this dissertation, we have discussed many techniques for numerically 

approximating the conservation law with and without source term, i.e. 

( ) ( )utxR
x

uf

t

u
,,=

∂
∂+

∂
∂

    (6.1) 

 
and encountered many difficulties, especially when the source term is a function of u. 

We have also seen that numerically approximating source terms accurately can be 

extremely difficult to do.  However, we have managed to overcome the majority of 

the difficulties encountered and we have obtained some very accurate finite difference 

schemes, even when the source term is stiff. 

For example, in Chapter 5, we applied the different approaches to the advection-

transport equation with a stiff source term, test problem (5.2), and compared the 

numerical results to obtain the most accurate first order approach, second order 

approach and second order approach with TVD.  These three most accurate 

approaches are compared in Figure 6-1.  Figure 6-1 shows us that the most accurate 

approach discussed in this project was the second order implicit Upwind approach.  

Roe’s first order upwind approach moved the discontinuity too fast but this was due to 

a small Courant number.  If we increased the step-size, Roe’s first order Upwind 

approach would give us more accurate results but not as accurate as the second order 

implicit Upwind approach.  Notice how the second order MPDATA approach with 

TVD gave more accurate results than Roe’s first order Upwind but less accurate than 

the second order implicit Upwind approach. 
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Comparison of most accurate approaches with dx = 0.01, dt = 0.001 
and t = 0.5.
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Figure 6-1: Comparison of most accurate approaches with stiff source term. 

 

Comparison ofsecond order Upwind with dx = 0.01, dt = 0.001 and t 
= 0.5.
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Figure 6-2: Comparison of explicit, semi-implicit and implicit second order Upwind 
with stiff source term. 
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This may be due to TVD causing the discontinuity to move faster, when the source 

term is stiff, or may be due to an implementation problem. 

So far, we have seen that the second order implicit Upwind approach has produced the 

most accurate results.  We have looked at a variety of techniques for numerically 

approximating the source term but we wish to know which technique produces the 

most accurate results.  Figure 6-2 shows some numerical results using the second 

order Upwind approach applied to the test problem (5.2) but with: 

1. The source term and the conservation law approximated explicitly 

(Explicit). 

2. The source term approximated implicitly and the conservation law 

approximated explicitly (Semi-implicit). 

3. The source term and the conservation law approximated implicitly 

(Implicit). 

Here, we can see that the semi-implicit approach produced the least accurate results 

due to the method moving the discontinuity too fast and the explicit approach 

produced the second most accurate numerical results.  This is unusual since we would 

expect the semi-implicit approach to be more accurate than the explicit approach.  

However, when we used the Lax-Wendroff approach, we saw that the semi-implicit 

approach was more accurate than the explicit due to the discontinuity being moved 

slightly faster for the semi-implicit approach, see Figure 5-8.  Thus, the semi-implicit 

approach moves the discontinuity slightly faster which makes all approaches which 

move the discontinuity too slow, i.e. Lax-Wendroff with source term ‘added’, more 

accurate but all approaches which move the discontinuity at the correct speed or too 

fast, i.e. the second order Upwind approach, less accurate.  The implicit approach 
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Appendix A 
 

A Listing of all Numerical Schemes 
Discussed in Chapters 4 and 5. 

 
 
 
 
All approaches numerically approximate conservation laws with a source term 

present, i.e. 
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1. Explicit ‘Adding’ of Source Term: (First / Second Order) 
 

tRuu n
i

SCHEME
i

n
i Δ+=+1  

 

where uSCHEME
i  represents a numerical scheme which approximates the conservation 

law without a source term present and is of first / second order. 

 
 
2. Semi-Implicit Adding of Source Term: (First/Second Order) 
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where uSCHEME
i  represents a numerical scheme which approximates the conservation 

law without a source term present and is of first / second order. 
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3. Lax-Wendroff Approach: (Second Order) 
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and φi denotes the flux-limiter which can be any of the flux-limiters in Table A-1.  
 
 
 
4. MPDATA Approach: (Second Order) 
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and φi denotes the flux-limiter which can be any of the flux-limiters in Table A-1.  
 
 
5. Roe’s Explicit Upwind I: (First Order) 
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where  0 ≤ α ≤ 1 and if α = ½ then the scheme is second order accurate in space. 

 
6. Explicit Upwind II: (First Order) 

( ) ( ) ( )( )
( ) ( ) ( )( )⎪⎩

⎪
⎨
⎧

<α+α−α+α−Δ−−

>α+α−α+α−Δ−−
−=

−+++

+−−−+

0  if    1,1

0  if    1,1

2/1111

2/11111

vuuxxtRffs

vuuxxtRffs
uu

i
n
i

n
iii

n
i

n
i

i
n
i

n
iii

n
i

n
in

i
n
i . 

 
where  0 ≤ α ≤ 1 and if α = ½ then the scheme is second order accurate in space. 

 
7. Roe’s Explicit Upwind III: (Second Order) 
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and 0 ≤ α ≤ 1. If α = ½ then the scheme is second order accurate in space.  Also, φi 

denotes the flux-limiter which can be any of the flux-limiters in Table A-1.  
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and Qi+1/2 can be any of the values in Table A-2. 

 

Name of Flux-limiter φ(θ) 
Minmod φ(θ) = max(0,min(1,θ)) 

Roe’s Superbee φ(θ) = max(0,min(2θ,1),min(θ,2)) 

van Leer ( )
θ+
θ+θ

=θφ
1

 

van Albada ( )
θ+
θ+θ=θφ
2

2

1
 

Table A-1: Some second order flux-limiters. 

 
 

Some choices of Qi 2/1+  where uu n
i

n
ii −=Δ ++ 12/1 . 

( ) ( ) Δ−ΔΔ+ΔΔ= +++−++ 2/12/32/12/12/12/1 ,modmin,modmin iiiiiiQ  

( )ΔΔΔ= ++−+ 2/32/12/12/1 ,,modmin iiiiQ  

( )⎟
⎠
⎞⎜

⎝
⎛

Δ+ΔΔΔΔ= +−++−+ 2/32/12/32/12/12/1 2

1
,2,2,2modmin iiiiiiQ  

Table A-2: Some choices of Qi 2/1+ for the MacCormack approach. 
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