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Chapter 1

Introduction

Partial di�erential equations (PDEs) are frequently used to describe physical

phenomena such as the propagation of sound or heat, uid ow and physical

laws such as the conservation of mass, energy or momentum. Their solutions

provide an insight to the physical process they are modelling, by providing

information on some quantity throughout a domain. The domains can be

�xed, but more interestingly they can be dictated by their solution. These

types of problems are usually classi�ed as moving or free boundary problems

and are ubiquitous in the mathematical description of physical processes.

Moving boundary problems have had little attention until recently, when

in the 1960s, due to their relevance in di�usion and heat ow processes, a

modern approach to the theory of non-linear PDEs brought new insight and

methods to investigate this phenomenon.

During this interest in moving boundary problems, a phenomenon was

discovered with regards to the time dependent PDEs, where the boundary

would initially wait for a period of time before it moved. This phenomenon

is called the waiting time and has been found to occur in several di�erent

equations including the shallow water equation and the non-linear di�usion

equations.
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This dissertation will investigate the waiting time phenomenon of the evo-

lutionary, degenerate, second and fourth order non-linear di�usion equations

by using a moving mesh �nite element method [3].

We begin with a look at the applications of nonlinear di�usion. Both the

porous-medium equation (PME) and the thin-�lm equation (TFE) will be

presented in detail with a brief mention of the Richard’s equation.

In Chapter 3 we focus on the waiting time phenomenon and discuss the

existing literature. The results and methods presented in these papers will be

used for both analytical and numerical purposes throughout the dissertation.

Then, in Chapter 4, a conservation of mass law will be used in conjunction

with both the PME and the TFE to derive the velocity of u across the whole

region and importantly, with regards to waiting times, the velocities at the

boundaries of the domain.

The initial conditions play a very important role in whether the waiting

time phenomenon will occur, so in Chapter 5, using the velocity derived in the

previous chapter, the intitial behaviour of the boundary will be investigated.

This analysis gives particular cases for when the waiting time will occur, but

gives no clues as to the duration of the waiting time, or to the behaviour of

the boundaries for t > 0.

In Chapter 6, we examine the velocities for t > 0 by constructing an

advection-di�usion equation for the velocity in terms of v and u. We shall

use the results that the method of characteristics give and explain why they

are unsuitable for this problem, followed by a derivation of a numerical ap-

proximation and then �nally a discussion of the results.

Then in Chapter 7, we shall derive the moving �nite element method that

will be used to numerically solve both the PME and the TFE. Near the end

of the chapter, a discussion of the methods used to computationally solve

these equations will be o�ered.
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In Chapter 8, we present the numerical results obtained by using the

moving �nite element method and explain them in detail, noting in particular

the shock formations and front movements that occur.

In the penultimate chapter, we shall focus our investigations on the

Richards’ equation. This involves the use of the analytical and numerical

methods described in the previous chapters. The numerical results shall be

briey examined.

Finally a summary of the dissertation will be presented, including the

results from our investigations. Then we end on a discussion of possible

further work.
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In this chapter we shall look at some applications of (2.2) in an attempt

to motivate interest in the generation of numerical solutions that exhibit the

waiting time phenomenon and also briey examine the literature currently

available.

2.1 The Porous-Medium Equation

The PME is of the form

ut = (unux)x (2.3)

where n is as stated above and with u = 0 at the boundary.

There are many di�erent applications by varying n that naturally arise in

the study of physical problems. When n = 1, the equation models the ow in

thin saturated regions in a homogeneous isotropic porous media [14]. This

equation is also known as the Boussinesq equation when an impermeable

boundary is set at x = 0.

When n � 1, it provides a model for the percolation of a compressible gas

through porous media, neglecting gravity [19]. With n = 3, the equation (2.3)

models thin viscous liquid �lms spreading under gravity over a horizontal

plane [17].

In Chapter 9, we extend the second order di�erential equation by adding

an extra term. This equation is the nondimensionalised Richards’ equation

and is of the form

st =
�
sk�2uz + sk

�
z

where s = s(z; t) is the saturation of the wetting phase at height z.

This equation models the distribution of a wetting uid within an arti-

�cially saturated porous medium, subject to capillary pressure and gravity,

[9], [23]. When k = 3, this equation models the ow of a dense non-aqueous
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Chapter 3

Existence of Waiting Times

The waiting time phenomenon can be de�ned as being the �nite non-zero

time for which the free boundary is stationary. Typically, during this time,

the initial density pro�le redistributes itself before the boundary begins to

move.

This phenomenon was initially conjectured by Knerr [13] for the PME,

and then was further investigated by Lacey et al [15]. They noted two ap-

plications for the waiting time solutions of the PME. It had been observed

that regions of water vapour in dry powder remained localised for periods

of time before spreading out. The second application was discovered after

observations of a blob of viscous liquid placed at rest on a horizontal surface

had a stationary perimeter for a non-zero time interval before spreading out

under gravity. It is worth noting that the observer commented on the fact

that this stationary perimeter only occurred during certain initial pro�les

of the liquid blob. Lacey et al. found that this was shown mathematically

with the self similar solution they constructed, and in Chapter 5, we shall

see that this plays an important role in selecting initial conditions for which

the waiting time phenomenon occurs.

The rest of the chapter will look at the important analytical and numerical
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results from the literature available for the PME and the TFE.

3.1 Waiting Times of the Porous Medium Equa-

tion

As mentioned previously, Knerr [13] proved the existence of waiting time

solutions. His work, (along with Aronson and Kamin) spurred on further

investigations which shall now be discussed in further detail as they contain

important results.

Lacey and Ockendon [15] initially looked at the waiting time solutions

of the PME by constructing similarity solutions that, when prescribed with

appropriate initial data, demonstrated a boundary that exhibited waiting

time behaviour and also continued to exist after the interface began to move.

Using a comparison theorem developed by Oleinik et al [21], they found lower

and upper bounds on the waiting time that signi�cantly improved on results

found by Aronson et al [1]. They concluded that the dependence of waiting

times upon the global properties of the intitial data u0(x) was clear. Later on

in this dissertation, after deriving the velocity using a conservation of mass

argument in Chapter 4, we can analyse initial data to see whether the initial

velocity at the boundary is zero, implying a waiting time.

The next major development in the literature on this subject was Kath

and Cohens paper [12]. Their motivation was to improve on earlier works

by using a di�erent method to approximate bounds for the waiting time.

They used singular perturbation theory in the limit of small n which allowed

them to construct solutions for initial conditions that were not solvable by

similarity methods.

Kath and Cohen discussed ’corner shocks’ which were used to indicate a

discontinuous jump in the �rst derivative of u wrt x. Coincidentally, when
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when 0 < n << 1, the solutions tended to have an in�nite waiting time, yet

the solutions were not valid for large times.

As mentioned previously, Blowey, King and Langdons paper examines

small and waiting time behaviour for 0 < n � 4. Their formal asymptotic

results will be compared with the results found in Chapter 5. The numerical

results that they found were computed on a �xed grid with a multi grid solver

and they will be used as a comparison to the results we get for the TFE.

After reviewing the literature, we shall now move on and derive an equa-

tion for the velocity using a conservation of mass law. For both the analysis

and the numerical method, this is a fundamental part of the dissertation.
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Chapter 4

Conservation of mass

In this chapter we shall derive the velocity of the boundary by using a con-

servation of mass principle. This states that the mass of a quantity in a

closed system will remain constant, regardless of the processes acting inside

the system.

The boundary velocity of the generalised Reynolds equation will be de-

rived with the initial condition u = u0.

We begin by integrating (2.1) w.r.t. x over the whole region and then

applying the Reynolds transport theorem [26] to get an equation of the form

d

dt

Z b(t)

a(t)

udx =

Z b(t)

a(t)

�
@u

@t
+

@

@x
(uv)

�
dx

=

Z b(t)

a(t)

@u

@t
dx+ [uv]xN

x0

where a(t) and b(t) are the boundaries. Substituting in equation (2.2), leads

to
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d

dt

Z b(t)

a(t)

udx =

Z b(t)

a(t)

(unpx)x dx+ [uv]
b(t)
a(t)

= [unpx + uv]
b(t)
a(t)

Applying the boundary conditions u = 0 at a(t) and b(t) , we arrive to

the conservation of mass over the entire region 8t.

d

dt

Z b(t)

a(t)

udx = [unpx + uv]xN

x0
= 0

()Z b(t)

a(t)

udx = constant

To be able to calculate the interior velocities, we shall now consistently

de�ne a local conservation of mass principle for any interval (xi�1(t); xi(t))

Z xi(t)

xi�1(t)

udx = constant (4.1)

Applying Liebniz’ Integral rule to (4.1) 8t, yields

d

dt

Z xi(t)

xi�1(t)

udx =

Z xi(t)

xi�1(t)

@u

@t
dx+ u(xi(t); t)

@xi
@t
� u(xi�1(t); t)

@xi�1

@t
(4.2)

giving

[unpx + vu]
xi(t)
xi�1(t) = 0

By setting xi�1(t) = a(t) leads to

unpx + vu = 0 (4.3)
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Chapter 5

Initial Behaviour of the

boundary

In this chapter we shall look at the intitial behaviour at the boundaries

by using the velocity equation derived in the previous chapter. The initial

conditions we shall use for the numerical solutions of the PME and the TFE

were chosen so as to be comparable with previous numerical solutions by

Blowey et al. [6].

This has been investigated briey for the PME, but in a lot more detail

for the TFE by Langdon [16], and Blowey et al. [6] for initial conditions of

the general form

u(x; 0) = A0

�
xB � x2

��
As mentioned we shall use the initial data already studied. This is of the

form

u(x; 0) = 5

�
9

16
� x2

��
(5.1)

For the initial data to remain positive, we shall require the initial domain to

be x 2 [�0:75; 0:75].
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This initial data, combined with equation (4.5), can provide information

about the velocity of the uid at the boundary at t = 0. The two equations

will be looked at in turn.

5.1 Analysis of the Initial data for the Porous-

Medium Equation

We start by di�erentiating the initial data and substituting it into equation

(4.5), we have

vB = � lim
u!0

un�1ux

= (5)n�110� lim
x! 3

4

x

�
9

16
� x2

�n��1

From this it is clear that there are three cases involved. They are

� If n� < 1, vB ! +1 as x! 3
4
.

� If n� = 1, then vB = (5)n�1 30
4
�, �nite and positive.

� If n� > 1, vB = 0.

We shall investigate when n� > 1 as this shows that there is a waiting

time before the boundary begins to moves. Figure (5.2) shows the initial

velocities between 0:5 and the boundary 0:75.

5.2 Analysis of the Initial data for the Thin-

Film Equation

For the TFE, as expected, we see a more varied behaviour. Letting p = �uxx
and substituting from the third derivative of the initial data (5.1), we get
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Figure 5.1: Initial velocities of the PME using the intitial condions (5.1)

vB = lim
u!0

un�1uxxx = (5)n�160�(�� 1) lim
x! 3

4

x

�
9

16
� x2

�n��2

�(5)n�140�(�� 1)(�� 2) lim
x! 3

4

x

�
9

16
� x2

�n��3

The special case of � = 2, gives

vB = (5)n�1120 lim
x! 3

4

x

�
9

16
� x2

�2n�2

we have the following behaviour

� if n > 1 vB = 0.

� if n = 1 vB = 90.

� if n < 1 vB ! +1.

Also, another special case is if � = 1, then vB = 0.

Suppose that � 6= 2 or 1. Then
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� If n� > 3, vB = 0.

� If n� = 3, vB = �(5)n�130�(� � 1)(� � 2) and is therefore �nite,

positive or negative, depending on n and �.

� If n� < 3, vB ! �1 as x! 3
4
,

Figure 5.2: Initial velocities of the TFE using the intitial condions (5.1)

These results for the PME and the TFE coincide with Blowey, King and

Langdons results [16].

The analysis of the velocity equation at the boundary has resulted in

certain initial data having a waiting time period. In the next chapter an

advection-di�usion equation will be constructed to see the behaviour of the

velocity during the waiting time and we shall implement the results found in

this chapter.

18



Chapter 6

Velocity advection-di�usion

equation

Using equation (4.4), an advection-di�usion equation in terms of v can be

derived to investigate the behaviour of the velocity during the waiting period.

6.1 The velocity equation for the PME

By di�erentiating equation (4.4) w.r.t. t and substituting in the PDE of the

form ut = �(uv)x, we arrive to

vt + (2 + n)vvx = unvxx (6.1)

As can be seen, u is still part of the equation. This is unavoidable, and



Clearly equation (6.2) is an advection equation, and (6.3) is a second

order di�usion equation.

We shall use the method of characteristics to solve the advection part of

the PDE by �nding curves in the x� t plane that reduce the equation to an

ordinary di�erential equation (ODE). We shall look at the curves given by

dx
dt

= a(u) = a(u0) with the condition that du
dt

= 0.

Using the method of characteristics, the characteristic solution of equation

(6.2) is v = v(x0) on the line x = (2 + n)v(x0)t + x0, allowing crossing and

shock formation. This is evident as we are dealing with non-linear terms

in (6.2). However, the e�ect of (6.3) is to smooth the shock. By using the

results we had from analysing the initial data in the previous chapter, if we

set n� > 1, then we know that analytically, the velocity at the boundary

vB = 0, and hence the boundary waits.

Further quantitative analysis of this isn’t useful as it is very di�cult to

implement the second equation (6.3). This acts as a damper or di�user

and prevents any useful results using characteristic analysis on the advection

equation.

These analytical results on equation (6.2) coincide with Cath and Co-

hens [12] analysis of the corner shocks which occur at the time the boundary

begins to move after an initial waiting time.

To solve (6.1) numerically it helps to �rst transform (6.1) into the form

vt +
2 + n

2
(vx)

2 = unvxx

Now we can solve this using a standard upwind �nite di�erence method

for the �rst derivatives w.r.t. t and x, and due to the damping e�ect of

the un term, we can simply take a central di�erence method for the second

derivative of v.
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Figure 6.1: Figure on the left shows the velocity that the moving mesh method

calculates (see Chapter 7) and the �gure on the right shows the numerical

solution of equation (6.1). � = 4:5, n = 1.

vk+1
j � vkj

�t
= (ukj )

n

 
vkj+1 � 2vkj + vkj�1

(�x)2

!
� 2 + n

2

 �
vkj
�2 �

�
vkj�1

�
�x

!
where k is the time step t = k�t and j is the spacial step x = j�x.

Since we are solving for u on a moving mesh (see chapter 7), we must

interpolate the solution to the points close by. Fortunately u is smooth when

u is not small, so this can be calculated using a simple linear interpolation

technique.

The numerical solution shows some interesting results (�g. (6.1)). The

shock is formed and begins to move at a �nite speed at approximately the

same time as the boundary starts to move when solving the PME using a

moving �nite element method in Chapter 7.

It can be seen in �gure (6.2) that the numerical solution of the advection-

di�usion equation begins to move before the shock breaks in the mesh velocity

plot. This shows the errors between the moving mesh method when solving

the PME and the �nite di�erence method used for the advection-di�usion

equation. Analytically, we saw that for the PME, when n� > 1, a waiting
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Figure 6.2: Figure on the left shows the velocity that the moving mesh method

calculates (see Chapter 7) and the �gure on the right shows the numerical

solution of equation (6.1). � = 1:5, n = 1.

time should occur. The numerical solution of the advection equation (6.1)

shows that we should have a short waiting time and then a shock forms and

the wave begins to move.

Using the same method for the TFE, we get an equation similar to (6.1),

but due to it having many high order derivatives of v and u, the numerical

solution of the equation would have been di�cult to solve. A scheme such as

the Adams/Bashforth 3rd order, 3 level scheme could have been implemented.

We shall further discuss this in Chapter 10.

In the next chapter, we shall move on and derive the moving �nite element

method [3] for the PME and the TFE using the velocity (4.4) derived from

the conservation of mass principle in chapter 4.
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Chapter 7

Moving mesh explanation

In this chapter we shall construct the moving �nite element method that will

be used to numerically solve the PME and the TFE. It is an adaptive �nite

element method for solving PDEs with moving boundaries using a moving



7.1 Finite Element Formulation

To solve this problem approximately using the �nite element method, we

introduce a test function into (4.1) and �nd the weak form of (4.2).

So, using the previous result, we propose a weak conservation principle

with w being a test function advected with velocity v. w is continous and

once di�erentiable.

Z xi(t)

xi�1(t)

wiudx = c (7.1)

where c is a constant determined by the initial data. The partition of

unity condition on w, is required for (7.1) to conserve mass

NX
j=0

wj = 1

Di�erentiating (7.1) w.r.t. t leads to

Z xi+1(t)

xi�1(t)

wi
@

@x
(unpx + vu) dx = 0

assuming that wi moves with v.

We assume that the test function will take the form of linear hat functions

�i. These are de�ned as

�j =

8<:
x�xj�1

xj�xj�1
; x 2 (xj�1; xj)

xj+1�x
xj+1�xj

; x 2 (xj; xj+1)

Integrating by parts and replacing w with �i, we get
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u =
NX
j=1

uj�j (7.5)

We are now left with

Z xi+1(t)

xi�1(t)

u
@�i
@x

@�j
@x

 jdx = �
Z xi+1(t)

xi�1(t)

un
@�i
@x

@�j
@x

uj

which leaves us with the symmetric matrix system to calculate the velocity

potential  j,

K(u) = �K(un)u

Where K is a weighted tridiagonal matrix.

7.1.2 Getting  - Thin-Film Equation

As previously de�ned, u is piecewise linear. To approximate uxx, we use a

weak form of

p = �@
2u

@x2
(7.6)

Integrating equation (7.6) w.r.t. x, and taking the weak form,

Z xi+1(t)

xi�1(t)u� u xi



we are left with

Z xi+1(t)

xi�1(t)

�i�jpjdx =

Z xi+1(t)

xi�1(t)

@�i
@x

@�j
@x

ujdx

and we have the matrix system

Mp = Ku

This system will be solved for p, where M is the mass matrix and has the

standard form.

We can now continue with method for the TFE in a similar fashion as

with the PME, by �rst solving for p



This leaves us with the system

Mv = A (7.7)

where A is de�ned as

A =

0BBBBBBBBBBBB@

0 �1
2

0 0 : : : 0

1
2

0 �1
2

0 : : :
...

0 1
2

0 �1
2

0
...

...
. . . . . . . . . . . .

...
...

. . . 0 1
2

0 �1
2

0 : : : : : : 0 1
2

0

1CCCCCCCCCCCCA

Now that we have v, we can update the mesh velocities using a time-step

method. For the sake of ease, we shall use the explicit Euler scheme. This

gives us

xi = xi + �tvi

The scheme unfortunately requires very small time-steps to ensure sta-

bility.

Finally, u must be solved on the new mesh. This is achieved by solving

(7.1), where c is de�ned as follows

c =

Z xi+1(t0)

xi�1(t0)

�iu0dx

using the initial data u0. Since c consists of the initial data only, it naturally

remains the same for t � 0 This is due to it being de�ned as the total mass in

the initial data, and this mass is kept constant by the conservation of mass

principle.
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So to get u back, we solve the system

Mu = c

7.2 Implementing the method for computa-

tion

To solve these systems, the code was written in C++ for the PME, and

for the TFE, FORTRAN was used due to its computational e�ency and

hence increase in speed. This was necessary as the time-steps for the TFE

were approaching 10�10� 10�12 and hence, a large number of iterations were

required to study the behaviour of the numerical solution.

Due to oscillations and numerical instabilities, we had to use a number

of adjustments to how the moving �nite element method was implemented

computationally. We shall look at these in turn.

7.2.1 Lumping of the mass matrix

Lumping is a method used primarily to reduce the computational expense of

having to invert a matrix without a loss of accuracy.

In order to obtain a fully explicit scheme, the mass matrix is diagonalised

or ’lumped’. Using the linear hat functions, lumping the matrix is achieved

by adding all elements in each row of the mass matrix and placing the sum

in the diagonal. Then, the lumped matrix replaces the mass matrix in the

system. For more information on lumping, consult [22], [24] and for a more

in depth discussion on the consequences of the use of lumping see [27].
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7.2.2 Upwind method

When discretising a domain using piecewise linear elements, it is clear that

the �nite element method uses a similar ’stencil’ as a central �nite di�erence

scheme.

This lead to the advection-di�usion behaviour of the velocity having nu-

merical instabilities. An upwind �nite element method was instead imple-

mented. This lead to less oscillations, yet small localized oscillations were still

occurring in the neighborhood of the steep gradient. For more information

on this method see [10].

7.2.3 Smoothing method

Due to the small oscillations mentioned previously in the velocity of the

numerical solution of the TFE, a smoothing method was used.

vi =
1

4
vi�1 +

1

2
vi +

1

4
vi+1

This smoothing method eliminated some of the small oscillations that

were occurring, and prevented blow up of the velocity. Unfortunately, due

to the smoothing, the result was that we were computing a less accurate

numerical solution. The smoothing of the moving front would have caused

a lower velocity and hence a slightly longer waiting time, as was witnessed



Chapter 8

Numerical Results I

We now present numerical solutions using the methods described in Chapter

7. By also using the results in Chapter 5, we shall only examine results

where a waiting time occurs. Bahattacharya [2] investigated the instant

movement solutions without a waiting time using the same moving �nite

element method.

The solutions are plotted against the time dependent moving nodes, not-

ing that the central node at x = 0 never moves due to it being the centre

of mass. This is due to the symmetry of the initial conditions that we are

solving both the TFE and the PME and the lack of any source term to either

end of the domain ( See Chapter 9 for an example of the e�ects of a source

term).

8.1 Porous-Medium Equation Results

We shall begin by looking at the PME with two sets of values for � and n

and comment on the observable features.

The results when using � = 4:5 and n = 1 are shown in �gures (8.1)
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Figure 8.1: Numerical solution of the PME with n = 1, � = 4:5

Figure 8.2: Close up of the moving boundary of the numerical solution of the

PME with n = 1, � = 4:5
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Figure 8.3: Velocity’s of the nodes of the numerical solution of the PME with

n = 1, � = 4:5
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Figure 8.4: Movement of the boundary of the PME with n = 1, � = 4:5
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- (8.4). In �gure (8.1) we see the expected waiting time occuring and also

a clear pro�le redistribution behind the stationary boundary. This pro�le

redistribution is more clearly seen in the close up of the boundary area in

�gure (8.2). The cover layer phenomenon observed in Kath and Cohens

paper [12], can be clearly seen.

Figure (8.3) is really where our main interest lies and its the velocities

advective pro�le that causes a shock to occur, and consequently, an imme-

diate movement of the boundaries. In Chapter 6 we looked at solving an

advection equation and concluded that, due to the limited �xed grid method

used, it only gave information throughout the waiting time, but did not give

any information on the movement of the boundaries after the waiting time.

See Chapter 6 and the results in �gure (6.1).

As can be seen, the velocities are positive when x > 0 and negative as

x < 0. Over time a steepening front develops as t increases, which eventually

becomes a shock. Also note that as in �gure (6.1), the velocity is being

di�used. After the shock we have a linear velocity that shall eventually

tend to zero as t ! +1. Figure (8.4) shows the movement of the positive

boundary and estimates a waiting time of duration t = 0:31.

Note that the moving �nite element method coped very well with solving

the PME, even when using the Euler method for the time-stepping. The

time-steps to solve this without having an unstable solution were of order of

magnitude 10�4 for 61 nodes.

We shall now look at another numerical solution with � = 0:5 and n = 7.

This again, using the results from Chapter 5, should give us a waiting time

period due to the condition n� > 1. With the value � = 0:5, we get an

entirely di�erent pro�le for the intitial condition, compared with (8.1). This

is an example of a non-zero contact angle, and due to the this, the waiting
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time is a lot shorter because the required pro�le redistribution takes less time

and hence the velocity forms a shock quicker.

Figure 8.5: numerical solution to the PME with n = 7, � = 0:5

Interestingly, in �gure (8.6) due to the di�erent contact angle, we do not

see a corner layer present.

Figure (8.7) again shows a shock forming as the waiting time ends and

the boundary begins to move. Due to setting n = 7, the di�usion is much

stronger and this is most apparent in the velocity.

The waiting time is approximately 0:375� 10�3 as can be seen in �gure

(8.8), but is not as clearly de�ned as in the previous example.

8.2 Thin-Film Equation Results

We shall now concentrate on the numerical solutions of the TFE. It was

expected that the velocity behaviour during the waiting time would be far

more complicated and this can be seen occurring in �gure (8.9). We observe

35



!0.765 !0.76 !0.755 !0.75 !0.745 !0.74

0.1

0.2

0.3

0.4

0.5

0.6

x

u(
x,

t)

Figure 8.6: Close up of the moving boundary of the numerical solution to the

PME with n = 7, � = 0:5

!1 !0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8 1
!4000

!3000

!2000

!1000

0

1000

2000

3000

4000

Figure 8.7: Velocity of the nodes of the numerical solution to the PME with

n = 7, � = 0:5

36





and Langdons [6] results. The results gave a pro�le of u at a certain time-

step. There was a slight di�erence in the results as the waiting time computed

with the moving �nite element method was slightly longer. This is most likely

due to a smoothing of the shock, and hence the boundary in the solution we

computed had not moved quite as far as what their numerical results showed

This shall be discussed in more detail in Chapter 10, as there are changes to

the methods used that could improve the results. Unfortunately due to time

restrictions, these could not be implemented for this dissertation.
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Figure 8.9: Numerical solution of the TFE with n = 1, � = 4:5

We shall now very briey comment on the �nal results which show more

clearly what is occurring in the velocity during the waiting time.

As the shock begins to form it moves towards the boundary. It is di�used

and clearly, the e�ects of the smoothing cause a few irregularities as it reaches

the boundary. Figure (8.14) shows the waiting time as being approximately

0.285.
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Figure 8.10: Velocity of the nodes of the numerical solution to the TFE with
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Figure 8.12: Numerical solution to the TFE with plot n = 1, � = 6:5

Figure 8.13: Velocity of the nodes of the numerical solution to the TFE with

plot n = 1, � = 6:5
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In this chapter we have numerical solutions of both the PME and the

TFE when the waiting time occurs. We have con�rmed analytical results

such as shock formation and waiting time occurrence and we have found

that during the waiting time, the velocity acts similarly to the advection-

di�usion equation that we numerically solved in Chapter 6. Importantly we

also saw the movement of the boundary after the waiting time.

We shall now move on to the Richards’ equation which models the ow of

DNAPLs through soil, this requires a minor adjustment to the moving �nite

element method. Additionally, the analytical methods that we have used in

this dissertation will be applied to this equation.
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Chapter 9

Application: Richards’

Equation

Non-linear di�usion was studied extensively by physicists modelling water

ow in soils in the �rst half of the 20th century and one of the most important

equations for soil moisture movement is the Richards’ equation. It was based

on work by Buckingham, and Gardner and Windtsoe [7] and deals with

capillary pressure, but was left to Richards to formally express the nonlinear

PDE to model this behaviour. It is derived from combining Darcy’s law with

the continuity equation to model unsaturated, non-steady state ow of water

in the vertical direction.

The Richards’ equation is a second order non linear di�usion equation

and in that sense is similar to the PME.

st = [D(s)sx + �(s)�g]z (9.1)

where s(z; t) is the saturation of the wetting phase, �(s) is the relative per-

meability to the wetting phase, and D(s), the di�usion constant is of the

form
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D(s) = ��(s)
d 

dz
(s)

where  us the capillary pressure. g is gravity which is acting downwards

(negative z direction) and � is the density of the uid being modelled. We

assume that the speci�c water capacity of the soil is constant throughout the

domain.

We shall take the same steps to non-dimensionalise equation (9.1), as in

Grindrod’s paper [9] and we arrive to the equation which shall be the basis

of the remainder of this chapter. He assumed that  (s) / s�1 and �(s) / sk,

for some k > 0. Rescaling z and t we �nd

st = [D(s)sz + �(s)]z (9.2)

with D(s) = sk�2 and �(s) = sk.

Setting k = 2, we have the Burgers equation. However, we shall concen-

trate on k = 3 as this is a good model for Creosote contamination in soil and

there is an exact similarity solution involving Airey functions [9].

The aim of numerically solving this equation is to model the ow of

DNAPLs in soil after in�ltration. They can cause serious environmental

problems and may contribute to groundwater contamination if they reach

the water table.

The equation is very similar to the PME, and does not require a large

change to the moving mesh method algorithm that was used in Chapter 7.

We shall examine the initial conditions as we did in Chapter 5 to obtain

estimates of the values of the parameter � required for the waiting time

phenomenon to occur.

But �rst, using the conservation of mass principle, we derive the velocity

as in Chapter 4.
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v = �
�
sz + s2

�
(9.3)

and at the boundary the velocity is

vB = � lim
s!0

�
sz + s2

�
(9.4)

9.1 Boundary behaviour at t = 0

Since the Richards’ equation is of the same order as the PME, we expect the

same general behaviour, a waiting time to exist for certain initial conditions.

The initial condition that shall be used is de�ned as follows

s(z; 0) =

8<: (1� z2)
�

if z 2 [�1; 1];

0 if jzj > 1:
(9.5)

Analysing the initial conditions using the same method as in chapter 5,

we substitute in (9.5) and its derivative into (9.4).

So,

vB = � lim
s!0

�
sz + s2

�
= lim

z!zB

�
2�z

�
1� z2

���1 �
�
1� z2

�2�
�

We shall look at both the left and right boundary, denoting v+
B be the

boundary velocity for zB = 1, and v�B be the boundary velocity for zB = �1.

As can be seen we have three cases,

� if � > 1, v+
B = 0, v�B = 0,

� if � = 1, v+
B = 2, v�B = �2,

� if 0 < � < 1, v+
B ! +1 as zB ! 1, v�B ! �1 as zB ! �1.

See �gure (9.1) and (9.2) for a plot of these results.

To observe the waiting time phenomenon using equation (9.5), we shall

solve equation (9.2) for � > 1. To solve this numerically we must slightly

alter the method derived in Chapter 7.
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9.2 Finite element formulation

We shall implement the same method as in chapter 7, but since equation

(9.2) is di�erent from the PME, as seen in the previous section, the velocity

is also of a di�erent form. These di�erences actually only alter the �nite

element method when �nding  , so to avoid repetition, only this shall be

separately derived.

We propose a weak conservation principle with w being a test function

advected with velocity v and c is a constant determined by the initial condi-

tions. w is continuous and once di�erentiable.

Z zN

z0

wisdz = c (9.6)

where c = constant. As previously, the partition of unity condition is required

for equation (9.6) to conserve mass

NX
j=0

wj = 1

Di�erentiating (9.6) w.r.t. t leads to

Z zi+1(t)

zi�1(t)

wi
@

@z

�
ssz + s3 + vs

�
dz = 0

We assume that the test function will take the form of linear hat functions

�i as in Chapter 7.

So replacing w with �i and as before, we integrate by parts to get

�i
�
ssz + s3 + vs

� ����



The �rst term on the left vanishes since either �i = 0 or s = 0 at the two

boundaries, so

Z zi+1(t)

zi�1(t)

s
@�i
@z

vdz = �
Z zi+1(t)

zi�1(t)

@�i
@z

�
ssx + s3

�
dz

=

Z zi+1(t)

zi�1(t)

s
@�i
@z

@s

@z
dz +

Z zi+1(t)

zi�1(t)

@�i
@z

s3dz (9.7)

Again we de�ne the velocity potential and its �nite element approxima-

tion and substitute this into (9.7)

Z zi+1(t)

zi�1(t)

s
@�i
@z

@�j
@z

 jdz = �
Z zi+1(t)

zi�1(t)

s
@�i
@z

@�j
@z

sjdz +

Z zi+1(t)

zi�1(t)

@�i
@z

�3
js

3
jdz (9.8)

Now we have a symmetric matrix on the left hand side of (9.8) , resulting

in the system

K(s) = �K(s)s+Bs3

where B is de�ned as

B =

0BBBBBBBBBBBB@

0 1
4

0 0 : : : 0

�1
4

0 1
4

0 : : :
...

0 �1
4

0 1
4

0
...

...
. . . . . . . . . . . .

...
...

. . . 0 �1
4

0 1
4

0 : : : : : : 0 �1
4

0

1CCCCCCCCCCCCA

Once we have  we continue as we did for the PME, solving for v and

then updating the mesh positions. Finally we solve for s.
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9.3 Numerical Results

The numerical results presented here are not compared to any known solu-

tions. The solutions that Grindrod [9] constructed using Airey’s functions,

were not available and this will be commented on in Chapter 10. The pro-

gram was known to be stable for the PME and was converging to known

solutions without waiting times [2]. We conjecture that the solution will

converge to some solution even though there are no known solutions of (9.2)

that have the intitial conditions (9.5).

Initially when running the program, the velocity began to oscillate just

before the shocks were forming at the boundaries. This was remedied using

a smoothing function discussed in chapter 7. Minor oscillations are still

apparent and this calls for further study of solving (9.2) using the moving

mesh method. This shall be discussed more in the �nal chapter.

The additional s3 term in (9.2) clearly a�ects the density distribution.

Initially the density pro�le is symmetrical along the y-axis at z = 0, but

after a few time-steps, the additional term moves the centre of mass to the

left. This is not seen in the numerical solutions of the PME, where the

solution stays symmetrical 8t and thus the centre of mass is always in the

centre. Fig. (6.2)

This behaviour can also be observed in the velocity plot. The velocities

are much higher in the domain to the left of the centre of gravity, compared

with to the right. Also in the velocity plot, we can clearly see the two shocks

forming just before the waiting time ends. The shocks form at di�erent times

to each other due to the di�ering velocities being applied to them. Clearly,

the larger velocities at the left of the centre of mass are causing a shock to

appear in a shorter time interval, hence a smaller waiting time compared

with the boundary at z = 1.

As an example of an application of this numerical solution, we shall de�ne
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Figure 9.3: Numerical solution of s and the corresponding mesh velocites v

showing two seperate shocks forming at di�erent times, � = 3:0

the water table at z = �3. The solution can predict the time at which the

moving liquid (DNAPL) reaches the water table and interacts with the water,

therby contaminating it.

Figure (9.4) shows the solution for � = 3:0 up until the boundary reaches

z = �3. It reaches this value at t = 6:55. Physically, the contact angle of the

initial data is inuenced by �, and hence a lower value would cause the uid

to reach the water table at a quicker rate. Hence, as shown for the PME, the

initial pro�le of s a�ects the waiting time.

This investigation has been limited to certain values of n and � and does

not use initial conditions derived from analytical solutions. It is hence limited

in this sense but the application is interesting enough alone for the further

study of this problem.
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Chapter 10

Conclusions and Further Work

10.1 Summary

This dissertation has illustrated the various techniques for �nding out prop-

erties of the waiting time of the solutions of parabolic PDES, speci�cally the

PME and the TFE. The motivation for studying the waiting times began

with B. Bhatachyras dissertation [2] where she briey commented on waiting

times after implementing a moving mesh method on the 4th and 6th order

non-linear di�usion equations based on a conservation of mass principle, and

also the subsequent derivation of the advection-di�usion equation for the ve-

locity. This �nal chapter serves as a summary of the work presented and

suggests possible future avenues of study.

We began by de�ning the PME, TFE and the Richards’ equation and

explains the possible applications to each as a motivation for further study.

We continue with a brief description of the literature that is available for

them and mention some key analytical and numerical results. In Chapter

3 we begin to focus on the main topic of the dissertation. We examine

the literature currently available on the waiting time phenomenon, looking

again at the analytical and numerical results presented and also mention a
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be improved on.

10.2.1 Advection-Di�usion velocity equation for the

TFE

As mentioned in Chapter 6, the advection-di�usion equation derived for the

velocity had high order derivatives which would have been di�cult to solve

numerically. This was therefore not looked at due to time constrictions. If

a numerical solution were to be obtained, an approximation to the waiting

time could be found and we may also see more clearly what happens to the

velocity just before the �nal shock forms at the boundary.

10.2.2 Improving the stability of the TFE �nite ele-

ment method

At the end of Chapter 7 we briey discussed the use of an upwind �nite

element method. We were still able to see the shocks forming, and the

movement towards the boundary, but the oscillations were not giving us as

clear a picture as was wanted. This needs to be investigated further due

to the possibility of computing a more stable numerical solution and an

improvement to the approximation of the waiting time.

10.2.3 Richards’ Equation

Richards’ equation was only touched upon in chapter 9 for the case k = 3.

It gave a new insight into the waiting time phenomenon as the two bound-

aries had di�ering behaviour due to the weighting factor of the extra term

in the Richards equation, compared with the PME, causing it to be non-

symmetrical in the line x = 0.
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We also encountered localised oscillations near the boundary as the shock

formed, and again as for the TFE, we used the smoothing method to supress

these to give a clearer understanding of what was occuring. The smoothing

does a�ect the overall solution though, and with some adjustment to the com-

putational adaptation of the moving �nite element method, the smoothing

could be eliminated, thus giving a more accurate waiting time.

The use of initial conditions that have been derived from exact analytical

solutions would give a chance to compare the numerical solution to the exact

solution to see the accuracy of the method and wether it converges to the

exact solution or not.

The equation is used in soil science and would bene�t further study due

to its important environmental applications in the ow of pollutants in con-

taminated soils.
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